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Abstract. In this study, single-walled carbon nanotubes were generated in their perfect state as 
finite element models in the MSC.Marc software. The buckling behaviour and resonant frequency 
modes of the two limiting cases of carbon nanotubes, i.e. the armchair and zigzag models, were 
studied. The obtained results were compared with the classical analytical solutions related to a 
similar continuum structure of a hollow cylinder. The buckling behaviour of single-walled carbon 
nanotubes under cantilever boundary conditions proved to be almost identical to the prediction of 
the classical Euler equation. Furthermore, there was very good agreement between the analytical 
and finite element results of the studied single-walled carbon nanotubes; though the achieved value 
of the first mode of frequency, obtained from the finite element results, was more accurate than the 
higher modes. 

 

 

Introduction 

Carbon nanotubes (CNTs) have attracted much attention as promising candidates in emerging new 
technologies as a result of their outstanding mechanical, electrical and thermal properties [1]. They 
are expected to influence many fields in terms of technology and industry. They will have 
applications in many diverse fields such as energy, signal processing, medicine, biotechnology, 
information technology, aerospace, agriculture, and environment [6]. These outstanding materials 
can be used as stand–alone nanomaterials or as reinforcements in composites for a wide variety of 
application. Therefore, several detailed studies have been conducted to explore different properties 
of carbon nanotubes. 

Mechanical properties of carbon nanotubes have been characterised both experimentally and 
computationally. Molecular Dynamics (MD) and continuum mechanics techniques such as the 
Finite Element Method (FEM) are the two most commonly used computational approaches to study 
the behaviours of CNTs. These investigations focus each on different properties of CNTs, using 
different approaches. Properties such as Young’s modulus, Poisson’s ratio, shear modulus, buckling 
behaviour and resonance frequency of different CNTs and CNT–based nanocomposites under 
different conditions have been studied by different scientists all over the world [2, 6, 8–10]. 

Young’s modulus of carbon nanotubes in their axial direction, as obtained from both experimental 
and computational investigations, is very high, i.e. about 1 TPa, while a Poisson’s ratio around 
0.05–0.28 was reported depending on the approach and the energy potential used [1–4]. Shear 
modulus of carbon nanotubes has also been evaluated by two types of tests, i.e. torsion and tensile 
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tests and it is reported to be in the range of 0.2 and 0.5 TPa which is considered a high shear 
modulus [1–4, 9]. As a result of the valuable mechanical properties of single-walled carbon 
nanotubes (SWCNTs), these materials have become specifically interesting for applications in 
nanomechanical devices and low–weight ultra-strong composite materials. 

Buckling behaviour and natural resonance frequency of single- and multi-walled carbon nanotubes 
were also investigated by many scholars. Carbon nanotubes are very vulnerable to buckling as they 
are long and hollow structures. However, the results show that they are at the same time capable of 
retaining their buckling capacity and recover their elasticity [6, 9]. A brief review on the recent 
investigations about the buckling properties of CNTs has been published by Wang et al. [6]. 

The natural frequency of carbon nanotubes was also an important factor to be investigated. As a 
result of their small size, carbon nanotubes can make acceptable resonators in signal processing 
systems. The resonant frequency enhances as the size of the resonator decreases and higher 
resonance frequency is equal to higher sensibility [11]. 

 

Finite Element Modelling 

The Atomic Structure. The atomic structure of nanotubes can be imagined as a graphene sheet that 
has been rolled into a tube. The thickness of the tube’s wall is generally considered to be 0.34 nm, 
which is very close to that of a graphene sheet, i.e. 0.335 nm [4, 5, 7]. The hybridization of carbon 
atomic orbitals in the covalent bonding of carbon nanotubes is of type sp

2, in which each atom is 
joined to three other nearest neighbours in a hexagonal arrangement.  

Carbon nanotubes can be single-walled, with a diameter in range of 0.4–3.0 nm; or they can consist 
of two to fifty coaxial tubes with an inter-layer spacing of 0.34 nm. The diameter of multi-walled 
carbon nanotubes generally ranges from 4 to 30 nm. 

Tube chirality or helicity is the characteristic that is used to define the size of the carbon nanotube. 

The chiral vector �������, , also known as the roll-up vector, as is shown in Figure 1, is defined by the 
integers n and m; the number of steps along the unit vectors ������� and �������: 
 

 ������� = 	������� + ��������	.         (1) 

 

By rolling the graphene sheet in a way that the tip of the chiral vector �������	touches its tail, a (m, n) 
carbon nanotube can be visualised. The fundamental (m, n) carbon nanotube is classified into three 
main categories according to its chirality, i.e. zigzag, armchair and chiral. 

For a chiral (m, n) tube in general, the integers m and n are not equal, i.e. m ≠ n, whereas for zigzag 
and armchair tubes, the two limiting cases of twisting, the zigzag structure is formed when m = 0, 

and m = n makes the armchair case. The latter two cases, shown in figure 1, are the symmetric 
carbon nanotubes but what is observed in practice is not generally as perfect as these idealised 
forms. There are many types of imperfections involved in real CNT structure and CNT-based 
composites that influence their mechanical properties [3, 12]. 
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Figure 1.  Schematic diagram showing zigzag, armchair and chiral carbon nanotubes. 

 

FEM Model. As shown in Figure 2, each CNT is made up of a unit cells repeated and rotated to 
make the whole structure. Each carbon-carbon covalent bond is represented by an Euler-Bernoulli 
elastic beam element in the finite element program MSC.Marc. The unit cell is not allowed to bend 
on the covalent bonds, but it can bend on the joints, i.e. the carbon atoms’ locations, to cover the 
tube’s curvature. 

The phenomenon of buckling is a kind of elastic instability in a structure that occurs under a certain 
compressive load. In the theory of elasticity, the critical buckling load of a structure, as defined in 
Eq. (2), i.e. the famous Euler formula of buckling load, depends on its shape and geometry, as well 
as its boundary conditions. 

 

 
�� = �����	�(��)� ,           (2) 

 

where Pcr is the critical buckling load, E is the structure’s axial Young’s modulus, K is the effective 
length constant and L is the length of the tube. In the above equation, n defines the buckling mode 
and I is the structure’s second moment of area. As a hollow cylinder is the most similar classical 
structure to the studied carbon nanotubes, Eq. (3) defined for a hollow cylinder is used for obtaining 
the analytical results. 

 

 �	 = 	�	�(� + �)� − (� − �)� 64⁄ ,        (3) 

 

in which t is the thickness of the tube’s shell which is considered to be equal to 0.34 nm [4, 5, 7] in 
case of single-walled carbon nanotubes and d is the diameter of the pertaining tube. 

 

Chiral 
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Figure 2. Front view of the unit cell and whole tube of (a) armchair, and (b) zigzag SWCNT. 

 

As mentioned above, the applied boundary condition plays an important role in the reaction of the 
studied structure under load. This influence is described by the concept of the effective length for a 
classic column structure that is presented as parameter K in Eq. (2).  

There are four different classical modes for buckling and four pertaining effective length parameters 
for each. The theoretical K values are defined for a column structure. These different modes of 
boundary condition and different possible buckling behaviours are shown schematically in Figure 3. 
The appropriate theoretical value of K is given for each case. 

On the other hand, the natural or resonance frequency of a structure depends on its geometry and 
mass as well as the applied boundary conditions. For a beam element, under the cantilever boundary 
conditions, the first mode of resonance frequency in Hz, can be calculated by the following 
equation: 

 

3b 

Part 1 Part 2 

Part 1 

Part 2 

Part 3 

Part 4 
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 &� = ��� 	3.5156	* �	�+, 	�- ,         (4) 

 

in which �,  is the structure’s mass density, i.e. mass per unit length, E is the structure’s axial 
Young’s modulus, L is the length of the tube and I is the model’s second moment of area. Second 
and third modes of frequency are equal to f2= 6.268 f1 and f3= 17.456 f1, respectively [9, 13]. 
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Figure 3. (a) Classical boundary conditions and their corresponding effective length constants 
for buckling and their first resonance frequency equation, (b) definitions of the symbols of applied 
boundary conditions. 

 

Results 

Buckling Behaviour. Let us consider the boundary condition of the carbon nanotubes as fixed from 
moving and rotating on one end and free to move on the other. As explained before, this boundary 
condition is known as the Cantilever boundary condition and the corresponding K value for this 
case is (K = 2).  

Based on above basic definitions, the critical buckling load for both armchair and zigzag structures 
were modelled by the finite element software MSC.Marc and furthermore it was calculated 
analytically using Eq. (2). Table 1 shows the accuracy of the obtained values. 

 

(a) 

(b) 
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Table 1. Comparing the analytical solution of zigzag and armchair SWCNTs critical buckling load, 
with the optimized finite element results. 

Carbon nanotube type Analytical solution (nN) Finite element result (nN) Error 

(10, 10) Armchair SWCNT 3.668 3.664 0.10% 
(17, 0) Zigzag SWCNT 3.447 3.446 0.03% 

 

Figure 4 represents the initial buckling behaviour of zigzag and armchair SWCNTs. 

 

Figure 4. Buckling behaviour of (a) (10, 10) armchair and (b) (17, 0) zigzag SWCNTs. 

 

In order to study the effect of meshing on the obtained results, the structure of (10, 10) armchair 
SWCNT was divided into an almost five times finer mesh. The results show the difference between 
the obtained results for the model with 2580 nodes and the model with 14130 nodes is absolutely 
negligible. As the difference of the results was about 0.03%, the model with fewer nodes was taken 
into consideration; as the more number of nodes are, the more evaluation time is required in each 
evaluation. 

 

Resonance Frequency. The same procedure was taken in order to obtain the most accurate finite 
element results for the structure’s natural frequency, compared to the analytical solution for 
armchair and zigzag single-walled carbon nanotubes. 

Like the previous case, the single-walled carbon nanotubes were restricted under a cantilever type 
boundary condition. By defining the appropriate mass density in the finite element program, the 
structures’ first two modes of natural frequency were simulated and compared with the calculated 
analytical results. Table 2 shows the obtained results for the first and the second frequency modes. 
As can be observed, the finite element results are in good agreement with the analytical solution of 
the problem solved for a hollow cylinder. 

 

 

(a) (b) 
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Table 2. Comparing the analytical solution of zigzag and armchair SWCNTs resonance frequency, 
with the optimized finite element results. 

Carbon nanotube type Results 
Frequency 

mode1 (GHz) 

Frequency 

mode2 (GHz) 

(10, 10) Armchair SWCNT 
Analytical 23.97 150.2 

Finite Element 23.94 141.1 
Error 0.12% 6.05% 

 

(17, 0) Zigzag SWCNT 
Analytical 23.44 146.9 

Finite Element 23.43 138.6 
Error 0.04% 5.65% 

 

Figure 5 shows the different modes of deviation of a (17, 0) single-walled carbon nanotube around 
its initial straight mode. 

 

Figure 5. Frequency modes of a (17, 0) zigzag SWCNTs under cantilever boundary condition. 
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Conclusion 

According to our investigations, the behaviour of single-walled carbon nanotubes under cantilever 
boundary conditions follows the prediction of the classical Euler equation. Better and more accurate 
results are obtained if the amount of applied load in the finite element modelling is optimized for 
both zigzag and armchair structures. 

Toward achieving the most accurate results with comparison to the analytical solution for a hollow 
cylinder, a finer mesh of the armchair carbon nanotube was tested under similar conditions. Results 
confirm that refining the mesh does not have a significant influence on the obtained critical load of 
the studied SWCNT. 

There was a very good agreement between the analytical and FEM results of the studied SWCNTs, 
however obtained finite element results, in higher modes of frequency, is not as accurate as the 
achieved value of the first mode. 
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