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In this paper, our focus is on ABA trilayer graphene nanoribbon (TGN), in which the
middle layer is horizontally shifted from the top and bottom layers. The conductance
model of TGN as a FET channel is presented based on Landauer formula. Besides the
good reported agreement with experimental study lending support to our model, the
presented model demonstrates that minimum conductivity increases dramatically by
temperature. It also draws parallels between TGN and bilayer graphene nanoribbon,
in which similar thermal behavior is observed. Maxwell–Boltzmann approximation is
employed to form the conductance of TGN near the neutrality point. Analytical model
in degenerate regime in comparison with reported data proves that TGN-based transistor
will operate in degenerate regime like what we expect in conventional semiconductors.
Moreover, our model confirms that in similar condition, the conductivity of TGN is less
than bilayer graphene nanoribbon as reported in some experiments.
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1. Introduction

Single-layer carbon atoms with hexagonal symmetry (known as Graphene mono-

layer) was reported in early 2004.1,2 Layers of graphene can be stacked differently

depending on the horizontal shift of graphene planes. Every individual graphene

multilayer sequence behaves like a new material in which different stacking of

graphene sheet leads to different electronic properties.3–5 Recently, unique prop-

erties of mono- and few-layer graphene have attracted great attention, and have

been proposed as promising candidates for the future nanoelectronics. Ballistic

transport phenomenon at room temperature, anomalous quantum Hall effect and

tunable band gap by applied perpendicular electric field and magnetic field have
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been observed experimentally.6–11 General electronic properties of graphene-based

materials are varied by increasing the number of the layers, but low energy elec-

tronic properties in graphene layers depend on a large number of parameters. Since

theorists have been unable to agree about the details of the electronic structure,

it needs more research to make sure about electrical properties of these mate-

rials.4 In addition, number and configuration of graphene layers play significant

roles in realizing either metallic or semiconducting electronic behavior.7–9 One of

the important aspects of electronic properties of graphene is its conductivity as

a channel in the field-effect transistors (FETs).12,13 Recently, experimental atten-

tion has turned toward the properties of trilayer graphene (TG),9,14 and a tunable

three-layer graphene single-electron transistor has been experimentally realized.3,15

In this paper, the conductance of ABA trilayer graphene nanoribbon (TGN) is

modeled based on Landauer formula. Conductance of TGNs in the degenerate

and the non-degenerate perturbations are studied as well as its temperature de-

pendence. The analytical model in degenerate regime out of neutrality point is

approximated. Moreover, near the neutrality point, Maxwell–Boltzmann approxi-

mation is discussed. Finally, a good agreement with experimental data is reported.

Comparison between bilayer graphene nanoribbon (BGN) conductance model in

Ref. 13 with TGN conductance model presented in this paper confirms that the

conductivity of BGN is higher than TGN, which had already been reported in some

experiments.4

Graphene layers can be arranged in different sequences. The simplest crystallo-

graphic structure is Hexagonal or AA stacking, where each layer is placed directly

on top of another, however it is unstable. AB (Bernal) stacking is only one distinct

stacking structure for bilayers. For trilayers, it can be formed in either ABA as

shown in Fig. 1 or ABC (rhombohedral) stacking.16,17 Bernal stacking (ABA) is

a common Hexagonal structure which has been found in graphite. However, some

parts of graphite can also have rhombohedral structure (the ABC stacking).3,18 In

this paper, we address our study to ABA stacking trilayer graphene (TG) with

width less than 10 nm which can be called TGN. Note that each honeycomb con-

tains three cells where each cell consists of two carbon atoms named A and B.

ABA TGN consists of three coupled graphene layers on the bottom, middle and

top.19 For Bernal stacking TGN, B2 atom from middle layer is directly above A1

atom from bottom layer and below A3 atom from top layer. The parameters γ0,

γ1, γ3 (γ4) and γ2 respectively describe the interaction between nearest neighbor,

Ai and Bi atoms, the strong coupling between nearest layers, the weaker nearest

layer coupling and the interaction between the next nearest layers.3 Very high car-

rier mobility can be achieved in Graphene-based materials16 which makes them

promising candidates for nanoelectronics devices.20 Recently electron and hole mo-

bility as high as 2 × 105 cm2 V−1 s−1 have been reached for suspended graphene.4

Also, ballistic transport has been observed up to room temperature in these

materials.7,21 The perpendicular external applied electric or magnetic fields are
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Fig. 1. Three coupled graphene layers with ABA (Bernal) stacking. a = 0.142 nm, the monolayer
lattice constant. γ0 = 3.16 eV (see Ref. 16) is interaction between nearest neighbor Ai and Bi

atoms, γ1 = 0.44 eV (see Ref. 4) is the strong coupling between nearest layers, γ3 (γ4) are the
weaker nearest layer coupling and γ2 is the interaction between the next nearest layers.

expected to induce band crossing variation in Bernal stacked TGNs.16,22–24

Therefore, TGN is found to be a semimetal with its behavior different from that of

single-layer and BGN in some aspects. The response of ABA-stacked TGN to exter-

nal electric field is different from that of mono or BGN. In fact, rather than opening

a gap in BGN, the magnitude of overlap in TGN is tuned.14 On the other hand,

overlap between the conduction and valence bands takes place in band structure

of TGNs, which can be controlled by a perpendicular external electric field.3 The

band overlap increases with increasing the external electric field, which is indepen-

dent of the electric field polarity. Moreover, it is shown that effective mass remains

constant when external electric field is increased.4,25 Spectrum of full tight-binding

Hamiltonian of HOPG stacking (ABA) TGN was obtained in Refs. 19 and 25–28.

The presence of electrostatic fields breaks the symmetry between the three layers.

Using perturbation theory29 in the limit of vF |k| ≪ ∆ ≪ t⊥ indicates electronic

band structure of TGN as:26

E(k) = α|k| − β|k|3 , (1)

where α =
√
2∆vF /t⊥ and β =

√
2v

3

F /∆t⊥, in which the upper layer is at potential

∆, the lower layer is at potential −∆, and the middle layer is at zero potential.

Figure 2 shows band structure of ABA staking TGNs based on Eq. (1).

In this description, the Fermi velocity is vF =
√
3γ0a/2~ ∼= 106 m/s (see Ref. 3),

where γ0 (≈ 3.12 eV) (see Ref. 16) is the hopping between π orbitals located at

nearest neighbor atoms. We denote the hopping integral as t⊥ (≈ 0.1γ0) where the

difference in the electrostatic potentials in the two layer graphene is 2∆ (∆ = vg/2).
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Fig. 2. Band structure of ABA staking TGNs.

The external electric field (∆), which can change the amount of overlap in band

structure of TGN, plays a significant role. Varying the band overlap by electric

field is a unique property of TGN that had not been previously found in other

semi-metallic systems.4

2. Conductance Model

For one-dimensional TGN field-effect transistor (1D TGNFET), a graphene

nanoribbon channel is assumed to be ballistic, and as shown in Fig. 3, the current

from source to drain can be given by the Boltzmann transport equation and there-

fore based on Ohm’s Law, this equation can be written as Landauer formula:30,31

G =
2q2

h

∫ +∞

−∞

M(E)T (E)

(

− df

dE

)

dE , (2)

where q is the electron charge, h is Planck’s constant, T (E) is the transmission

probability and f is the Fermi–Dirac distribution function. High carrier mobility

Fig. 3. Simple 1D TGNFET where TGN is used as a channel between Drain and Source. The
width of TGN is assumed to be less than 10 nm in 1D form (more than 10 nm in 2D form).
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reported from experiments in the graphene leads to assume a completely ballis-

tic carrier transportation in the graphene, meaning that carriers travel over the

channel without scattering which implies that average probability of injected elec-

tron at one end transmitting to the other end is approximately equal to one

(T (E) = 1).31

The number of propagating modes at the Fermi energy is defined as the con-

ductance of the clean (disorder-free) ideal nanoribbons.31 Each spin-degenerate

propagating mode contributes to the total conductance by the conductance unit

G0 = 2q2/h (see Ref. 32). The number of modes that are above the cutoff at energy

E in the transmission channel by including the spin effect is

M(E) =
dE

Ldk
=

α− 3βk2

L
, (3)

where L = 1 and L = 1/W for one- and two-dimensional (1D and 2D) systems,

respectively, in Ballistic regime30,33 and W is the width of the ribbon. Number of

modes incorporated with Landauer formula indicates the conductance of TGN as

G =
2αq2

Lh

∫ +∞

−∞

(

− d

dE

(

1

1 + e
E−EF

kBT

))

dE

+
−6βq2

Lh

∫ +∞

−∞

k2

(

− d

dE

(

1

1 + e
E−EF

kBT

))

dE , (4)

where momentum (k) can be derived by using Cardano’s solution for cubic equa-

tions.34 Equation (4) can be assumed in the form of G = N1G1 + N2G2 where

N1 = 2αq2/Lh, N2 = −6βq2/Lh. Since G1 is an odd function, its value is equiva-

lent to zero and G = N2G2.

G2 =

∫ +∞

−∞

((

− E

2β
+

√

(−α

3β

)3

+

(

E

2β

)2
)1/3

+

(

− E

2β
−

√

(−α

3β

)3

+

(

E

2β

)2
)1/3)2(

− d

dE

(

1

1 + e
E−EF

kBT

))

dE . (5)

This equation may be solved numerically by employing the partial integration

method and using the simplification form, whereas x = (E − ∆)/kBT and

η = (EF − ∆)/kBT , where η is normalized Fermi energy and ∆ = qvg/2. Note

that changing the gate voltage not only varies the band structure of TGN but also

modifies the Fermi energy level (η). Hence, the general conductance model of TGN

will be obtained as
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G = N2G2 = −N2

∫ +V

−V

×
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dx,

(6)

where V is the voltage between drain and source. Figure 4(a) shows conduc-

tance of TGN versus gate voltage (vg). It is clearly shown that the conductivity

of TG increases by increasing the magnitude of gate voltage. However, tempera-

ture dependence of TGN conductance has been studied experimentally in Ref. 4.

The measurement shows that minimum conductivity dramatically increases when

temperature increases. This is comparable with BGN, in which similar thermal

behavior is shown, while the minimum conductivity of monolayer graphene nano-

ribbon is nearly unchangeable with temperature changing.4,8 Similarly, based on

the reported model, minimal conductivity increases as the temperature increases.

Figure 4(a) shows the conductance of TGN in 100 K (blue line) and 300 K (red

line), with which the temperature effect on conductivity of TGN is demonstrated.

Note that the shift in the figure is for better illustration, meaning temperature does

not shift the conductance. The Fermi energy distribution function is estimated to

be one in degenerate limit meaning that the probability of the filling energy states

is one.35 Therefore, in degenerate condition, general conductance model can be
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Fig. 4. (Color online) (a) Temperature dependence of TGN conductance. Red and blue line
shows TGN conductance in 300 and 100 K (Numerical solution of general TGN conductance
model based on Eq. (6)]. (b) Analytical model of TGN conductance in degenerate condition (blue
line) and Maxwell–Boltzmann approximation model of TGN conductance (green line) and general
model of TGN conductance (red line). The inset shows the same figure but for small range of
vg. (c) Conductance of TG versus gate voltage. Comparison of the presented model (blue line)
and reported experimental data (red dots) indicates that better performance of ABA TGN-based
transistor is predicted in degenerate regime. (d) Comparison between BGN conductance (red
dashed line) and TGN conductance (blue solid line).

written as

GD = −N2

∫ +V

−V

×





















− 1

β
− E

2β2

√

− α3

27β3
+

E2

4β2
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(
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+

E
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(7)

1250047-7



March 9, 2012 9:12 WSPC/147-MPLB S0217984912500479 8–10

H Sadeghi et al.

Fortunately, in the degenerate limit, the general model can be solved analytically

[Eq. (8)], which illustrates accurate results in this regime. As shown in Fig. 4(b),

the analytical solution of TGN conductance and the general solution of TGN con-

ductance are in good agreement in degenerate limit (higher gate voltage) especially

out of neutrality point where two curves are fitted.

GD = N2

(

−9E

β
−
√

81E2 − 12α3

β3

)2/3

+

(

−9E

β
+

√

81E2 − 12α3

β3

)2/3

6.87
. (8)

Yet, based on the good agreement between analytical model and general model,

the analytical model can be employed as a conductance model to predict TGN

behavior in TGN-based devices. In addition, it is expected that TGN operates in

degenerate regime as a channel between drain and source. In contrary, applying the

Maxwell–Boltzmann approximation to recalculate the conductance model of TGN,

we find the conductance model in the non-degenerate condition. Figure 4(b) shows

the conductance model of TGN in the non-degenerate regime (shown in green line)

compared with the general model derived from Eq. (6), which can be utilized in

neutrality point. As shown in Fig. 4(c), the experimental results of TG conductance

(red dots)4,8 in T = 50 mK are in good agreements with theoretical calculations

(blue dots) presented in this paper at the same temperature. We note that the

presented model in the 1D form can be extracted into 2D form by employing width

of TGN more than De-Broglie wavelength and this is also the reason why in the

non-degenerate regime the presented model is far from the experimental data. The

comparison between the presented model and the published data indicates that

better performance of ABA TGN-based transistor is recommended in degenerate

regime.

Considering the conductance model of BGN as a channel in BGNFET taken

from Ref. 13, and TGN conductance model obtained in this paper, we demonstrated

Fig. 4(d). It reveals that BGN conductivity (red dashed line) is more than TGN

conductivity (blue solid line) in similar external applied electric field. However,

presented conductance model can provide a better understanding toward the TGN

field-effect transistor applications.

3. Conclusion

A single layer of carbon atoms in honeycomb lattice is known as Graphene. Multi-

layer of graphene can be stacked differently depending on the horizontal shift of

graphene. Common hexagonal structure in graphite is Bernal (ABA) stacking, in

which the applied external electric field will change some amount of overlap of its

conduction and valence bands resulting in a semimetal. In this paper, based on

Landauer formula, we present the conductance model of ABA stack TGN (TG

with width and thickness less than De-Broglie wavelength) as a field-effect tran-

sistor channel. TGN conductance can be estimated by either analytical model in
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the degenerate regime out of neutrality point, or Maxwell–Boltzmann approxima-

tion in non-degenerate regime in neutrality point. The proposed model is in good

agreement with the reported data from experiment, which illustrates that mini-

mum conductivity dramatically increases as temperature increases. Our model also

indicates that better performance of ABA TGN-based transistor can be seen in

degenerate regime like what we expect in conventional semiconductors. Moreover,

our model confirms that in similar condition, the conductivity of TGN is less than

BGN as reported in some experiments.
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