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Abstract. In the present study binary Mg-xCa (x=0.5 and 1.25wt.%) and ternary Mg-1Ca-xZn 

(x=0.5 and 1.5wt.%) alloys are produced by casting the molten metal in a metal die at a temperature 

of 740°C. The microstructure analysis of the Mg-Ca and Mg-Ca-Zn alloys were studied by OM, 

SEM and EDX. The corrosion behavior of alloys was evaluated via potentiodynamic polarization 

test in Kokubo solution. The result exhibited that the grain size decrease with rising Ca content in 

Mg-Ca alloys and degree of grain size reduction further decreased by adding Zn to Mg-1Ca-Zn 

alloys. The microstructure of Mg-Ca alloys were constituted of primary Mg and lamellar eutectic 

(α-Mg+Mg2Ca) phase, Whilst Mg–1Ca-Zn alloys were composed of primary Mg and eutectic (α-

Mg+Mg2Ca+Ca2Mg6Zn3) phases. In addition with increasing Ca and Zn the amount of Mg2Ca and 

Ca2Mg6Zn3 increased respectively in grain boundaries. Electrochemical test shows that the addition 

of Zn leads to improve corrosion resistance of the Mg–1Ca-Zn alloys as a result of the formation of 

Ca2Mg6Zn3 phase, whilst the addition of more than 0.5 wt% Ca to Mg-Ca alloys result in decrease 

corrosion resistance due to the formation Mg2Ca. 

  

1. Introduction  
    There are various metallic and polymeric materials that are compatible for use as implants in 

human body [1-3]. Though biodegradable polymers are widely used, attention has now been given 

to biodegradable metals which can provide the strength required during the healing process and 

eventually absorbed by the body [4,5]. Hence there is no need for implant removal or secondary 

surgery which carries a certain risk factor and cause psychological stress for patients [5]. 

Magnesium alloys have recently received attention due to their excellent biological and degradable 

properties. These alloys can be used among other things as vascular stents [6-8]. Mg is a 

fundamental element in human body which exists in metabolism and bone tissues where normal 

adult consume about 300–400mg per day. In addition bulk Mg has an elastic modulus and specific 

density close to that of human bones [4,9]. However poor corrosion resistance and high degradation 

rate of magnesium alloys is the essential dilemma of its use as biodegradable implants [9,10]. 

Alloying has been widely known to increase corrosion resistance and improve mechanical 

properties of magnesium alloy. It was reported that adding alloying elements such as Aluminum 

(Al) increases the yield strength and ultimate tensile strength at ambient temperature and grain 

refinement, but Al is harmful to neurons where it can mix with inorganic phosphates causing its 

decline in the human body [4,11]. Zirconium, another alloying element, act as a grain refiner but it 

cause health problem such as lung and liver cancer [4]. Some rare earth (RE) elements such as Ce 

and Pr lead to a decrease degradation rate in vivo, but result in hepatotoxicity to the human body 

[12]. Therefore Al, Zr and RE are not appropriate elements especially with high concentration in 

magnesium alloys for biomedical application [13-14]. The aim of this study was to analyse Ca, Mn 

and Zn as alloying elements for biomedical applications [13]. Pervious study showed that Mg–Ca 

[15], Mg-Zn [13], Mg–Ca–Zn [16] and Mg–Mn–Zn [11,17] were used as most promising 

biodegradable materials [13]. Calcium and zinc, which are fundamental elements in the human 
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body, were known to improve corrosion resistance and mechanical properties [4,13,14]. Despite 

many researchers evaluated the properties of Mg–Ca and Mg–Ca–Zn alloys the microstructure 

analysis and corrosion mechanism had received little attention. Therefore comprehensive studies on 

this are required to improve the usage of these alloys for medical applications. The main objective 

of this study is therefore to conduct microstructural analysis and evaluation of the corrosion 

behaviour of Mg-Ca and Mg–Ca–Zn alloy. 

 

2. Materials and methods  
    Pure magnesium ingot (99.99% Mg), Mg-40Ca master alloy and high purity Zn (99.99 wt.%) 

were used as starting materials. The materials were melted under argon gas in a mild steel crucible 

at 740 ˚C with around 45 min holding time. Following melting and alloying processes the molten 

metal with different content of calcium (0.5 and 1.25wt %) and zinc (0.5 and 1.5wt %) accompanied 

by 30 s string were poured into a pre-heated mild steel mould to attain an ingots. The chemical 

compositions of the as-cast Mg-xCa and Mg-1Ca-xZn alloys are listed in Table 1. Several 

specimens with dimensions of 20 mm×80 mm were cut from the ingot then it was mechanically wet 

ground with 320 to 4000 SiC grit paper until all visible scratches were removed for further 

microstructural and microhardness experiments. 

    The morphology of specimens was studied using Optical (Olympus BX60F5) and scanning 

electron microscopy (Jeol Jsm-6380LA) equipped with EDS analyses. Microhardness value of the 

samples was measured by Vickers hardness tester (Shimadzu) using 5 Kg force.  

    Electrochemical tests were conducted using potentiodynamic polarization in Kokubo solution at 

pH 7.66 at a temperature of 37°C in an open air. A three-electrode cell was used for electrochemical 

measurements where the reference electrode was saturated calomel electrode (SCE), the counter 

electrode was made of graphite rod, and the specimen was the working electrode. For all specimens 

potential scanning rate was fixed at a constant scan rate of 0.5 m V/s initiated at -250mV below the 

open circuit potential. The surface area exposed to the Kokubo solution was 1.6 cm
2
. 

 

3. Results and discussion  

3.1. Microstructure characterization 

    Fig. 1 shows the optical microscopy of Mg-xCa alloys (x=0.5 and 1.25wt%) and Mg-1Ca-xZn 

(x=0.5 and 1.5wt%). The microstructure of Mg-Ca alloys consist of α(Mg) matrix and Mg2Ca 

intermetallic phase. Fig. 1a shows Mg-0.5Ca alloy composed of almost equiaxed large grain 

structure, containing a small content of Mg2Ca phase along the grain boundaries. Fig. 1b shows that 

the grain size of Mg-1.25Ca alloy decrease significantly compared to Mg-0.5Ca alloy, as result of 

increasing Ca content. Figs. 1c and d show microstructure of Mg-1Ca-Zn alloys consists of α-Mg 

solid solution, Mg2Ca and Ca2Mg6Zn3 intermetallic compound which located along the grain 

boundaries and junction. It also can be seen that the addition of Zn to Mg-1Ca-Zn alloys result in 

further decreased in grain size. Fig. 2 shows SEM micrographs of the Mg-xCa and Mg-1Ca-xZn 

alloys with different percentages of Ca and Zn respectively. Microstructure of Mg-Ca alloys were 

mainly composed of primary Mg and eutectic phase (α-Mg+Mg2Ca) which denoted with arrow. 

Fig. 2 b shows that the Mg2Ca phase located both on the grain boundaries and within grains of α-

Mg matrix. Also it was obvious that the amount of Mg2Ca phase in the grain boundary of Mg-0.5Ca 

alloy lower than Mg-1.25Ca alloy. However microstructure of Mg–1Ca-Zn alloys was composed of 

primary Mg and eutectic (α-Mg+Mg2Ca+Ca2Mg6Zn3) phases [11,16]. Figs. 2 c and d show that the 

Mg2Ca andCa2Mg6Zn3 phase were located within grain boundary and interdentrities inner grain 

which denoted with arrow. Fig. 3a shows the EDS analyses of eutectic structure along the grain 

boundary of Mg-Ca alloy. The analyses shows that a composition of second phase consist of 

93.75at.% Mg and 6.25at.% Ca. The analyses also show the grain boundaries of alloy rich of Ca 

while α-matrix is deprived of it. However the analyses of second phase within grain boundaries of 

Mg-Ca-Zn alloy shows that it composed of 76.24at.% Mg, 10.74at.% Ca and 13.02at.% Zn (Fig. 

3b). 
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Table 1. Analyzed compositions of Mg-Ca and Mg-1Ca-Zn alloys 
Zn  Ca  Mg  Alloy designation 

  0.57  99.43  Mg-0.5Ca 

  1.27  98.73  Mg-1.25Ca  

0.56  1.08  98.36  Mg-1Ca-0.5Zn  

1.56  1.08  97.36  Mg-1Ca-1.5Zn 

 
Fig. 1. Optical microscopic image of specimens: (a) Mg–0.5Ca, (b) Mg–1.25Ca, (c) Mg–1Ca-0.5Zn 

and (d) Mg–1Ca-1.5Zn 

 

 
Fig 2. SEM micrographs of specimens: (a) Mg–0.5Ca, (b) Eutectic structure of Mg–1.25Ca, (c) 

Mg–1Ca-0.5Zn and (d) Eutectic structure of Mg–1Ca-1.5Zn 

 

 
Fig 3. EDS analyses of eutectic structure: (a) area 1 and (b) area 2 
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3.2 Hardness behavior 

    The Vickers hardness value of Mg-xCa and Mg-1Ca-xZn are shown in Fig. 4. In Mg-Ca alloys 

can be seen that with increasing the Ca content the hardness value increase noticeably. The hardness 

value of Mg-0.5Ca is 36.8 Hv and this value escalates sharply to 46.1 Hv for Mg-1.25Ca. 

Improvements in hardness value are attributing to solid solution effect, reduction in grain size of α-

Mg and precipitation of Mg2Ca [14]. However further increase in hardness value occurs with rising 

Zn content in Mg-1Ca-Zn alloy specimens. As can be observed, hardness value of the specimens 

increased from 48.5 to 52.7 HV with increasing Zn content from 0.5 to 1.25 wt%. Zn. This 

phenomenon as result of precipitation of Ca2Mg6Zn3 particles within α -Mg grains and reduction of 

grain size [14]. 

 
Fig 4.Effect of calcium and zinc content on the hardness value of Mg-Ca and Mg–1Ca-Zn alloys, 

respectively 

  Electrochemical measurements3.3   

     Table. 2 and Fig.5 show the electrochemical polarization parameters and curves of the Mg-xCa 

and Mg-1Ca-xZn alloys, respectively. In Mg-Ca alloys obviously can be seen that corrosion 

potential shift to nobler direction with increasing Ca content. While corrosion current density 

increased from 0.186 to 0.227 mAcm
-2

 with rising Ca content from 0.5 to 1.25 wt%. This is as 

consequence of the a high electrochemical activity of Mg2Ca than α-Mg and it is a more anodic than 

α-Mg [16]. It was reported [19,20]that the galvanic corrosion occurs between the Mg matrix and 

Mg2Ca phase. This means higher Ca content lead to increase in corrosion rate of Mg-Ca alloys. It 

also can be seen that the corrosion potential and the pitting potential shift to positive direction by 

adding Zn element in Mg-1Ca-Zn alloys. Table 2 also shows that the corrosion current density icorr 

and corrosion potential Ecorr, and pitting potential of specimens extracted from the curves. It was 

reported that [16] the standard electrode potentials increased with the following sequence: 

Mg2Ca<Mg<Ca2Mg6Zn3 as consequence of, Mg had higher standard electrode potential compared 

to Ca. Therefore Mg2Ca phase corroded faster than Mg matrix due to, Mg matrix act as cathode and 

Mg2Ca phase act as anode. However at the interface between Mg matrix and Ca2Mg6Zn3, the Mg 

matrix act as anode and Ca2Mg6Zn3 phase act as cathode[16,19]. By comparing Mg-Ca and Mg-

1Ca-Zn alloys, the corrosion resistance of the alloys which contain Zn was improved due to 

formation of condense passive film. On the polarization curve of the Mg-1Ca-xZn alloy, there is 

sudden drop in electrochemical parameter which represents the pitting potential Ept. As seen in Fig. 

5 the pitting potential shift to the nobler value with adding Zn content, which indicatives more 

stability of the passivation film and the corrosion resistance. Furthermore the addition of Zn 

element can decrease the influence of Ni and Fe on corrosion properties and enhance the corrosion 

resistance of Mg [9]. 

Table 2. Electrochemical parameters of specimens in Kokubo solution attained from the 

polarization test 

Pitting potential  

Ep (mV) 

Corrosion current 

density, icorr (mA/cm
2
) 

Corrosion potential  

Ecorr (mV) 
Specimen 

-  0.186  1876-  Mg-0.5Ca  

-  0.227  1986-  Mg-1.25Ca  

-1589  0.167  1767 -  Mg-1Ca-0.5Zn  

-1490  0.132  1648 -  Mg-1Ca-1.5Zn  
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Fig 5. Potentiodynamic polarization curves of Mg-Ca alloy and Mg–1Ca-Zn specimens in Kokubo 

solution. 

  

4. Conclusions  

1. The microstructure of Mg-Ca alloys are constituted of  primary Mg and lamellar eutectic (α-

Mg+Mg2Ca) phase, Whilst Mg–1Ca-Zn are composed of primary Mg and eutectic (α-

Mg+Mg2Ca+Ca2Mg6Zn3) phases. 

2. The grain size of Mg-Ca alloy decreased with increasing Ca content and degree of grain size 

reduction decreased by adding Zn to Mg-1Ca-Zn alloys which is the main reason of improvements 

in hardness value. 

3. Electrochemical test shows that the addition of Zn leads to improve corrosion resistance of the 

Mg–1Ca-Zn due to formation of Ca2Mg6Zn3 phase, While addition of more than 0.5 wt% Ca to Mg-

Ca result in decrease corrosion resistance as result of formation Mg2Ca. 
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