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This paper investigates computationally the buckling of simply supported sandwich columns con-

structed using elastic cores reinforced by skin-sheets of triaxial weave fabric (TWF) composites. A novel

computationally cheap volume segmentation based thin plate model for the elastic properties of TWF is

first developed. The predicted elastic properties of TWF exhibit quasi-isotropic behavior and correlate

well with published numerical and measured results. Having demonstrated strong agreement with

established results, these properties are then employed in the use of a plate on elastic foundation

concept to study the stability of sandwich columns under a uniaxially compressed load environment.

The parametric study comprises the effects of thickness, aspect ratio, and modulus of the sandwich core

(treated as an elastic foundation), as well as the inclusion of the effects of the initial in-plane and out-

of-plane imperfections of the skin-sheets on the critical buckling load. Remarkable dependencies of the

critical buckling load on these parameters are demonstrated, due to both independent and wedding

actions, noting that a perturbation due to out-of-plane imperfections has been observed to be the most

significant contributor to reduction in compressive resistance.

& 2012 Elsevier Ltd. All rights reserved.
1. Introduction

The increasing trend towards smaller and more highly perform-
ing spacecraft for use in geosynchronous communication satellites
and space exploration has fueled the need for light and stable
materials in the structural applications of these advanced technol-
ogies. In the material selection process, textile composites have been
the central attraction for fulfilling such a demand because they are
superior to unidirectional (UD) composites not only in mass reduc-
tion but also in terms of their engineering performances such as out-
of-plane stiffness, strength, and toughness, due to their interlocking
characteristic. A comparative study of the weight savings achieved
through the use of composite solar array panels, relative to alumi-
num panels, has been conducted by Gronet et al. [1] for honeycomb
sandwich construction, from which equal stiffnesses have been
exhibited by 8-ply UD and only 1-ply triaxial weave fabric (TWF)
composite materials. In general, the panels reinforced by triaxial
weave are consistently 5–10% lighter than thin 8-ply UD panels.
They are 10–70% lighter than aluminum panels, depending on the
thickness of the aluminum skin-sheets.

A sample of cured single-ply TWF composite is presented in
Fig. 1, in which tow reinforcements are arranged and woven in
ll rights reserved.

@utm.my
three in-plane directions: 01, þ601, and �601. Due to this
architectural configuration, the composite, which is produced by
the triaxial weaving method, is structurally superior to most
conventional biaxially woven fabric (BWF) materials in terms of
one ply comparison where in-plane shear loads are better
resisted, a behavior which is attributable to the existence of
7601 off-axis tows. Also, about one-half of the volume in TWF is
taken by hexagonal voids. These voids provide a reduction in
mass per surface area and considerably increase the formability of
the material, a property essential for application in structures
with multiple geometric constraints.

Unlike BWF, whose mechanical behavior can be satisfactorily
estimated using standard laminated theory, the aforementioned
structural configurations of TWF, though attractive in perfor-
mance, have imposed somewhat more subtle characteristics,
requiring careful exercise in analytical or numerical formulation
for the prediction of its material properties. This has generated
research interest and resulted in several studies being carried out
in the past few years to examine primarily its tensile behavior.
Among these researches is Fujita et al. [2], who reported from
experimental and beam network modeling approaches that TWF
demonstrates a quasi-isotropic behavior in its initial stiffness. On
analytical grounds, three mathematical models were considered
by Hoa et al. [3], namely, the crimp model, the upper bound and
lower bound variational models, and the laminate model, to
determine the tensile elastic constants of TWF, from which fairly

www.elsevier.com/locate/ijmecsci
www.elsevier.com/locate/ijmecsci
dx.doi.org/10.1016/j.ijmecsci.2012.10.007
dx.doi.org/10.1016/j.ijmecsci.2012.10.007
dx.doi.org/10.1016/j.ijmecsci.2012.10.007
mailto:ak_sibu@yahoo.com
mailto:kbhahmad@utm.my
dx.doi.org/10.1016/j.ijmecsci.2012.10.007


Fig. 1. Small piece of single-ply TWF composite, highlighting the unit cell.
Fig. 2. Sandwich column subjects to compression load. TWF, a wavy and thin

skin-sheet, is modeled as laterally restrained by a core that is treated as an elastic

foundation with elastic modulus, Ec.

Table 1
Material properties of T300/Hexcel8552 composite [8].

E1 ðN=mm2) E2 ðN=mm2) G12 ðN=mm2) G23 ðN=mm2) n12

153,085 12,873 4408 4384 0.260
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satisfactory agreements were exhibited in comparison to the
outcomes of experiments conducted by them. In a similar vein,
solid finite elements were developed by Zhao and Hoa [4] and
Zhao et al. [5] to explore the size effects on the tensile properties.
Finite element numerical analysis was carried out by D’Amato [6]
to examine the contribution of tows in different angles to the
overall stiffness.

Often, an otherwise good model cannot be widely used due to
the complexity in the model set-up and the need for a time-
consuming analysis. Most previously developed models, espe-
cially those of solid element types, require long formulation and
usually extensive computational analysis. Several of these issues
have been recently discussed by Kueh [7], in which an analytical
fitting free hyperelastic energy density based model for TWF has
been developed for convenience of the description of non-linear
stress–strain relationship, circumventing and saving on costs due
to iterative computation. Such a tradition is continued in this
paper, noting the fact that it is of primary importance to devise a
simple analytical model that captures satisfactorily both the
complex geometry and the mechanical behavior of the material
for widespread use, adopting a less laborious model implementa-
tion especially during the stage of material properties character-
ization. In addition, it is worth mentioning that none of the
previous researches had studied the stability of this composite
when used as the skin-sheets for a sandwich column. Motivated
by these considerations, the present paper aims to study the
mechanical behavior, in particular, the compressive response, of
sandwich structures using TWF composites as skin-sheets. Hence,
there are two main considerations in the present study:
1.
 The development of a simple elastic plate model for the
mechanical properties of TWF that captures both its geome-
trical and material aspects (Section 2).
2.
 The uniaxially compressed stability of a sandwich structure as
shown in Fig. 2 that is reinforced by TWF skin-sheets, and is
subjected to various changes in the geometry and the material
parameters of its core as well as to initial imperfections
coming from the woven nature of the skin material (Section 3).
2. Determination of elastic properties of TWF

2.1. Determination of volume segment of composite tows in a unit

cell

The in-plane geometrical parameters of a unit cell of TWF are
shown in Fig. 1. A direct way of determining the volume of
composite tows in a unit cell, without the contribution of voids,
and assuming the tow center lines to be all coplanar, is by
denoting the volume occupied by tows by

Vtow ¼ 6LxAtow ð1Þ

where Lx and Atow are the width of the unit cell and the cross-
sectional area of single tow, respectively. The total volume
enclosing the unit cell takes the form

Vcell ¼
ffiffiffi
3
p

L2
x T ð2Þ

where T denotes the total thickness of the unit cell. Note that
Eq. (2) includes the contributions from both the solid and the
void. The volume segment of tows or solid contained within a unit
cell, V f

s, is then simply the ratio, Vtow=Vcell.
To characterize V f

s, it is necessary to be well informed of the
material type. In the present study, we investigate TWF of SK-802
fabric type similar to that studied by Kueh [8]. The composite tow
is assumed transversely isotropic and is made of T300 carbon
fiber and Hexcel 8552 matrix, the material properties of which are
listed in Table 1. For single-ply TWF that has a thickness of
0.156 mm and a fiber volume fraction of 0.65 as well as
Lx¼3.12 mm and Atow ¼ 0:0626 mm2 [8], V f

s¼0.45.
2.2. Elastic plate model for single-ply TWF

2.2.1. Elastic model for a wavy, unidirectional composite lamina

Consider a unidirectional fiber reinforced lamina that is sub-
jected to an initial waviness as shown in Fig. 3. Let the initial
shape be described by a sinusoidal wave equation

wo ¼ Ap sin
2px

Lx

� �
ð3Þ

where Ap and Lx are the wave amplitude and the wavelength,
respectively. Here, the amplitude of the wave is half that of the
tow thickness. Note that the wavelength coincides with the width



Fig. 3. Transformations of material expressions for a wavy unidirectional fiber

reinforced lamina. (a) Transformation about y-axis for fiber waviness. (b) Trans-

formation about z-axis for off-axis fibers.

Fig. 4. Convergence of C 11 versus the number of elements.
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of the unit cell. The initial imperfection angle, c, is obtained as
follows:

c¼ tan�1 2pAp

Lx
cos

2px

Lx

� �� �
ð4Þ

Having presented the geometrical description of the waviness, we
shall next treat the associated material expression. The 3D stress–
strain relation of a transversely isotropic material is characterized by

s11

s22

s33

t23

t13

t12

8>>>>>>>>><
>>>>>>>>>:

9>>>>>>>>>=
>>>>>>>>>;
¼

C11 C12 C12 0 0 0

C12 C22 C23 0 0 0

C12 C23 C22 0 0 0

0 0 0 ðC22�C23Þ=2 0 0

0 0 0 0 C55 0

0 0 0 0 0 C55

2
6666666664

3
7777777775

e11

e22

e33

g23

g13

g12

8>>>>>>>>><
>>>>>>>>>:

9>>>>>>>>>=
>>>>>>>>>;
ð5Þ

or, in short,

fsg ¼ ½C�feg ð6Þ

where sij, Cij, and eij are the stress components, the stiffness terms,
and the strain components, respectively.

A transformation of the stiffness matrix [C] is necessary, due to
the initial waviness, to project the local stiffnesses in accordance
with the waveform of the tows so that they can be expressed in
terms of the global coordinate configuration. Such a task is
performed with the discretization and description of the trans-
formation of a wavy lamina in a piecewise fashion, as shown in
Fig. 3a. Denoting the number of discretized elements by u, the
transformed stiffness matrix is

½C � ¼
1

u

Xu

u ¼ 1

½Tc�
�1½C�½Tc�

�T

½Tc� ¼

c2 0 s2 0 2 cs 0

0 1 0 0 0 0

s2 0 c2 0 �2 cs 0

0 0 0 c 0 �s

�cs 0 cs 0 c2�s2 0

0 0 0 s 0 c

2
6666666664

3
7777777775

ð7Þ

Here, ½Tc� is the transformation matrix about the y-axis where

c¼
1

ð1þ t̂
2
Þ
1=2

, s¼
t̂

ð1þ t̂
2
Þ
1=2

t̂ ¼ tan ðcÞ ¼
2pAp

Lx
cos

2px

Lx

� �
ð8Þ
The computed ½C � is averaged over the chosen number of
discretized elements. When the form is that of a thin composite
where the out-of-plane stress components can be neglected
ðs33 ¼ t23 ¼ t13 ¼ 0Þ, the inverse of the transformed stress–strain
relation can be expressed as

e11

e22

g12

8><
>:

9>=
>;¼

S11 S12 0

S12 S22 0

0 0 S66

2
64

3
75

s11

s22

t12

8><
>:

9>=
>; ð9Þ

where

S11 ¼ c4S11þc2s2ð2S12þS55Þþs4S22, S12 ¼ c2S12þs2S23

S22 ¼ S22, S66 ¼ 2s2ðS22�S23Þþc2S66 ð10Þ

and

S11 ¼ 1=E1, S12 ¼�n21=E2 ¼�n12=E1, S22 ¼ 1=E2

S23 ¼�n32=E3 ¼�n23=E2, S44 ¼ 1=G23 ¼ 2ð1þn23Þ=E2

S55 ¼ S66 ¼ 1=G12 ð11Þ

Here, Ei, nij, and Gij (i, j¼1, 2, 3. Note that subscripts 2 and 3 in the
material constants are interchangeable for a transversely isotropic
material) are, respectively, Young’s moduli, Poisson’s ratios, and
the shear moduli of the composite lamina. It is essential to note
that due to consideration of the out-of-plane waviness, neither
G23 nor n23 vanishes and therefore it is made one of the
independent engineering terms.

The transformed stiffnesses ½S� given in Eq. (10) are due to the
inclination of the composite with respect to the x-axis. For TWF,
there exists also in-plane off-axis fibers, requiring a second
transformation, in this case, about the z-axis. For the compliance
matrix, such a transformation can be achieved with the following:

½bS� ¼ ½Tb�
T ½S�½Tb�, ½Tb� ¼

bc2 bs2
2bcbsbs2 bc2
�2bcbs

�bcbs bcbs bc2
�bs2

2
64

3
75 ð12Þ

where bc¼cos(b) and bs¼sin(b). b is the transformation angle
about the z-axis as defined in Fig. 3b. It follows that

½bC � ¼ ½bS��1 ð13Þ

A convergence investigation is conducted to first determine a
sufficient number of discretized elements for the computation of
the elastic properties. Fig. 4 shows the relationships of the
longitudinal transformed stiffness, C 11, and its computation
residual with the number of discretized elements, u. The residual
is obtained as the percentage of the difference for each currently
computed C 11 value from the previous one. Obviously, there is a
reduction in the percentage of the residual as the number of
discretized elements increases. It is evident that 200 elements are
sufficient for the present model. Nonetheless, 300 elements will
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be used in our computations hereafter. Note that an increase in
the number of elements has little effect on the computation time,
an advantage over existing numerical models that is worthy of
notice.
2.2.2. The constitutive equation of TWF

The constitutive equation of a composite plate that is thin and
is multi-directionally reinforced in a layered form is customarily
expressed in terms of the ABD matrix:

N

�

M

8><
>:

9>=
>;¼

A 9 B

��� 9 ���

B 9 D

2
64

3
75

e
�

k

8><
>:

9>=
>; ð14Þ

Here, A,B, and D (3� 3 matrix each) represent the in-plane
(stretching and shearing), coupling, and out-of-plane (bending

and twisting) stiffnesses of the material, respectively. The ABD
matrix relates the mid-plane forces and moments per unit length
Nx, Ny, Nxy and Mx, My, Mxy to mid-plane strains ex,ey,gxy and
curvatures kx,ky,kxy. Such a material model will be adopted in the
computation of the elastic behavior of TWF.

A calculation of the ABD matrix that treats TWF as a laminate of
three layers of material can lead to a significantly overestimated
evaluation of its elastic properties. This highly deviant estimation is
attributed to the mistreatment of the number of tow, which
constitutes the thickness of the TWF, in the calculation. This is
explained as follows. The cross-sectional view of the through thick-
ness stacking of tows for TWF can be seen in Fig. 5a. It is obvious that
at each interwoven region, there are only two tows in the thickness
direction. Since the ABD matrix is a function of thickness, a high
deviation in the definition of the thickness can yield a considerable
disagreement in the resulting value with the correct properties. Also,
the neglect of the hexagonal voids spread across the volume of the
TWF, if not captured explicitly in the calculation, can be another
factor contributing to an erroneous prediction.

The computation of an alternative ABD matrix for TWF that
addresses these issues can be performed on the basis of the
volume contribution of each sub-element in all three tow direc-
tions. The designations of these sub-elements are highlighted in
Fig. 5b. The total volume of the solid in one unit cell, assuming a
Fig. 5. (a) Micrograph of section along the tow of a cured TWF composite. (b) Region di

regions (2-tow element; 01/601 and �601/01 tows), and the triangular regions (2-tow
rectangular cross-section, is given by

Vtot ¼ 2ðV0þ2V60þ4VrhomÞþ8Vtri ¼ 6btowLxttow ð15Þ

where btow and ttow are the width and thickness of the tow,
respectively, V0 and V60 are the volumes of 01- and 601-tows (1-
tow element), respectively, and Vrhom and Vtri are the volumes of
rhombic and triangular regions, respectively. The volume seg-
ments of the sub-elements within one unit cell are as follows:
1.
visio

elem
Volume segment of 01-direction tow (1-tow element),

Vf
0 ¼

2V0

Vtot
¼

3Lx�4
ffiffiffi
3
p

btow

9Lx
¼ Vf

60 ¼ Vf
�60 ð16Þ
2.
 Volume segment of 0/60, �60/0, or rhombic elements (2-tow
element),

Vf
rhom ¼

4Vrhom

Vtot
¼

4
ffiffiffi
3
p

btow

9Lx
¼ Vf

0=60 ¼ Vf
�60=0 ¼ Vf

tri ð17Þ

For btow¼0.803 mm, the volume segments of 01-tow, 601-tow,
and �601-tow, are Vf

0 ¼ Vf
60 ¼ Vf

�60 ¼ 0:135. For the interwoven
elements (0/60, �60/0, 60/�60), the volume segments are 0.198.
Taking these volume segments into account, Aij and Dij for the
ABD matrix can be expressed as

Aij ¼ ttowVf
sðV

f
1þ2Vf

2Þð
bC 0

ijþ
bC 60

ij þ
bC�60

ij Þ

Dij ¼
t3

towVf
s

12
ðVf

1þ8Vf
2Þð
bC 0

ijþ
bC 60

ij þ
bC�60

ij Þ ð18Þ

where Vf
1 and Vf

2 are the volume segments of 1- and 2-tow

elements, respectively, bC k

ij is the global stiffness as defined in

Eq. (13) (k for 01, 601, and �601 tows). For a symmetric and
balanced stacking sequence, such as that found in TWF, the in-
plane and out-of-plane material descriptions are decoupled, i.e.,
Bij¼0. The inclusion of the volume segment of the composite tow
in a unit cell, V f

s (Section 2.1), in Eq. (18) takes into account the
contribution of the hexagonal voids in the material. Note that

Vf
2¼0.198/2 for the 2-tow elements as each tow is considered

separately.
n of unit cell emphasizing the 1-tow element regions, the intersected rhombic

ent; 601/�601 tows).



Table 2
Comparison of the predicted global stiffnesses with the measured results.

Method Sx ðN=mmÞ Sxy ðN=mm) Dx ðN=mm)

Model 1907.43 722.12 2.692

Measured (average) [8] 2111 777 2.077
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Considering the above, the constitutive relation of TWF can be
evaluated from Eq. (18):

Nx

Ny

Nxy

��

Mx

My

Mxy

8>>>>>>>>>>><
>>>>>>>>>>>:

9>>>>>>>>>>>=
>>>>>>>>>>>;
¼
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0 0 722:12 9 0 0 0
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ð19Þ

where the units are N and mm. The computed ABD matrix has a
number of characteristics. First, the matrix itself is symmetrical.
Second, the sub-matrices [A] and [D] are both symmetric. Also,
both the [A] and [D] satisfy the conditions met by a quasi-
isotropic plate, namely A11¼A22; A66¼ðA11�A12Þ/2 and D11¼D22;
D66¼ðD11�D12Þ=2.

The global extensional, shear, and bending stiffnesses of TWF
can be, respectively, expressed as

Sx ¼
1

a11
, Sxy ¼

1

a66
, Dx ¼

1

d11
ð20Þ

using a11, a66, and d11, the inverse values of Eq. (19). The model
can be easily programmed and implemented using any available
commercial mathematical software, noting that the simplicity of
the model can be useful especially when dealing with an analysis
of a structure that involves TWF.

Table 2 lists the stiffnesses computed from the present model
and the measured values from [8]. A good correlation can be seen
from the comparison. Also, based on the geometric and the
material properties studied by Hoa et al. [3], the present model
predicts a Young’s modulus of 37.5 GPa. This is in close agreement
with the computed and measured values, which are 37.3 GPa and
39 GPa, noting that the current model differs in terms of its unit
cell definition and the details of computation as well as derivation
from where the constitutive expression of TWF is expressed with
a plate-like composite description, the ABD matrix, which is
convenient when finite plate or shell elements are in use. Also,
taking into account the solid volume contribution, i.e., discount-
ing the void, the computation is carried out numerically in an
algebraic manner rather than analytically, accelerating the com-
putational process and circumventing the possibility of encoun-
tering non-integrable functions. Furthermore, a Young’s modulus
of 39.4 GPa is computed for the material investigated by Zhao
et al. [5]. This value agrees well with their maximum measured
value, Ex¼37.87 GPa.
3. Stability of sandwich columns with TWF as skin-sheets

3.1. Force-deformation relationship

For a special orthotropic plate such as TWF where A16¼A26¼

D16¼D26¼Bij¼0, the in-plane deformations are uncoupled from
the out-of-plane transverse deformation. Hence, we shall solve
the governing equation that contains only the derivatives of the
transverse deformation. Consider a sandwich structure using TWF
composites as wavy skin-sheets bonded to an elastic foundation
that is modeled as a set of continuous springs with stiffness Ec, as
shown in Fig. 2. The governing equation for such a sandwich
structure plus the prescription of a uniformly distributed in-plane
unidirectional compression, Nx, is

D11
@4w1

@x4
þD

@4w1

@x2@y2
þD22

@4w1

@y4
þKw1þNx

@2wt

@x2
¼ 0 ð21Þ

where w1 and wt are the transverse deformation from the initial
wavy shape and the total transverse deformation (woþw1),
respectively. wo is the initial waviness, K is the modulus of the
elastic foundation and D ¼ 2ðD12þ2D66Þ. The modulus K is
defined as the force developed by an elastic foundation per unit
area and per unit deflection at a point. In the current case, it is
described using a set of springs, evenly distributed under the
TWF plate, with stiffness resembling that of the one-parameter
Winkler foundation [9,10]. We therefore express the foundation
modulus as K ¼ Ecð1=aþ1=bþ1=tcÞ, a function of the core’s
Young’s modulus, Ec, and its geometric dimensions: a, b, and tc.
They are, respectively, its lengths in the x- and y-direction, and
one-half of the thickness. Since TWF occupies the same surface
area of the core in the x- and y-direction, a and b are applicable for
the skin-sheets as well. Note that, in Eq. (21), the effect of Nx on
the bending depends not only on w1 but also on wo. The
dependencies of Dij and K on wo are relaxed, as they are only
affected by the change in curvature coming from w1.

Consider now a sandwich column with a rectangular cross-
section that is simply supported on all four edges. The boundary
conditions can be simply satisfied by letting the extra transverse
deformation, w1, be

w1 ¼ Amn sin
m1px

a

� �
sin

n1py

b

� �
ð22Þ

where m1 and n1 are the numbers of half-waves in the x- and
y-direction, respectively. Suppose the initial waviness of TWF
takes the following form:

wo ¼ Ap sin
mopx

a

� �
sin

nopy

b

� �
ð23Þ

We introduce mo and no as the initial numbers of half-waves in
the corresponding directions. The relationship of the uniformly
distributed in-plane compression load and the corresponding
deflection can be found by substituting Eqs. (22) and (23) into
Eq. (21) as well as by performing the corresponding differentia-
tions and rearrangements, to obtain

Nx ¼
Dbz

p2a2b4
ð24Þ

where

z¼w1=ðm
2
owoþm2

1w1Þ

Db ¼D11m4
1pb4

þm2
1p

4n2
1a2b2DþD22n4

1p
4a4þKa4b4

ð25Þ

In a non-dimensional form, we have

Nx ¼
DK

m2
owo

a
þm2

1w

w ð26Þ

where

DK ¼m4
1p

4þ
2m4

1p4n2
1a2Db

b2D11

þ
n4

1p4a4D22

b4D11

þ
Ka4

D11
ð27Þ

Here, Nx ¼Nxp2a2=D11, Db¼D=2, and w ¼w1=a.

3.2. Comparison with experiment

Having just obtained Eq. (26), we proceed to compare the
present model with the measured value from the experimental
study conducted by Kueh [8]. In the experiment, nearly square
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TWF sheets, of size 40 mm wide by 55 mm long, bonded to a
20 mm thick polyvinyl chloride (PVC) foam core, were used for
the purpose of minimization of edge effects. The extensional and
the shear moduli of the core were given as Ec¼295 MPa and
Gc¼110 MPa, respectively.

Here, we shall look at the critical buckling load that comes
from Eq. (26) by adopting the notion that the critical value of
compression when a plate becomes unstable can be obtained
when the applied load develops in an asymptotic manner at
which the deflection tends to grow indefinitely [11]. It has been
discovered from detailed investigation that this load changes in
accordance with m1. In the present model, we use an m1 value by
employing the assumption that there is no occurrence of inter-
facial detachment between TWF and core, and that the failure is
by microbuckling, not global. It is of importance to grasp that the
obtained solutions, by invoking the vanishing of the derivative of
the load deformation relation, are of a complex nature whose
conjugate products are negative. Adopting the notion that there
exists only a single minimum buckling load, m1 must be identi-
cally satisfied in a conjugate sense. However, it has been observed
from the current model that Ncr, i.e., the minimized load intensity,
is exerted only when m1¼mo since a lower m1 always give a
higher Nx, which is considerably greater than that found from
measurement. Therefore, in the remainder, the focus will be on
TWF plates that are readily formed in accordance with the
imperfection waveform, i.e., m1 follows the initial local imperfec-
tion mo, assuming n1¼no¼1, in the transverse direction. This is a
reasonable description since the locally existing imperfection is
eventually amplified when subjected to a uniaxial compression.
As a result, the column buckles following the initial imperfection
state although it may be of concern and shall not escape our view
that a different competing mode may overrule this, due to various
parametric effects. Such an examination will be the subject of
future consideration. It should be noted that, for validation
purpose, only the critical value is of interest. The effective
buckling load for TWF is obtained by multiplying the acquired
critical value by one-third, considering only one-third of the
width of the skin-sheet is filled with tows in the direction of
the load. Therefore, the corresponding Ncr for the skin-sheet is
7.33 N/mm. In comparison, this value is in very satisfactory
agreement with the average of the measured buckling load
7.64 N/mm given in [8].

In the case of simple analytical formulae, the fiber microbuck-
ling load calculation [12] predicts correctly the failure mode
based on the chosen sandwich column geometry and material
Fig. 6. Normalized compressive load versus normalized maximum displacemen
studied in [8]. However, the critical load is exaggerated by
three times that of the measured value ðNcr ¼ 1=3tVfscr ¼

24:84 N=mmÞ. Note that one-third has been included in the
calculation. The prediction based on the combined buckling mode
[12], attributed to the Euler buckling load (PE) and the core shear
buckling load (Ps), is far less favorable. The resulting value, which
can be computed by the following:

1

Ncr
¼ 2b

1

PE
þ

1

Ps

� �
ð28Þ

where

PE ¼ 2bSx
ptc

a

� �2

¼ 47:8KN ð29Þ

Ps � 2btcGc ¼ 88KN ð30Þ

is 387 N/mm. The most likely reason for the overestimation is
that these equations only consider the smearing property of the
skin-sheet, by treating it as a solid plate, but ignore the existence
of voids spreading over the volume of the material.

3.3. Effect of initial waviness

Often, the fabrication of a presumably flat plate is very
difficult. A certain degree of imperfection is inevitable, and
curvature may be introduced in the material during such a
process. The superposition of this imperfection on an existing
waviness of the tow can affect the elastic behavior. We define the
normalized waviness number, x, as the ratio of the imperfect
wave amplitude to that of the initial. Ignoring first the parametric
variation of the core, an increment in the waviness promotes the
reduction of all stiffnesses of TWF: Sx, Sxy, and Dx. As a conse-
quence, it leads to a decreased capability of compressive load
resistance. Such a phenomenon can be best described with the
assistance of Fig. 6a, which shows the relationships between the
normalized compressive load and the normalized maximum
deflection. The length of the column, a, is set to 56.16 mm, about
the same as that used in [8]. The initial slope of the curve reduces
gradually, corresponding to the increment of wave amplitude
ranging from 0.1% a to 0.5% a. Eventually, all curves go horizontal
during which a critical compressive load is achieved. In general,
an increase in the waviness number correlates inversely with the
compressive load resistance, implying that the waveform of TWF,
which has a direct effect on the stiffnesses, plays a substantial role
in the buckling load capability.
t curves. (a) Effects of waviness. (b) Effects of core types and aspect ratios.



A.B.H. Kueh / International Journal of Mechanical Sciences 66 (2013) 45–54 51
3.4. Effect of elastic foundation

Let us consider now the influence of parametric changes in the
elastic core on the compressive response of the sandwich column.
The initial amplitude of TWF is fixed to one-half that of the tow
thickness, i.e., no variation in waviness number, x. The aim here is to
investigate only the effects coming from the variation in the proper-
ties of the core. The particular core used for this study is of closed-cell
polyvinyl chloride (PVC) foam (tradename: Divinycell). The material
properties of the core used in the current study are listed in Table 3.

Introducing the aspect ratio, R¼a=b, Fig. 6b shows the relation-
ships of the normalized compressive load with the normalized
maximum deflection corresponding to different core moduli and
aspect ratios for a thickness of tc¼20 mm. An enhancement in the
modulus of the core has a clear boosting effect on the compressive
carrying capacity. The plots for materials with a lower core modulus
bifurcate earlier than those with a higher modulus. Observe also, for
the same core type, a slightly greater critical buckling load is found
for the column with a greater aspect ratio. The difference becomes
less pronounced for those using H35. It is worth noting that the
termination of each curve is due to the maximum axial strain
sustainable by the weave. From all studied cases, the cores with the
aspect ratio R¼2 have a lower maximum normalized transverse
deformation, w, in comparison to those with R¼1.

If the variation in the core thickness is taken into account, its
relationship with the critical buckling load Ncr at which the
transverse deformation grows indefinitely can be observed in
Fig. 7a. Observe again that, for the same core type, a noticeable
difference in the critical buckling load is present in high-stiffness
cores for two different aspect ratios, R¼1 and R¼2. This differ-
ence vanishes as the core becomes more compliant. In all cases,
the declination in the buckling load Ncr directly corresponds to
the growth in the core thickness. Columns with a thin and high-
stiffness core, H250, exhibit more pronounced responses, that is, a
buckling capacity reduction of about 30%, from tc¼5 mm to
tc¼10 mm. This effect is less prominent for the low-stiffness core,
Fig. 7. Effects of changes in elastic foundation parameters. (a) Buckling load versus th

modulus for different aspect ratios and core half-thicknesses.

Table 3
Material properties of core [13].

Core type Ec ðN=mm2) Gc ðN=mm2)

H35 40 12

H100 135 35

H250 300 104
especially for H35, where a reduction of 7% is found. The
contribution of the core to the improvement of the buckling load
is considerably lessened following a drop in the modulus. The
buckling loads for all columns are practically unaffected by the
core thickness after tc¼60 mm.

Fig. 7b presents the curves for the critical buckling load Ncr as a
function of the sandwich core modulus for different aspect ratios,
R, and thicknesses, tc. All critical buckling loads increase in a
linear manner following an increase in the core modulus. The
figure shows that the highest range of critical buckling loads
comes from those with a high aspect ratio and a thin core.
Examining Eq. (27), we observe that increasing the length of the
core while reducing both the width and thickness boosts the
effective foundation modulus term DK and hence the compressive
capacity. Again, the response coming from the change in aspect
ratio is more apparent for columns using the high-modulus core.

3.5. Effect of in-plane imperfection

Next, a misalignments ranging from 11 to 51 will be considered in
the in-plane orientations for 01-tows and 601-tows. It is found
within this range that (not shown here) the in-plane shear modulus
Sxy suffers the most reduction, about 10%. This is mainly contributed
by the in-plane imperfection in the 601-tows from the comparison
between the weave with no in-plane misalignment and that with 51.
An imperfection in 01-tows has little effect on Sx and Dx, about a 3%
reduction each for 51 misalignment. This observation verifies that
adding tows in an off-axis direction, as used in TWF, provides a
better shearing resistance than for BWF. Overall, there are slight
perturbations in all elastic properties but the effects on the critical
buckling load are negligible in comparison to the out-of-plane
imperfection reported in Section 3.3. Eq. (21) shows that the
buckling load is dominated by the bending stiffnesses, primarily
that defined by Dx. Although D11, D12, and D66 change with respect
to small in-plane imperfections, the bending modulus of the weave
Dx has not been much affected. As a result, there does not exist
much change in the buckling capability. Therefore, the effects of
varying the in-plane misalignment will not be further pursued.

3.6. Effects of combined changes in foundation parameters and wave

amplitudes

An investigation of the effects of combined parametric pertur-
bations in the core and the tow waviness will now be reported.
Independently, the former increases the critical buckling load and
ickness tc for different core types and aspect ratios. (b) Buckling load versus core
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vice versa for the latter. The effects that come from the alterations
of these parameters on TWF are worth investigating as the
outcome may not be directly intuitive. We shall be interested in
the critical buckling load for an aspect ratio of R¼1, and
thicknesses tc¼10 mm and tc¼20 mm. Fig. 8 shows that the
advancement in the buckling load coming from the core modulus
is offset by an increment in the waviness number. Note that the
compressive responses for R¼2 are much the same and hence are
not shown here. Next, we shall for convenience focus only on the
sandwich column with thickness tc¼10 mm. Fig. 9a and b show
the relationships of nominal buckling load Ncr with the waviness
number and nominal core modulus, respectively. The nominal
buckling load Ncr is the ratio of the considered Ncr to that of its
initial, unperturbed state. The nominal core modulus is the value
of the considered Ec normalized by the Ec of H35. Fig. 9a shows
that the rate of reduction in Ncr is the highest for the highly
compliant core H35. The feature to note here is the slope at which
the curve drops, e.g., the H35 curve drops the fastest of all three
curves. The more compliant a core, the less lateral support is
provided for the skin-sheet, and therefore a lesser buckling load.
The plots diverge as the normalized amplitude increases. When
the Ncr are plotted against Ec for a range of waviness numbers,
Fig. 8. Critical buckling load as a function of normalized amplitude, x, for different

core types and core half-thicknesses for R¼1.

Fig. 9. Correlations of nominal buckling load. (a) With respect to normalized waviness

range of waviness numbers.
a fairly linear ascending pattern is seen (Fig. 9b). Observe that the
curve with the highest imperfection, 0.5% a, exhibits the highest
gradient. Therefore, as the imperfection grows, the change in
buckling load becomes larger. In general, the stability of the
column is prone to be affected by the waviness number in the
case of a small imperfection. Conversely, the change in Ncr is most
likely governed by the modulus of the core when highly stiff cores
are used as column material.

3.7. Parametric perturbations in the specimen studied in [8]

Exceptional dependencies of the buckling load on changes in
the geometry and the material characteristics of sandwich col-
umn have inspired a further look at the effects of these perturba-
tions in the specimen investigated by Kueh [8].

Here, the modulus of the core, i.e., the elastic foundation
stiffness, for the present model has been made equal to that used
in the measurement. For the current purpose, we shall only
permit small deviations in the properties, which may come from
unforeseen uncertainties during the preparation of the specimens.
The perturbed parameters are the length, the width, the core half-
thickness, and the initial wave amplitude, noting that an altera-
tion in the initial wave amplitude will also affect the bending
stiffnesses. The lengths are chosen so that they coincide with the
numbers of half-waves, mo and m1. The effective buckling loads
computed regarding the aforementioned changes are plotted in
Fig. 10.

Combined changes in the geometrical parameters of the
sandwich column clearly affect the buckling loads. The critical
value varies gradually in a downward fashion from the left to the
right of the plots. In general, a decrease in the buckling load is
characterized by a concerted action of increases in a, b, tc, and Ap,
where the most significant reduction is contributed by the wave
amplitude.
4. Conclusion

The stability of a wavy triaxial weave fabric composite that is
bonded to an elastic core has been investigated. The elastic
constants are first described in terms of a thin plate constitutive
equation, the ABD matrix, involving the volume contribution of
each segmented element of tow according to its orientation. The
computed elastic properties correlate well with the measured
number for different core types. (b) With respect to nominal core modulus for a



Fig. 10. Effective buckling load contour plots of TWF skin-sheet for different lengths (a¼51.48 mm, 54.6 mm, 56.16 mm, and 57.72 mm.) and wave amplitudes ((i) initial

amplitude; (ii) 0.1%a; (iii) 0.2%a.) in terms of various widths and core half-thicknesses.
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values as well as the numerical results available from the
literature. A parametric study of the stability of a simply sup-
ported sandwich column was then carried out with regard to the
effects on the critical buckling load of the thickness, aspect ratio,
and modulus of the sandwich core, as well as the initial in-plane
and out-of-plane imperfections of TWF. Independently, an
increase in the initial waviness of the weave alone reduces the
stiffnesses, leading to a reduction in the compressive load
resistance. Without considering the waviness effects, the sand-
wich core improves the critical buckling load of TWF as a result of
the provision of a continuous lateral support. Small misalign-
ments in the in-plane orientations inflict little effect on the
buckling load. Combining parametric changes of the core with
weave imperfections cause an enhancement of the buckling load,
contributed by the core modulus, which is offset by the effects of
any increase in the waviness number. For a column with little
imperfection, Ncr is sensitive to the waviness number. The change
in Ncr is dominated by the modulus of the core for columns using
high-stiffness cores.
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