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A  hybrid  model  incorporating  wavelet  and  radial  basis  function  neural  network  is  presented  which  is
used  to detect,  identify  and  characterize  the  acoustic  signals  due  to  surface  discharge  activity  and  hence
differentiate  abnormal  operating  conditions  from  the normal  ones.  The  tests  were  carried  out on cleaned
and polluted  high  voltage  glass  insulators  by using  surface  tracking  and erosion  test  procedure  of  inter-
national  electrotechnical  commission  60587.  A laboratory  experiment  was  conducted  by preparing  the
prototypes  of  the  discharges.  This  study  suggests  a feature  extraction  and  classification  algorithm  for  sur-
face  discharge  classification,  which  when  combined  together  reduced  the  dimensionality  of  the  feature
space  to  a  manageable  dimension,  by  “marrying”  the  wavelet  to  radial  basis function  neural  network
ry bands
lass insulator
BF-NN
urface discharge
avelet transform

very  high  levels  of  classification  are  achieved.  Wavelet  signal  treatment  toolbox  is  used  to recover  the
surface  discharge  acoustic  signals  by eliminating  the  noisy  portion  and  to reduce  the  dimension  of  the
feature  input  vector.  A  radial  basis  function  neural  network  classifier  was  used  to  classify  the  surface
discharge  and  assess  the suitability  of  this  feature  vector  in  classification.  This learning  method  is proved
to be  effective  by applying  the  wavelet  radial  basis  function  neural  network  in the  classification  of  surface
discharge  fault  data  set.  The  test  results  show  that the proposed  approach  is  efficient  and  reliable.

©  2012  Elsevier  B.V.  All rights  reserved.
. Introduction

Atmospheric elements when accumulated on insulator’s sur-
ace, form a layer of pollutant over time. The dielectric properties of
he insulator does not diminish significantly, due to the pollutant
ayer especially when the layer is dry, but due to high humidity,
ight rain and even fog, it gets wet, and generates a leakage cur-
ent resulting in a flashover which eventually leads to a disaster in
ervice reliability [1,2].

The acoustic technology for target detection has developed very
apidly in the past few years. So strong tools are required, such as
ignal processing and feature extraction for the detection of such

 condition [3,4]. Several researchers successfully used a method
f acoustic detection for studying the characteristics of electrical
ischarges on insulators [5,6]. Many techniques on signal analysis
ave been used such as Fourier transform, wavelet transform (WT)
s well as neural network in order to characterize and classify the

lectrical discharge signals [7,8]. But no work has been done up to
ow on the combined effect of wavelet transform with radial basis

∗ Corresponding author. Fax: +60 7557 8150.
E-mail address: hondahonda750@yahoo.com (N.A. Al-geelani).

568-4946/$ – see front matter © 2012 Elsevier B.V. All rights reserved.
oi:10.1016/j.asoc.2011.12.018
function neural network for characterization of surface discharge
(SD).

Wavelet transform (WT) has been successfully employed in vari-
ous fields of chemistry for signal processing and shape optimization
for improving the quality characteristics of the products. A lot of
research have been done regarding WT,  employed mainly for sig-
nal processing in various fields of analytical chemistry, including
flow injection analysis (FIA), high-performance liquid chromatog-
raphy (HPLC), capillary electrophoresis (CE), infrared spectrometry
(IR), ultraviolet–visible spectrometry (UV–vis), mass spectrometry
(MS), nuclear magnetic resonance spectrometry (NMR), electroan-
alytical chemistry, and X-ray diffraction [9,10].

Some researchers developed the immune algorithm part of
the neural network to optimize machining parameters for milling
operations. A new hybrid optimization approach was  developed
by hybridizing the immune algorithm with hill climbing local
search algorithm to maximize total profit rate in milling operations
[11,12].

Among different structures of artificial neural networks (ANNs),
the multilayer perceptron with the error-back-propagation train-

ing algorithm called backpropagation network (BPN) is the most
popular one. However, due to its multilayered structure and the
greedy nature of the back-propagation algorithm, the training pro-
cess often settles in the undesirable local minima of error surface

dx.doi.org/10.1016/j.asoc.2011.12.018
http://www.sciencedirect.com/science/journal/15684946
www.elsevier.com/locate/asoc
mailto:hondahonda750@yahoo.com
dx.doi.org/10.1016/j.asoc.2011.12.018
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r converges slowly. Recently radial basis function neural networks
RBF-NNs) have been found to be very attractive for many prob-
ems. An important property of the RBF-NNs is that they form a
nifying link among many different research fields such as function
pproximation, regularization, noisy interpolation, pattern recog-
ition, and medicine. The increasing popularity of the RBF-NNs is
artly due to their simple topological structure, their locally tuned
eurons, and their ability to have a fast learning algorithm in com-
arison with other multilayer feed forward neural networks [13].

In some applications, electrical surface discharge detection
ethods are not very effective, typically as a result of excessive

nterfering signal [14,15].  Acoustic method has been used which
as advantages over electrical surface discharge detection meth-
ds in that they are immune and non-invasive to electromagnetic
oise. For the signal analysis, wavelet signal processing was used
o de-noise the surface discharge acoustic signal by discarding the
oise [16–18].

Furthermore, gating techniques were used to raise the efficiency
f surface discharge acoustic signal extraction. Time and frequency
easurements were considered in both domains. Acoustic signals

re familiar by their dominating features that are frequency, phase
nd amplitude in which, key to many signal analysis solutions is
he frequency feature.

Ortho-normal basis function local in time can be provided by
avelet transforms. The beauty of WT  is that it can nearly give a sig-
al without distortion. The WT  can also provide a multi-resolution
oncept, which is used in signal processing, identification of acous-
ic signals, numerical analysis and weak signal detection.

This work describes and portrays the great capabilities of WT
o extract unique features from the signal of the SD which when
ombined with radial basis function neural network (RBF-NN) gives
igh classification accuracy.

The organization of this paper is as follows. In Section 2, the
oncept of WT  applied for SD detection is described first. Although
here are many types of ANNs, we focus our study on the commonly
een feedforward network, namely, RBF-NN. A brief introduction
o RBF-NN is also given in Section 3. Section 4 reports the exper-
mental setup obtained by developing a model to detect the SD
coustic signals. The feature extraction and the feature vector from
he normalized inputs is been generated in Section 5. The analysis
f results and discussions are given in Section 6. Section 7 presents
ome comparison with other related works and the conclusion is
ade in Section 8.

. The wavelet transform

The acoustic signals have some non-linear characteristics due to
he surface discharge and that makes some difficulties to deal with
ecause of nonlinear and the random like behavior of system. The
roblem of non-linearity of the acoustic signal is overcome by using
avelet transform which is a strong tool for feature picking-up. It

s equivalent to filters. Details (dn) are produce by high pass filters
nd approximations (an) are produced by low-pass filters. Due to
he multidimensional characters which the wavelets possess, there
re able to adjust their scale to the nature of the signal features
19].  It can zoom in or zoom out the required details just like a

icroscope.
Furthermore, wavelets can decompose a signal to give dilations

nd translations parameters, so the information in the signal is
resented by these parameters in the form of frequencies. The mat-

ab wavelet toolbox is used to verify the algorithm where discrete

avelet transform (DWT) is used to analyze the signals. The coeffi-

ients are generated and the features from the signal are extracted.
avelet is a good tool to analyze the non-linear signals as it repre-

ents the features both in time and frequency domains [20,21]. The
mputing 12 (2012) 1239–1246

WT  analyses the non-periodic surface discharge signal and adopts
the principle of linking of frequency scales. Generally the DWT  is
used for this mission.

The equation for non-static signal for a DWT  is shown below
[22,23].

f (t) =
∑
k

cj0,k�j0,k(t) +
∑
j>j0

∑
k

wj,k2
j/2 (2jt − k) (1)

where   is the Mother wavelet function, j is the Dilation or level
index, k is the Translation or scaling index, �j0,k is the scaling func-
tion of the coarse scale coefficients, and Cj0,k, Wj,k is the scaling
function of detail (fine) coefficients.

One of the capabilities of DWT  is that, it produces details to
show high frequency information and approximations to show
low frequency information. The most suitable mother wavelet for
detecting SD acoustic signals is the Daubechies (Db) wavelets trans-
form, which is capable of detecting short duration, fast decaying,
high frequency and low amplitude signals. The decomposition pro-
cess in the WT consists of many numbers of filters from Db2 to
Db44, so the most promising number depends upon how they min-
imize the aliasing. Basically in the first stage the captured signal
is divided in to two of the frequency bandwidth, which is then
passed to high pass and low pass filters [24]. After that the out-
put signal from the low pass filter is further subdivided into two of
the frequency bandwidth and sent to the following stage [25]. This
procedure continues until the predetermined number of levels is
reached. The output of the final stage represents the same cap-
tured signal but at different frequency bands [26,27]. The suitable
selection of mother wavelet depends on the application. Among
the various de-noising techniques, from the point of view of the
de-noising effect and the computing time the DWT  method is the
most suitable.

Finally, the Daubechies wavelet is the most appropriate for
treating SD [28,29]. In this study, the adaptability of the Daubechies
wavelets of orders 2 has been evaluated, and results have shown
the superiority. It is befitting to select a suitable number of breakup
levels based on the nature of the signal. Based on acoustic signal fea-
tures, it is seen that six levels of decomposition is the best choice,
because it has described the SD acoustic signal in a more mindful
and symptomatic way. This decision is mainly due to the low fre-
quency band (approximation), which is the most valuable part of
the acoustic signal [30].

3. Radial basis fuction networks

Radial basis function (RBF) networks have certain advantages
over other types of ANNs and have been widely applied in many
science and engineering fields. It is a three layered feed-forward
and fully connected network. The output layer has no nonlinearly
and the connections of the output layer are only weighted, the con-
nections from the input to the hidden layer are not weighted. It is
a feed-forward network with a single layer of hidden units, called
radial basis functions (RBFs). RBF outputs show the maximum value
at its center point and decrease its output value as the input leaves
the center. Typically, the Gaussian function is used for the activa-
tion function. The RBF network is constructed with three layers:
input layer, hidden layer and output layer. In input layer, the num-
ber of neurons is the same with the number of input dimension.
In the case of Gaussian function, this value represents measure in
the quality of the match between the input vector and location of
the center in the input space. Each hidden node therefore, can be

considered as a local detector in the input data space [31,32].

One of the unique features of Radial basis networks is that they
can be represented by simple functions. They could cope to any
type of model linear or nonlinear and to any network single layer
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1. The goal of preprocessing is to reduce the number of parameters
to face the challenge of “curse of dimensionality”.
N.A. Al-geelani et al. / Applied S

r multi-layer. An RBF-NN is said to be nonlinear if there exists more
han one hidden layer or if the basis functions can move or change
he size. The activation function of a hidden unit is predicted by the
istance between the input vector and a prototype vector [33].

k(�x) =
M∑
j−1

wkj�(�x) + wk0 ≡
M∑
j=0

wkj�j(�x) (2)

here �x is the input vector, �j is the activation of one of the RBFs,
kj is the weight of each RBF, M is the number of RBFs, and zk is the
utput (linear sum of radial basis function).

In a 3-layer RBF-NN, conversion from the input room to the hid-
en room uses a nonlinear function and linear transformation take
lace between the hidden and the output layer. The hidden units
sed in radial basis functions usually take the form of [33]:

j(‖�x − −→�j‖) (3)

he distance between the input vector x and a vector �j of the
unction usually depends on Euclidean distance.

�x − ��‖2 =
∑
i

(xi − �ji)
2 (4)

he most ordinary form of basis function used is the Gaussian func-
ion.

j(�x) = exp

(
−‖�x − ��‖2

2�2
j

)
(5)

�
 and �2

j
are the jth center vector and the width parameter, respec-

ively. A hidden neuron is more susceptible to data points near
ts center. This sensitivity may  be adjusted by tuning the width
, larger width leads to less sensitivity. For a given input vec-

or, typically only a few number of hidden units will have notable
ctivations [34]. RBF neural networks can design complicated map-
ings compared to multilayer perceptron. In addition RBF-NN has
wo layer weights only and a simple learning algorithm, that makes
t very fast in training speed compared to multilayer perceptron.

MATLAB provides two commands that can be used to design
BF neural network. Newrb and newrbe. Newrb adds neurons step
y step until the goal is hit, with long training time and a little
rror, while newrbe very quickly designs a network with zero error
35,36]. For the training process the following steps should be ful-
lled:

. The hidden layer’s number of neurons.

. The coordinates of the center of RBF function.

. The radius (spread) of each RBF function in each dimension.

. Experimental setup

The test set-up consists of two main parts; the circuit loop (AC
ource, transformer, connections and insulator), the measurement
nd acquisition system (earth resistor, wide band antennas and
igh resolution digital oscilloscope, model Tektronixs TDS55000B
eries). Fig. 1 shows the experimental set-up for generating sur-
ace discharge as well as detecting the consequent acoustic signal
f surface discharge. The test was designed based on the inter-
ational electro-technical commission (IEC) 60587 standard test
rocedures. A point to plane electrodes configuration was  used
nd mounted at the top and bottom side of the glass insulator sur-
ace. The surface discharges were generated across the electrodes

y applying high voltage stress across them.

The glass insulator was fixed on a wooden base and the elec-
rodes were fixed by some arrangement on the insulator. A series
f experiments were performed on H.V. glass insulator, which are
mputing 12 (2012) 1239–1246 1241

extensively used in transmission lines. Before tests, the insulator
surface was cleaned by washing with isopropylic alcohol and rins-
ing with distilled water, in order to remove any trace of dirt and
grease. To reproduce saline pollution typical of coastal areas, the
insulators were sprayed with a solution, consisting of NaCl and dis-
tilled water, with different degrees of salinity (from 10 g/l NaCl to
30 g/l NaCl). A peristaltic pump was used to continuously deliver the
electrolyte at a fixed flow-rate of 0.60 ml/min. Eight layers of filter
paper were used between the top electrode and the sample, which
act as an electrolyte reservoir to ensure proper flow of electrolyte
along the insulating material surface. The contaminant must flow
from the quill hole at the bottom of the top electrode and should
not squirt out of the side or top of the filter paper. The specimen
was adjusted so that the electrolyte ran down as near as possible
to the centerline of the specimen.

An ultra sound detector (USD) with a parabolic antenna was
used to detect the acoustic signals resulted from the surface dis-
charge activity and was placed at a suitable position from the
specimen. The USD was  then connected to a digital oscilloscope
to capture and record the acoustic signals. The recorded signals
were then processed using MATLAB plateform. Many trials were
done using the experiment setup and the most logical data was
finalized.

Four test conditions were conducted in the laboratory including
first condition in which the insulator was kept clean, second con-
dition in which the insulator was  lightly contaminated by a layer
of NaCl solution (10 g/l), third condition in which the insulator was
medium contaminated by a layer of NaCl solution (20 g/l) and fourth
condition in which the insulator was  heavily contaminated by a
layer of NaCl solution (30 g/l). In the first condition the insulator
was kept clean and the result is shown in Fig. 2(a). This signal is
been processed by using wavelet analysis to remove the noise. It
can clearly been seen from the black in colour signal that the clean
insulator has no or very small surface discharge activity. So this
pattern could be considered to be the reference, default pattern or
the target to RBF-NN. Fig. 2(b)–(d) shows the second condition, the
third condition and the fourth condition and its de-noise signals
respectively.

5. Feature extraction

The wavelet transform is well suited in identifying sharp edge
transitions. The decomposition of a signal using the wavelet bases
has an inherent adaptation to the signals spatial characteristics. In
this work, the SD signals that were collected in the experimental
process were processed using the DWT  to obtain a feature vector
that will be used in the next stage of classification. The approach
of using the DWT  to extract a feature vector, apart from utilising
the properties of the transform itself in representing the signal, has
the advantage that it can be combined with sensitivity improve-
ment and noise rejection in a single step. The DWT  due to its time
frequency localisation, unlike the Fourier transform where all time
information about the signal is lost, is able to successfully handle
such randomly occuring of SDs [37,38].

5.1. Processing the data
2. The preprocessing has a huge impact on performances of neural
networks.

3. The unwanted field noise and all the interference is filtered off,
which massages the data to unique features.
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Fig. 1. Experimental setup

.2. Decomposition of surface discharge signals

In this work the feature vector is obtained by applying wavelet
ransform. For a single decomposition the number of coefficients
roduced by Db2 is 7 that is 1 approximation coefficient and 6

etailed coefficients. This approximation coefficient that is low
requency component is further decomposed into approximation
nd detailed coefficients. In using the DWT  certain features of the

ig. 2. Captured and the de-noised signal of (a) the clean insulator (b) the lightly contamin
nsulator.
rface discharge detection.

signal that is not immediately obvious in the time domain become
more apparent through this multi scale differential operator. The
features selected to represent the most important part of the data
are as follows.

Mean �, standard deviation �, normalized skewness � and nor-

malized kurtosis k, at each decomposition node, were used as a
finger-print for SD and as an input to the classifier. The mean
�, the standard deviation �, the normalized skewness � and the

ated insulator (c) the medium contaminated insulator (d) the heavily contaminated
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Testing the WRBF-NN by unseen data shows high classification
accuracy which is clearly seen in Fig. 7. The four features of the data
is accumulated at (1) which means this data refers to discharge
activity.
Fig. 3. The inputs overlapping the target.

ormalized kurtosis k, were estimated from the following equa-
ions [37]:

 = 1
N

N∑
n=1

(x[n]) (6)

 =
(

1
N

N∑
n=1

(x[n] − �)2

)1/2

(7)

 = 1
N�3

N∑
n=1

(x[n] − �)4 (8)

 = 1
N�4

N∑
n=1

(x(n) − �)

4

(9)

here x[n] is the wavelet coefficent at postive n and N is the total
umber of wavelet coefficients used at each scale. By taking 6-
etailed coefficients and 1-approixmation coefficients from the
avelet analysis for the 4-conditions mentioned in Section 5, we
ill have the feature vector which uses four descriptors for each

cale, therefore a feature vector of dimensions was needed to rep-
esent the data. So the feature vector is of dimension 42 × 4, i.e. 21
amples for the 3-contaminated conditions and other 21 samples
or the clean condition that totally gives us 42 dimensional vec-
or each having 4-features. These coefficients are used to train the
BF neural network, so that it should discriminate SD activity from
ormal operating conditions.

. Results and discussion

The four inputs shown in Fig. 3 are the main features of the sur-
ace discharge which are kurtosis, mean, standard deviation and
kewness extrated by using wavelet transform technique. The tar-
et vector consists of two classes that are as follows.

The first class is denoted by (0) which shows no or very small SD
ctivity. The second class is denoted by (1) whichs shows high SD
ctivity. The normalized inputs and targets vectors are randomly
ivided into two sets, 60% of the vectors are used to train the net-

ork, 20% of the vectors are used to validate how well the network

eneralized. Finally, the last 20% of the vectors provide an inde-
endent test of network generalization to data that the network
as never seen. By training the RBF-NN with the normalized inputs
Fig. 4. The training performance.

we can see the result in Fig. 3 which shows us a very perfect over-
lapping which means that the neural network had recognized the
inputs with a 100% accuracy.

Training performance nearly hit the goal in 25 epochs only as
could be seen in Fig. 4 giving a very good performance, The stopping
conditions of RBF-NN were set to a minimum error of 0.0002 or
maximum iteration of 10000. The error during training process in
Fig. 5 was acceptable and very low, where it started with a very high
value and during the training process reached an average value of
0.0038 within 40 iterations. The computational time was 0.0795 s,
this is the ability of WRBF-NN to have a very fast learning algorithm.

Mean squared error (mse) is a network performance function.
It measures the network’s performance according to the mean of
squared errors. The unique feature of WRBF-NN is depicted in Fig. 6
which shows that the mean squared error (mse) required only 22
neurons to attain zero value, this is the beauty of combining the WT
with RBF-NN wavelet radial basis function neural network (WRBF-
NN).
Fig. 5. The error between the output and the target.



1244 N.A. Al-geelani et al. / Applied Soft Computing 12 (2012) 1239–1246

7

m
m
u
n

a
v
v
t
t
v
o
i
s
fi
B
r
p
8
w
b

Fig. 6. The mean square error.

. Comparison with other research works

In order to check the reliability of the proposed WRBF-NN the
odel is been compared with the previous works conducted and
entioned in the literature review. The same SD dataset is been

sed to compare with the Wavelet feed forward back-propagation
eural network (WFFBP-NN).

The plot in Fig. 8 has three lines, because the normalized inputs
nd targets vectors are randomly divided into three sets. 60% of the
ectors are used to train the network, 20% of the vectors are used to
alidate how well the network generalized. Finally, the last 20% of
he vectors provide an independent test of network generalization
o data that the network has never seen. Training on the training
ectors continues as long the training reduces the network’s error
n the validation vectors. After the network memorizes the train-
ng set (at the expense of generalizing more poorly), training is
topped. This technique automatically avoids the problem of over-
tting, which plagues many optimization and learning algorithms.
y training the WFFB-NN with the normalized inputs we can see the
esult which shows us training performance did not reach the goal
erfectly. The best validation performance was 0.00351 at epoch

, this means that the neural network had recognized the inputs
ith approximately 95% accuracy. The result here is reasonable,

ecause the test set error and the validation set error have similar

Fig. 7. Testing the input data.
Fig. 8. The training performance.

characteristics, and it does not appear that any significant overfit-
ting has occurred. The error during training process in Fig. 9 was
acceptable, which attained 0.38 in 38 iterations. The target vec-
tor consists of two classes that are designated as: the first class is
denoted by (0) which shows no or very small SD activity. The second
class is denoted by (1) which shows high SD activity. Testing the
WFFB-NN is shown in Fig. 10 where the 4-inputs are the features
of the SD activity, hence most of the data is accumulated at 1 that
means high discharge activity can be found and a small SD activity
can be seen at 0. It is worth noting that the Convergence Time was
0.61039 s, this is the drawback of FFB-NN, an updating algorithm
usually causes the training process to converge slowly. Compared
with the WRBF-NN, it can update the parameters, at the same time
it does not need the previous updating values. Therefore, the pro-
posed WRBF-NN can achieve numerical convergence and is faster
than WFFB-NN in the training process. In addition to that FFB-NN
applies a global searching method, while RBF-NN applies a local
searching mechanism. It is found that global searching may  eas-
ily be trapped in the local minimum, therefore, this manner makes
the estimation errors in the FFB-NN model difficult to be minimized
under the same system parameters as that in RBF-NN. For RBF-NN.
On the other hand, designing a radial basis network often takes
much less time than training a WFFB-NN, and can sometimes result

in fewer neurons.

Fig. 9. The training error.
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Function Network for Endpoint Detection in Plasma Etch Process, vol. 67,
Fig. 10. Testing of WFFB-NN by unseen data.

. Conclusion

It is an inflate to say that we will introduce as many analysis
lgorithms as there are signals. Signals are so complex and rich
hat a single analysis method cannot handle them all. Having done
ll these analysis we can conclude that acoustic detection of surface
ischarge is possible by observing the results which are quite good,
xplainable and logistical. The proposed hybrid model has proved
o characterize the SD activity with a high degree of integrity which
s attributed to the combined effect of the WT  and RBF-NN. The
igh rate of classification acquired by the RBF-NN is due to the
reprocessing of data by the WT.

The model is quite versatile for a wide range of applications in
he field of power system analyses. Due to the preprocessing of
he data by using wavelet transform gave the RBF-NN high rate of
lassification accuracy. This shows the beauty of wavelet transform
specially when combined in one unit with RBF-NN. As future work
our types of partial discharges will be generated in a high voltage
aboratory, namely corona discharge in air, floating discharge in
il, internal discharge in oil and surface discharge in air, at differ-
nt applied voltages will be recorded and a feature vector will be
xtracted by using wavelet transform which will be used to train
he RBF-NN.
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