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1. Introduction

In the present paper we shall pursue our investigations [19,20,24,25] of the connections of the elliptic boundary value
problems and boundary integral equations with the generalized Neumann kernel. We consider Laplace’s equation Du = 0
in both bounded and unbounded multiply connected regions G in the extended complex plane C :¼ C [ f1g with either
the Dirichlet boundary condition or the Neumann boundary condition on the boundary C :¼ @G. Under suitable assumptions,
both the Dirichlet problem and the Neumann problem have unique solutions (see the standard texts [6,15,16]).

One of the classical methods for solving Laplace’s equation is the boundary integral method. For example, a second kind
Fredholm integral equation can be derived for the Dirichlet problem by writing its solution as a double layer potential. For
bounded simply connected regions, the integral equation is uniquely solvable and its kernel is known as the Neumann kernel
(see e.g., [10, p. 280] and [15, p. 130]). However, the integral equation is not uniquely solvable for bounded multiply con-
nected regions. When the connectivity of the region is m + 1, the number of linearly independent solution of the homoge-
neous equation is equal to m. To solve the integral equation, extra constraints on the solution of the integral equation are
imposed. An example of such constraints is given by Mikhlin [15, p. 146] (see also [7,9]).

Recently, the interplay of Riemann–Hilbert problems and integral equations with the generalized Neumann kernel has
been investigated in [20,24] for simply connected regions with smooth and piecewise smooth boundaries and in [19,25]
for bounded and unbounded multiply connected regions. By treating conformal mapping as Riemann–Hilbert problem, inte-
gral equations with the generalized Neumann kernel have been implemented successfully in [17,18] for computing the con-
formal mapping of bounded and unbounded multiply connected regions onto the classical canonical slit domains.

This paper presents two uniquely solvable integral equations with the generalized Neumann kernel to solve the Dirichlet
problem and the Neumann problem. We shall prove that the eigenvalues of the kernel of our integral equations are real. This
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is in contrast with the integral equation of Mikhlin’s method which has complex eigenvalues (see [7]). In [7,9], the integral
equation of Mikhlin’s method is discretized by the Nyström method to obtain a linear system. In order to obtain a matrix
whose eigenvalues are better distributed for the GMRES iterative method, a preconditioner have been used. For our method,
we do not need to use a preconditioner since the eigenvalues of the matrices, obtained by discretizing our integral equations,
are real and clustered around 1.

The plan of the paper is as follows: In the next section we present some notations and auxiliary material. In Sections 3 and
4, we derive and study the integral equation with the generalized Neumann kernel and its adjoint kernel respectively. Some
theorems related to the eigenvalues of the generalized Neumann kernel are presented in Section 5. In Section 6, we present
two methods for calculating the solution the Dirichlet problem. Similar treatment for the Neumann problems is presented in
Section 7. Numerical examples will be given in Section 8 and a short conclusion is given in Section 9.

2. Notations and auxiliary material

We consider multiply connected regions G in the extended complex plane C of the following two types:

(a) Bounded region G, of connectivity m + 1 P 1, with boundary C ¼ [m
j¼0Cj consisting of m + 1 smooth closed Jordan

curves Cj, j = 0,1,2, . . . ,m. The curve C0 contains the other curves C1, . . . ,Cm. The complement G� :¼ C n G consists
of m bounded simply connected components Gj interior to Cj, j = 1,2, . . . ,m, and an unbounded simply connected com-
ponent G0 exterior to C0 (see Fig. 1). We assume that a is a fixed point in G.

(b) Unbounded region G, of connectivity m P 1, with boundary C ¼ [m
j¼1Cj consisting of m smooth closed Jordan curves Cj,

j = 1,2, . . . ,m. The complement G� :¼ C n G consists of m bounded simply connected components Gj interior to Cj,
j = 1,2, . . . ,m (see Fig. 2).

The orientation of the boundary C = @G is such that G is always on the left of C. Thus, the curves C1, . . . ,Cm always have
clockwise orientations. For bounded G, the curve C0 has a counterclockwise orientation. The curve Cj is parametrized by a
2p-periodic twice continuously differentiable complex function gj(t) with non-vanishing first derivative
_gjðtÞ ¼ dgjðtÞ=dt – 0; t 2 Jj :¼ ½0;2p�; ð1Þ
j = 0 (for bounded G), 1,2, . . . ,m. The total parameter domain J is the disjoint union of the intervals Jj. We define a parame-
trization of the whole boundary C as the complex function g defined on J by
gðtÞ :¼

g0ðtÞ; t 2 J0 ðfor bounded GÞ;
g1ðtÞ; t 2 J1;

..

.

gmðtÞ; t 2 Jm:

8>>>><>>>>: ð2Þ
Let H be the space of all real Hölder continuous functions on the boundary C. In view of the smoothness of g, a function / 2 H
can be interpreted via /̂ðtÞ :¼ /ðgðtÞÞ, t 2 J, as a real Hölder continuous 2p-periodic functions /̂ðtÞ of the parameter t 2 J, i.e.,
/̂ðtÞ :¼

/̂0ðtÞ; t 2 J0 ðfor bounded GÞ;
/̂1ðtÞ; t 2 J1;

..

.

/̂mðtÞ; t 2 Jm;

8>>>>><>>>>>:
ð3Þ
with real Hölder continuous 2p-periodic functions /̂j defined on Jj; and vice versa.
Here and in what follows, for complex-valued or real-valued functions w defined on the boundary C and for t 2 J, we will

not distinguish between w(g(t)) and w(t). For t 2 Jk, the values w(t) will be denoted by wk(t).
Fig. 1. A bounded multiply connected region G of connectivity m + 1.



Fig. 2. An unbounded multiply connected region G of connectivity m.
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For a given function c 2 H, the Dirichlet problem and the Neumann problem are defined as follows (see e.g. [3, p. 307], [15,
p. 145] and [16, p. 164]):

Dirichlet problem:
Determine a function u harmonic in G, continuous on the closure G, such that its boundary values satisfy on C
uðgðtÞÞ ¼ cðtÞ; gðtÞ 2 C: ð4Þ
For unbounded G, the function u is also required to satisfy u(z) ? C as jzj?1 with a constant C.
Neumann problem:
Determine a function u harmonic in G, continuous on the closure G, such that its boundary values satisfy on C
@u
@n

����
gðtÞ
¼ cðtÞ; gðtÞ 2 C; ð5Þ
where n is the exterior normal to C and c 2 H is a given function such that
Z
J
cðtÞj _gðtÞjdt ¼ 0: ð6Þ
The function u is also required to satisfy for bounded G the additional condition u(a) = 0 and for unbounded G the additional
condition u(z) ? 0 as jzj?1.

The Dirichlet problem and the Neumann problem are uniquely solvable. The unique solution u of the Dirichlet problem or
the Neumann problem can be regarded as a real part of an analytic function F in G which is not necessary single-valued.
However, the function F can be written as:
FðzÞ ¼ f ðzÞ �
Xm

j¼1

aj logðz� zjÞ; ð7Þ
where f is a single-valued analytic function in G, each zj is a fixed point in Gj, j = 1,2, . . . ,m; and a1, . . . ,am are real constants
uniquely determined by c (see [15, p. 149], [16, p. 174] and [21, p. 527].) Without lost of generality, we assume for bounded G
that Im f ðaÞ ¼ 0 and for unbounded G that Im f ð1Þ ¼ 0. The constants a1, . . . ,am are chosen to ensure that (see [10, p. 222]
and [12, p. 88])
Z

Ck

f 0ðgÞdg ¼ 0; k ¼ 1;2; . . . ;m:
Since C1, . . . ,Cm are clockwise oriented and
F 0ðzÞ ¼ f 0ðzÞ �
Xm

j¼1

aj
1

z� zj
;

the Cauchy integral formula implies that the constants a1, . . . ,am are related to the function F0(z) by
aj ¼
1

2pi

Z
Cj

F 0ðgÞdg; j ¼ 1;2; . . . ;m: ð8Þ
Since
R

C f 0ðgÞdg ¼ 0 and
R

C F 0ðgÞdg ¼ 0, thus for unbounded G, the constants a1, . . . ,am satisfy
Xm

j¼1

aj ¼
Xm

j¼1

1
2pi

Z
Cj

F 0ðgÞdg ¼ 1
2pi

Z
C

F 0ðgÞdg ¼ 0:
For bounded G, we define the real constant a0 by
a0 :¼ 1
2pi

Z
C0

FðgÞdg ¼ 1
2pi

Z
C

F 0ðgÞdg�
Xm

j¼1

1
2pi

Z
Cj

F 0ðgÞdg ¼ �
Xm

j¼1

aj: ð9Þ
In this paper, we shall present the following two methods for calculating the values of the complex function F(z) and
hence the values of the real function uðzÞ ¼ Re FðzÞ:
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Method I. The first method is based on using a boundary integral equation with the generalized Neumann kernel. In this
method, we calculate first the values of the single-valued analytic function f(z). Then we calculate the values of the multi-
valued analytic function F(z) from (7).

Method II. The second method is based on using a boundary integral equation with the adjoint generalized Neumann ker-
nel. In this method, we calculate first the boundary values of the single-valued analytic function F0. Then, we calculate the
values of the multi-valued analytic function F(z) as an anti-derivative of F0 (see [16, p. 198] and [21, p. 547].) For bounded G,
we have
FðzÞ ¼ � 1
2pi

Z
C

F 0ðgÞ log 1� z� a
g� a

� �
dgþ FðaÞ; ð10aÞ
where the branch of logarithm is chosen which is equal to zero for z = a. For unbounded G, we have
FðzÞ ¼ � 1
2pi

Z
C

F 0ðgÞ log 1� g
z

� �
dgþ Fð1Þ; ð10bÞ
where the branch of logarithm is chosen which is equal to zero for z =1.
Both methods require determining the values of the real constants a1, . . . ,am. These constants are known for the Neumann

problem. For the Dirichlet problem, we need to calculate these constants as we shall explain in Theorem 3.

3. The integral equation

Let the function A be defined by
AðtÞ ¼ PðgðtÞÞ; ð11Þ
where P is the complex-valued function defined for z 2 C by
PðzÞ :¼
z� a; if G is bounded;
1; if G is unbounded;

�
ð12Þ
with a fixed point a 2 G. The generalized Neumann kernel formed with A is defined by
Nðs; tÞ :¼ 1
p

Im
AðsÞ
AðtÞ

_gðtÞ
gðtÞ � gðsÞ

� �
: ð13Þ
We define also a real kernel M by
Mðs; tÞ :¼ 1
p

Re
AðsÞ
AðtÞ

_gðtÞ
gðtÞ � gðsÞ

� �
: ð14Þ
The kernel N is continuous and the kernel M has a cotangent singularity type (see [25] for more details). Hence, the operators
NlðsÞ :¼
Z

J
Nðs; tÞlðtÞdt; s 2 J ð15Þ
is a Fredholm integral operator and the operator
MlðsÞ :¼
Z

J
Mðs; tÞlðtÞdt; s 2 J ð16Þ
is a singular integral operator.
The solvability of boundary integral equations with the generalized Neumann kernel is determined by the index of the

function A (see [25]). The index jj of the function A on the curve Cj is defined as the change of the argument of A along
the curve Cj divided by 2p, i.e.,
jj :¼ 1
2p

D argðAÞjCj
: ð17Þ
The index j of the function A on the whole boundary curve C is the sum of the indexes jj. The index of the function A defined
by (11) is given for bounded G by
j0 ¼ 1; jj ¼ 0; j ¼ 1;2; . . . ;m; j ¼ 1 ð18Þ
and for unbounded G by
jj ¼ 0; j ¼ 1;2; . . . ;m; j ¼ 0: ð19Þ
Let v[j] be the piecewise constant function defined on J by
v½j�ðtÞ :¼
1; if t 2 Jj;

0; if t R Jj;

(
ð20Þ
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for j = 1 � j, 2 � j, . . . ,m. Then, we define the space S by
S ¼ span v½1�j�;v½2�j�; . . . ;v½m�
� 	

: ð21Þ

We define also the space S

�
by
S
�
¼ span v½1�; . . . ;v½mþj�1�� 	

: ð22Þ
Then
dimðSÞ ¼ mþ j; dimðS
�
Þ ¼ mþ j� 1: ð23Þ
It follows from the definition of the space S that a function h 2 S if and only if h can be written as:
hðtÞ ¼

h1�j; t 2 J1�j;

h2�j; t 2 J2�j;

..

.

hm; t 2 Jm;

8>>>><>>>>: ð24Þ
with real constants h1�j,h2�j, . . . ,hm. We define an operator R : S! S
�

for bounded G by
Rh ¼ h� h0
and for unbounded G by
Rh ¼ h� hm:
Theorem 1 ([17,19,25]). The null-space of the operators I ± N is given by
NullðI� NÞ ¼ 0f g; NullðIþ NÞ ¼ S:

For a given function c, it is not necessary that c is a real part of a single-valued analytic function f on G. However, a unique

piecewise constant function h
�
2 S
�

can be obtained such that the function cþ h
�

is a real part of a single-valued analytic func-
tion (see [16, pp. 164–165]).

Theorem 2. Let c be a given function. Then, there exists a unique function h
�
2 S
�

and a unique function l such that
f ¼ cþ h
�
þil ð25Þ
are boundary values of a single-valued analytic function f in G with Im f ðaÞ ¼ 0 for bounded G and Im f ð1Þ ¼ 0 for unbounded G.
The function l is the unique solution of the integral equation
ðI� NÞl ¼ �Mc; ð26Þ
h
�
¼ Rh, f(a) = �h0 for bounded G and f(1) = �hm for unbounded G where h is given by
h ¼ Ml� ðI� NÞc½ �=2: ð27Þ
Proof. Let l be the unique solution of the integral equation (26) and h is given by (27). It follows from [25, Theorem 3] that
Ag ¼ cþ hþ il

are boundary values of an analytic function g in G with g(1) = 0 for unbounded G. Let the real constant c be defined for
bounded G by c :¼ h0 and for unbounded G by c :¼ hm. Then the function
f ðzÞ :¼ PðzÞgðzÞ � c
is analytic in G with f(a) = �c for bounded G, f(1) = �c for unbounded G and has the boundary values (25) where
h
�
¼ h� c ¼ Rh 2 S

�
. h

The problem of determining the single-valued analytic function f with the boundary values (25) is a special case of Rie-
mann–Hilbert problem (see [6,10,16,23]). It is known as the modified Dirichlet problem [10,16] or as Schwartz problem [5,6].

Another possible approach for modifying the function c so that the modified function is a real part of a single-valued ana-
lytic function in G is given in [15, p. 145]. For a given function c and for fixed points zj in Gj, j = 1,2, . . . ,m, there exists m real
constants a1, . . . ,am such that
cþ
Xm

j¼1

aj ln jgðtÞ � zjj ð28Þ
is a real part of a single-valued analytic function f in G with Im f ðaÞ ¼ 0 for bounded G and Im f ð1Þ ¼ 0 for unbounded G. The
constants a1, . . . ,am are uniquely determined by c with

Pm
j¼1aj ¼ 0 for unbounded G. We shall present a method based on

integral equation with the generalized Neumann kernel to calculate the real constants a1, . . . ,am.
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We define real functions c[j] for j = 0,1, . . . ,m by
c½0� :¼ c; c½j� :¼ ln jg� zjj; j ¼ 1; . . . ;m: ð29Þ
It follows from Theorem 2 that
f ½j� ¼ c½j� þ h
�
½j� þ il½j�; j ¼ 0;1; . . . ;m
are boundary values of analytic function f[j] in G with Im f ½j�ðaÞ ¼ 0 for bounded G and Im f ½j�ð1Þ ¼ 0 for unbounded G where
l[j] is the unique solution of the integral equation
ðI� NÞl½j� ¼ �Mc½j�; ð30Þ
h
�
½j� :¼ Rh½j�, and h[j] is given by
h½j� ¼ ½Ml½j� � ðI� NÞc½j��=2: ð31Þ
Let
gðzÞ ¼ f ½0�ðzÞ þ
Xm

j¼1

ajf ½j�ðzÞ:
Then g has the boundary values
g ¼ cþ
Xm

j¼1

aj ln jgðtÞ � zjj þ h
�
½0� þ

Xm

j¼1

ajh
�
½j� þ i l½0� þ

Xm

j¼1

ajl½j�
 !

:

Theorem 2 implies that gðaÞ ¼ �h½0�0 �
Pm

j¼1ajh
½j�
0 for bounded G and gð1Þ ¼ �h½0�m �

Pm
j¼1ajh

½j�
m for unbounded G. Since the func-

tion h
�

in Theorem 2 is unique and the function in (28) is a real part of an analytic function in G, we have
h
�
½0� þ

Xm

j¼1

ajh
�
½j� ¼ 0: ð32Þ
Hence the boundary values of the function g are given by
g ¼ cþ
Xm

j¼1

aj ln jgðtÞ � zjj þ il;
where
l ¼ l½0� þ
Xm

j¼1

ajl½j�
is the unique solution of the integral equation
ðI� NÞl ¼ �M cþ
Xm

j¼1

aj ln jgðtÞ � zjj
 !

: ð33Þ
It follows from (32) that the m unknowns a1, . . . ,am satisfy the linear equations
Xm

j¼1

ajh
�
½j� ¼ �h

�
½0�: ð34aÞ
Since h
�
½j� 2 S

�
, dim(S) = m for bounded G and dim(S) = m � 1 for unbounded G, the system (34a) consists of m linear equations

for bounded G and consists of m � 1 linear equations for unbounded G. However, for the unbounded case, we have the addi-
tional equation
Xm

j¼1

aj ¼ 0: ð34bÞ
Hence, (34) represents an m �m linear system. The existence and uniqueness of the solution of the linear system (34) fol-
lows from the existence and uniqueness of the constants a1,a2, . . . ,am (see e.g. [15,16,21].) Thus we have the following
theorem.

Theorem 3. Let c be a given function and zj be a fixed point in Gj, j = 1, . . . ,m. Then, there exist m real constants a1, . . . , am, uniquely
determined by c, and a unique function l such that
f ¼ cþ
Xm

j¼1

aj ln jgðtÞ � zjj þ il



4716 M.M.S. Nasser et al. / Applied Mathematics and Computation 217 (2011) 4710–4727
are boundary values of a single-valued analytic function f in G with Im f ðaÞ ¼ 0 for bounded G and Im f ð1Þ ¼ 0 for unbounded G.
The constants a1, . . . , am are the unique solution of the linear system (34), the function l is the unique solution of the integral equa-
tion (33) and
f ðaÞ ¼ �h½0�0 �
Xm

j¼1

ajh
½j�
0 ð35Þ
for bounded G and
f ð1Þ ¼ �h½0�m �
Xm

j¼1

ajh
½j�
m ð36Þ
for unbounded G.
Corollary 1. Let the boundary values of the multi-valued analytic function F in (7) be given by
F ¼ cþ il: ð37Þ
Then the function l is the unique solution of the integral equation
ðI� NÞl ¼ �Mc�
Xm

j¼1

ajM ln jgðtÞ � zjj �
Xm

j¼1

ajðI� NÞ argðgðtÞ � zjÞ: ð38Þ
Proof. Since the boundary values of the multi-valued function F are given by (37), thus the boundary values of the single-
valued function f in (7) are given by
f ¼ ĉþ il̂; ð39Þ
where
ĉ ¼ cþ
Xm

j¼1

aj ln jgðtÞ � zjj ð40Þ
and
l̂ ¼ lþ
Xm

j¼1

aj argðgðtÞ � zjÞ: ð41Þ
Since f is single-valued and has the boundary values (39), then Theorem 2 (where h
�
¼ 0) implies that
ðI� NÞl̂ ¼ �Mĉ
which in view of (40) and (41) implies that l is the unique solution of the integral equation (38). h
4. The adjoint integral equation

For the function A defined by (11), the function eA defined by
eAðtÞ ¼ _gðtÞ
AðtÞ ð42Þ
is known as the ‘‘adjoint function’’ to the function A (see [25]). Then, the generalized Neumann kernel eN formed with eA is
defined by
eNðs; tÞ :¼ 1
p

Im
eAðsÞeAðtÞ _gðtÞ

gðtÞ � gðsÞ

 !
: ð43Þ
We define also the real kernel eM by
eMðs; tÞ :¼ 1
p

Re
eAðsÞeAðtÞ _gðtÞ

gðtÞ � gðsÞ

 !
: ð44Þ
Note that
AðtÞ
AðsÞ

_gðsÞ
gðsÞ � gðtÞ ¼

AðtÞ= _gðtÞ
AðsÞ= _gðtÞ

_gðtÞ
gðsÞ � gðtÞ ¼ �

eAðsÞeAðtÞ _gðtÞ
gðtÞ � gðsÞ :
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Thus, the adjoint kernel N*(s, t) of the kernel N(s, t) is related to the kernel eNðs; tÞ by
N�ðs; tÞ :¼ Nðt; sÞ ¼ �eNðs; tÞ: ð45Þ
Similarly, the adjoint kernel M*(s, t) of M(s, t) is related to the kernel eMðs; tÞ by
M�ðs; tÞ ¼ � eMðs; tÞ: ð46Þ
Let the Fredholm operator eN and the singular operator fM be defined as in (15) and (16). Then (45) and (46) imply that
N� ¼ �eN; M� ¼ �fM; ð47Þ
where N* and M* are the adjoint operators to the operators N and M respectively.
For bounded G, the index of the function A is given by (18). Thus, it follows from [25, Eq. (101)] that the space eRþ \ eS� in

[25, Lemma 20(b)] contains only the zero function, i.e.,
eRþ \ eS� ¼ 0f g: ð48Þ
Thus, it follows from [25, Lemma 20(b)], [25, Eq. (103)] (applied to the adjoint function eA instead of A) and from [25, Eq.
(100)] that
NullðIþ NÞ \ RangeðIþ NÞ ¼ 0f g; ð49Þ
NullðIþ N�Þ \ RangeðIþ N�Þ ¼ 0f g: ð50Þ
In view of (48), it follows from [25, Lemma 6], [25, Lemma 7] and [25, Lemma 19(b)] that
NullðIþ N�Þ ¼ NullðM�Þ: ð51Þ
For unbounded G, the index of the function A is given by (19). Thus, in view of the results of [19], the Eqs. (48)–(51) are also
valid for unbounded G.

We define an integral operator J by
JlðsÞ :¼
Z

J

1
2p

Xm

i¼1�j

v½i�ðsÞv½i�ðtÞlðtÞdt: ð52Þ
Thus, we can prove that
J� ¼ J ¼ J2; RangeðJÞ ¼ S; NullðI� JÞ ¼ S; NullðJÞ ¼ S?: ð53Þ
Then, in view of Theorem 1 and the Fredholm alternative theorem, we have
NullðJÞ ¼ RangeðIþ N�Þ ¼ S?: ð54Þ
Since Range(J) = S = Null(I + N), thus
NJ ¼ �J
which implies that
JN� ¼ J�N� ¼ NJð Þ� ¼ �Jð Þ� ¼ �J: ð55Þ
Theorem 4
NullðIþ N� þ JÞ ¼ 0f g:
Proof. Let l 2 Null(I + N* + J), i.e., l is a solution of the integral equation
ðIþ N� þ JÞl ¼ 0: ð56Þ
By multiplying (56) by J and using (53) and (55), we obtain Jl = 0 which implies that (I + N*)l = 0. Thus, in view of (54), we
have
l 2 NullðIþ N�Þ \NullðJÞ ¼ NullðIþ N�Þ \ RangeðIþ N�Þ:
Hence (50) implies that l = 0. h

The above theorem can also be proven by applying the approach used in proving Theorem 2 in [1].
Theorem 2 shows that the function h can be computed by means of (27) using the solution of the integral equation (26)

with the generalized Neumann kernel N. We can also calculate h using an integral equation with the adjoint generalized
Neumann kernel N* as explained in the following theorem.
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Theorem 5. The function h in Theorem 2 can be written as:
h ¼
Xm

j¼1�j

ðc;/½j�Þv½j� ð57Þ
where /[j] is the unique solution of the integral equation
ðIþ N� þ JÞ/½j� ¼ �v½j�; j ¼ 1� j; . . . ;m: ð58Þ
Proof. Since h 2 S = span{v[1�j], . . . ,v[m]} and v[1�j], . . . ,v[m] are orthonormal, the function h can be written as:
h ¼
Xm

j¼1�j

ðh;v½j�Þv½j�:
Let /[j] be the unique solution of (58). By multiplying (58) by J and using (53) and (55), we obtain
ðIþ N�Þ/½j� ¼ 0; J/½j� ¼ �v½j�:
Since 2h = Ml � (I � N)c, we have
ð2h;/½j�Þ ¼ ðMl;/½j�Þ � ððI� NÞc;/½j�Þ ¼ ðl;M�/½j�Þ � ðc; ðI� N�Þ/½j�Þ:
Since (I + N*)/[j] = 0, it follows from (51) that M*/[j] = 0. Thus
ð2h;/½j�Þ ¼ �ðc;2/½j�Þ
which in view of (53) implies that
ðh;v½j�Þ ¼ ðh;�J/½j�Þ ¼ �ðJ�h;/½j�Þ ¼ �ðJh;/½j�Þ ¼ �ðh;/½j�Þ ¼ ðc;/½j�Þ:
Hence, the function h is given by (57). h

The constants {a1, . . . ,am} can be also computed using integral equation with the adjoint kernel N* by using the same ap-
proach used in the previous theorem for computing the function h.

Theorem 6. The derivatives c0, l0 of the function c, l in (37) satisfy the uniquely solvable integral equations
ðIþ N� þ JÞc0 ¼ �M�l0; ð59Þ
ðIþ N� þ JÞl0 ¼M�c0 þ m; ð60Þ
where m is the piecewise constant function
mðsÞ ¼ aj; s 2 Jj; j ¼ 1� j; . . . ;m:
Proof. The function F0 is a singled-valued analytic function in G and has the boundary values
_gðtÞF 0ðgðtÞÞ ¼ c0ðtÞ þ il0ðtÞ ð61Þ
Let the function g be defined on G by
gðzÞ :¼ PðzÞF 0ðzÞ: ð62Þ
Then g is an analytic function in G with g(a) = 0 for bounded G and g(1) = 0 for unbounded G and has the boundary values
eAðtÞgðgðtÞÞ ¼ c0ðtÞ þ il0ðtÞ: ð63Þ
Hence, it follows from [25,19] that the functions c0 and l0 satisfy the integral equations
ðI� eNÞc0 ¼fMl0; ð64Þ

ðI� eNÞl0 ¼ �fMc0: ð65Þ
Since
1
2pi

Z
Cj

F 0ðgÞdg ¼ 1
2pi

Z
Jj

c0ðtÞ þ il0ðtÞ½ �dt; j ¼ 1� j; . . . ;m:



M.M.S. Nasser et al. / Applied Mathematics and Computation 217 (2011) 4710–4727 4719
Then, by (8) and (9), and by the definitions of J and m, we have
Jc0 ¼ 0; ð66Þ
Jl0 ¼ m: ð67Þ
By adding (66) to (64) and (67) to (65); and by using (47), we obtain the integral equations (59) and (60) which by Theorem 4
are uniquely solvable. h
5. The eigenvalues of the kernel N

In this section we shall prove that all the eigenvalues of N are real and belong to [�1,1). The later property is very impor-
tant for solving the discretizing linear system iteratively using the generalized minimum residual method GMRES [22] (see
also [7]). To prove this important result, we first define the kernel P(s, t) by
Pðs; tÞ :¼ 1
p

Im
_gðtÞ

gðtÞ � gðsÞ

� �
: ð68Þ
The kernel P, which is special case of the generalized Neumann kernel obtained with A = 1, is the well-known Neumann ker-
nel which appears frequently in the integral equations of potential theory and conformal mapping (see, e.g., [3,10,13]). The
integral operator with the kernel P will be denoted by P.

For bounded multiply connected regions G, ±1 are eigenvalues of P. For unbounded G, �1 is an eigenvalue and 1 is not an
eigenvalue of P [19,25] (see also [11,13–15]). Thus, we have from [13, p. 152] (see also [14] and [11, p. 309]) the following
theorem:

Theorem 7. Let k be an eigenvalue of P.

(a) If G is bounded, then k 2 [�1,1].
(b) If G is unbounded, then k 2 [�1,1).

In the next theorem, we shall extend the previous theorem to the case of the integral operator N with the generalized
Neumann kernel N formed with the function A given by (11).

Theorem 8. If k is an eigenvalue of N, then k 2 [�1,1).
Proof. For unbounded G, we have N = P. Hence Theorem 7 implies that k 2 [�1,1). For bounded G, we have A(t) = g(t) � a and
AðtÞ
AðsÞ

_gðsÞ
gðsÞ � gðtÞ ¼

AðtÞ � AðsÞ
AðsÞ

_gðsÞ
gðsÞ � gðtÞ þ

_gðsÞ
gðsÞ � gðtÞ :
Hence, we obtain
N�ðs; tÞ ¼ P�ðs; tÞ � 1
p

Im
_gðsÞ

gðsÞ � a

� �
:

Since k is an eigenvalue of N, then k is also an eigenvalue of the adjoint operator N*. Let / be the eigenfunction to N* cor-
responding to the eigenvalue k, i.e.,
k/ðsÞ �
Z

J
N�ðs; tÞ/ðtÞdt ¼ 0:
Thus
k/ðsÞ �
Z

J
P�ðs; tÞ/ðtÞdt þ 1

p
Im

_gðsÞ
gðsÞ � a

� �Z
J

/ðtÞdt ¼ 0: ð69Þ
It follows from Theorem 1 that the constant function u(t) :¼ 1 is an eigenfunction to the operator N corresponding to the
eigenvalue �1. Thus, it follows from [13, p. 45] that / is orthogonal to u, i.e.,
Z

J
/ðtÞdt ¼

Z
J

/ðtÞuðtÞdt ¼ 0:
Hence (69) becomes
k/ðsÞ �
Z

J
P�ðs; tÞ/ðtÞdt ¼ 0
which implies that k is an eigenvalue of P*. Thus k is an eigenvalue of P which, by Theorem 7, implies that k 2[�1,1]. Since 1
is not an eigenvalue of N (see Theorem 1), thus k 2 [�1,1). h
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The previous theorem implies that the eigenvalue of N with largest absolute value is k = �1. It follows from (50) that
NullðI� NÞ2 ¼ NullðI� NÞ
which implies that the geometric multiplicity of the eigenvalue k = �1 is the same as the algebraic multiplicity. In view of Eq.
(23) and Theorem 1 the multiplicity of the eigenvalue k = �1 is j + m.

Theorem 9 [25]. If k is an eigenvalue of N such that k – �1, then �k is also an eigenvalue of N.
Theorem 10. If k is an eigenvalue of N* + J, then k 2(�1,1).
Proof. Let k be an eigenvalue of N and / be the corresponding eigenfunction, i.e.,
k/� ðN� þ JÞ/ ¼ 0: ð70Þ
By multiplying (70) by J and using (53) and (55), we obtain
kJ/ ¼ 0:
Thus k = 0 2 (�1,1) or J/ = 0 which implies that
k/� N�/ ¼ 0
and hence, by Theorem 8, k 2 [�1,1). It follows from Theorem 4 that �1 is not an eigenvalue of N* + J. Thus k 2 (�1,1). h

It follows from the previous two theorems the following corollary.

Corollary 2

(a) If k is an eigenvalue of I�N, then k 2 (0,2].
(b) If k is an eigenvalue of I + N* + J, then k 2 (0,2).

6. The Dirichlet problem

The unique solution u of the Dirichlet problem can be calculated from the function F(z) in (7) by uðzÞ ¼ RFðzÞ. The function
F will be calculated using the two methods mentioned at the end of Section 2. For both methods, we need to calculate first
the values of the real constants a1, . . . ,am. These constants can be calculated as explained in Theorem 3.

6.1. Method I

The boundary values of the function f in (7) are given by (25) where l is the unique solution of the integral equation (26)
and h

�
:¼ Rh where h is given by (27). By the Cauchy integral formula, the function f can be calculated for z 2 G from
f ðzÞ ¼ 1
2pi

Z
C

cþ h
�
þil

g� z
dg:
Since h
�

is a piecewise constant function with h
�
ðtÞ ¼ 0 for t 2 J0 for bounded G, it follows from the Cauchy–Goursat theorem

that
1
2pi

Z
C

h
�

g� z
dg ¼ 0;
i.e., it is not necessary to determine the unknown function h to calculate f(z) for z 2 G where
f ðzÞ ¼ 1
2pi

Z
C

cþ il
g� z

dg:
By determining the values of the function f(z) and the values of the real constants a1, . . . ,am, we can calculate the values of the
function F(z) from (7).

6.2. Method II

The boundary values of the function F0 are given by _gF 0 ¼ c0 þ il0 where l0 is the unique solution of the integral Eq. (60).
Then, the values of function F(z) can be calculated for z 2 G from (10). In view of (7), (35) and (36), we have
FðaÞ ¼ h½0�0 �
Xm

j¼1

ajh
½j�
0 �

Xm

j¼1

aj logða� zjÞ
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for bounded G, and
Fð1Þ ¼ h½0�m �
Xm

j¼1

ajh
½j�
m

for unbounded G.

7. The Neumann problem

The unique solution u of the Neumann problem can be calculated from the function F(z) in (7) by uðzÞ ¼ RFðzÞ. The func-
tion F will be calculated using the two methods mentioned at the end of Section 2. Here, the values of the real constants
a1, . . . ,am are known and given by [15, p. 152]
aj ¼
Z

Jj

cðtÞj _gðtÞjdt:
Let T(f) be the unit tangent vector and n(f) be the unit external normal vector to C at f 2 C. Let also h(f) be the angle between
the normal vector n(f) and the positive real axis, i.e., n(f) = eih(f). Then,
eihðgðtÞÞ ¼ �ıTðgðtÞÞ ¼ �i
_gðtÞ
j _gðtÞj :
Thus
@u
@n
¼ ru � n ¼ cos h

@u
@x
þ sin h

@u
@y
¼ Re eih @u

@x
� i

@u
@y

� �
 �
: ð71Þ
Since uðzÞ ¼ RFðzÞ, then by the Cauchy–Riemann equation, we have
F 0ðzÞ ¼ @uðzÞ
@x
� i

@uðzÞ
@y

:

Thus
Re �i _gF 0
� 


¼ j _gj @u
@n

: ð72Þ
Let the boundary values of the function F be given by
F ¼ wþ i/: ð73Þ
Then the boundary values of the single-valued analytic function F0 are given by
_gF 0 ¼ w0 þ i/0:
Thus the function /0 is known and is given by
/0ðtÞ ¼ Re �i _gðtÞF 0ðgðtÞÞ
� 


¼ cðtÞj _gðtÞj: ð74Þ
7.1. Method I

We can calculate the function / from its derivative by
/jðtÞ ¼ bj þujðtÞ
where bj is undetermined real constant and uj is defined by
ujðtÞ ¼
Z t

0
/0jðsÞds ¼

Z t

0
cjðsÞj _gjðsÞjds:
Thus
/ ¼ uþ h;
where h = (b1�j, . . . ,bm) 2 S is unknown function. Thus the boundary values of the function f in (7) are given by
f ¼ wþ ıðuþ hÞ þ
Xm

j¼1

aj logðg� zjÞ: ð75Þ
We have assumed for bounded G that RFðaÞ ¼ uðaÞ ¼ 0 and b̂0 :¼ f ðaÞ is real, thus
b̂0 :¼
Xm

j¼1

aj ln ja� zjj: ð76aÞ
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For unbounded G, we have assumed that ReFð1Þ ¼ 0, b̂0 :¼ f ð1Þ is real and
Pm

j¼1aj ¼ 0. Thus
b̂0 ¼ f ð1Þ ¼ 0: ð76bÞ
Let the real constant c be defined for bounded G by c = �b0 and for unbounded G by c = �bm and let the function g be
defined for bounded G by
g :¼ �if þ ib̂0 þ c: ð77Þ
Thus g is a single valued analytic function in G with g(a) = c for bounded G and g(1) = c for unbounded G; and has the bound-
ary values
g ¼ uþ
Xm

j¼1

aj argðg� zjÞ þ h
�
þil;
where h
�

:¼ Rh and
l :¼ �w�
Xm

j¼1

aj ln jg� zjj þ b̂0
is unknown function. Then, Theorem 2 implies that l is the unique solution of the integral equation
ðI� NÞl ¼ �M uþ
Xm

j¼1

aj argðg� zjÞ
 !
and h
�
¼ Rh where h is given by
h ¼ 1
2

Ml� ðI� NÞ uþ
Xm

j¼1

aj argðg� zjÞ
 !" #

:

By obtaining l, we can calculate the values of the function w from
w ¼ �l�
Xm

j¼1

aj ln jg� zjj þ b̂0:
Then, in view of (75) and the Cauchy integral formula, the function f(z) can be calculated for z 2 G from
f ðzÞ ¼ 1
2pi

Z
C

wþ ıðuþ hÞ þ
Pm

j¼1aj logðg� zjÞ
g� z

dg:
Hence the function F(z) can be calculated for z 2 G from (7).

7.2. Method II

In view of (73) and Eq. (59) in Theorem 6, the function w0 is the unique solution of the integral equation
ðIþ N� þ JÞw0 ¼ �M�/0:
By obtaining w0, we obtain the boundary values of the function F0, i.e., _gF 0 ¼ w0 þ i/0. Then the function F can be calculated
from (10). For bounded G, we have the condition u(a) = 0 which implies that ReFðaÞ ¼ 0. For unbounded G, we have the con-
dition u(z) ?1 for z ?1 which implies that ReFð1Þ ¼ 0. Since Im f ðaÞ ¼ 0 for bounded G and Im f ð1Þ ¼ 0 for unbounded
G, we have
FðaÞ ¼ �i
Xm

j¼1

argða� zjÞ
for bounded G, and
Fð1Þ ¼ 0
for unbounded G.

8. Numerical examples

Since the functions Ak and gk are 2p-periodic, a reliable procedure for solving the integral equations (26), (59) and (60)
numerically is by using the Nyström method with the trapezoidal rule [3]. Thus solving the integral equations reduces to
solving a linear system
Ax ¼ y: ð78Þ
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Fig. 3. The bounded region (left) and unbounded region (right).

Table 1
The values of constants aj, bj, zj, hj and fj in (79).

j aj bj zj hj fj

0 4.0000 3.0000 �0.5000 � 0.5000i 1.0000 5.00 + 5.00i
1 0.3626 �0.1881 0.1621 + 0.5940i 3.3108 0.10 + 0.50i
2 0.5061 �0.6053 �1.7059 + 0.3423i 0.5778 �1.60 + 0.40i
3 0.6051 �0.7078 0.3577 � 0.9846i 4.1087 0.30 � 0.90i
4 0.7928 �0.3182 1.0000 + 1.2668i 2.6138 0.95 + 1.20i
5 0.3923 �0.4491 �1.9306 � 1.0663i 4.4057 �1.85 � 1.00i
6 0.2976 �0.6132 �0.8330 � 2.1650i 5.7197 �0.80 � 2.10i
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Since the integral equations (26), (59) and (60) are uniquely solvable, then for sufficiently large number of collocation points
on each boundary component, the linear system (78) is also uniquely solvable [3]. The linear system (78) is solved using the
Gauss elimination method. The computational details are similar to previous works [17,18] in connection with numerical
conformal mapping of multiply connected regions. See [20] for some ideas on how to handle regions with corners to achieve
good accuracy.

In this section we consider a bounded and an unbounded multiply connected regions (see Fig. 3). These regions have been
considered in [7,9]. The boundary C of the bounded region G is parametrized by
gjðtÞ ¼ zj þ eihj ðaj cos t þ ibj sin tÞ; j ¼ 0;1; . . . ;6: ð79Þ
The values of the complex constants zj and the real constants aj, bj are as in Table 1. The unbounded G is obtained by remov-
ing C0.

The function c, for the Dirichlet and Neumann problems, is obtained by choosing an exact solution of the form
uðzÞ ¼ c þ dRe
1

z� f0

� �
þ
X6

j¼1

aj logðjz� fjj2Þ;
where
aj ¼ j� 7
2
; j ¼ 1; . . . ;6;
d = 2 for bounded G and d = 0 for unbounded G. The constant c is given by c = 1 for the Dirichlet problem and c = 0 for the
Neumann problem.

Tables 2–5 list the error ju(z)�un(z)j at several points in G for various values of n where u(z) is the exact solution of the
problem, un(z) is the approximate solution and n is the number of points used in the discretization of each boundary com-
ponent Cj. The Dirichlet problem is solved using the first method and the Neumann problem is solved using the second
method.

For numerical comparison, Tables 2–5 list also the error ju(z) � un(z)j obtained by solving the Dirichlet problem and the
Neumann problem using two classical methods. For the Dirichlet problem, we compare our method with Mikhlin’s method



Table 2
The error ju(z)�un(z)j for the Dirichlet problem for bounded G.

n Our method Mikhlin’s method

z = �2 � 2i z = 1.0 + 1.75i z = 2 z = �2 � 2i z = 1.0 + 1.75i z = 2

8 5.4(�03) 2.1(�02) 5.8(�03) 5.9(�03) 4.1(�02) 8.1(�02)
16 6.8(�06) 1.0(�03) 3.3(�04) 7.5(�06) 1.1(�02) 1.7(�02)
32 1.9(�08) 1.7(�05) 3.0(�07) 7.2(�09) 4.4(�04) 3.2(�05)
64 1.4(�13) 8.6(�10) 2.1(�11) 1.9(�13) 2.6(�12) 2.1(�08)
128 2.7(�15) 5.3(�15) 1.8(�15) 3.6(�15) 4.5(�10) 8.9(�15)

Table 3
The error ju(z)�un(z)j for the Dirichlet problem for unbounded G.

n Our method Mikhlin’s method

z = �2 � 2i z = 1.0 + 1.75i z = 2 z = �2 � 2i z = 1.0 + 1.75i z = 2

8 4.4(�03) 2.4(�02) 3.7(�04) 4.0(�03) 4.4(�02) 1.4(�02)
16 9.5(�06) 1.1(�03) 1.4(�04) 1.4(�05) 1.1(�02) 1.4(�04)
32 1.5(�08) 1.7(�05) 1.0(�07) 1.5(�08) 4.4(�04) 9.6(�08)
64 4.5(�13) 8.6(�10) 1.7(�11) 4.7(�13) 2.6(�06) 1.7(�11)
128 8.9(�15) 8.0(�15) 2.7(�15) 6.2(�15) 4.5(�10) 3.6(�15)

Table 4
The error ju(z)�un(z)j for the Neumann problem for bounded G.

n Our method Classical BIE

z = �2 � 2i z = 1.0 + 1.75i z = 2 z = �2 � 2i z = 1.0 + 1.75i z = 2

8 7.2(�02) 3.5(�01) 4.8(�01) 6.3(�01) 4.9(�01) 4.2(�01)
16 6.8(�02) 4.2(�02) 5.0(�02) 1.2(�01) 7.1(�02) 4.5(�02)
32 2.8(�05) 1.9(�04) 5.6(�05) 3.5(�07) 4.8(�04) 6.1(�06)
64 4.3(�08) 6.3(�07) 5.2(�08) 6.3(�08) 2.4(�06) 3.3(�08)
128 1.4(�14) 7.8(�12) 8.9(�15) 1.1(�14) 1.1(�10) 2.2(�16)

Table 5
The error ju(z)�un(z)j for the Neumann problem for unbounded G.

n Our method Classical BIE

z = �2 � 2i z = 1.0 + 1.75i z = 2 z = �2 � 2i z = 1.0 + 1.75i z = 2

8 9.0(�02) 4.2(�02) 1.4(�02) 2.8(�01) 3.2(�01) 2.2(�01)
16 6.7(�03) 5.4(�03) 1.8(�02) 4.2(�02) 3.4(�02) 5.3(�03)
32 1.5(�07) 1.5(�04) 1.3(�05) 1.3(�05) 5.1(�04) 2.1(�05)
64 1.6(�09) 5.0(�07) 6.7(�09) 2.0(�08) 2.4(�06) 5.8(�09)
128 8.9(�16) 2.9(�12) 1.8(�15) 1.2(�14) 1.1(�10) 4.4(�16)
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which is based on writing the solution u of the problem as a double layer potential (see [15,7,9]). Calculating the approxi-
mate solution un(z) using our first method or Mikhlin’s method requires calculating Cauchy type integral
Z

C

wðgÞ
g� z

dg; z 2 G: ð80Þ
For points z which are not close to the boundary C, the integrals in (80) are approximated by the trapezoidal rule. However,
for points z near the boundary C, the integrand in (80) is nearly singular. For our method, the density function w is an ana-
lytic complex-valued function in G, so the integral (80) can be calculated accurately using the method suggested in [8, Eqs.
(23) and (27)]. For Mikhlin’s method, the density function w is a real-valued function and extra calculations are required to
use the method described in [8, Eqs. (23) and (27)]. So, in the numerical calculations below, we calculate the integrals in (80)
for Mikhlin’s method using the method describe in [4, Eq. (2.17)].

For the Neumann problem, we compare our method with the classical boundary integral equation method which is based
on writing the solution u of the problem as a single layer potential (see [10,7]). The integral equation is uniquely solvable for
unbounded regions and non-uniquely solvable for bounded regions. However, the non-uniqueness can be removed by
imposing additional conditions on the solution of the integral equation (see e.g. [1,3]).
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Fig. 4. The eigenvalues of the matrix A for the integral equation (26) obtained with n = 128 for bounded G (left) and unbounded G (right).
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It is clear from Tables 2–4 that our method produces comparable accuracy to the classical boundary integral methods for
solving the Dirichlet problem and the Neumann problem. However, our method has the following advantages:

1. The matrix of the linear system obtained by discretizing the integral equation of Mikhlin’s method has in general complex
eigenvalues. So, to solve the linear system iteratively, preconditioning techniques were used in [7,9]. Even the precondi-
tioned matrices used in [7,9] have in general complex eigenvalues (see [7, Fig. 4]). However, the eigenvalues of the matri-
ces of the linear system obtained by discretizing our integral equations are real. For sufficiently large number of
collocation points on each boundary component, in view of Corollary 2, the eigenvalues of the matrix A are positive real
numbers in the interval (0,2] for the integral equation (26) and in the interval (0,2) for the integral equations (59) and
(60) (see e.g. [2,3]). For both cases, the eigenvalues are real and clustered around 1 (see Figs. 4 and 5). The latter property
means that iterative methods will converge for our linear system faster than the preconditioned and unpreconditioned
linear systems in [7,9].

2. A comparison between the condition numbers of the matrices of the linear systems of our method (for the integral equa-
tion (26)) and Mikhlin’s method (with and without preconditioning as explained in [7,9]) for various values of n are given
in Fig. 6. As can be seen from the figure, the condition numbers of the matrix of our method and the preconditioned
matrix of Mikhlin’s method is independent of n. However, the condition number of the unpreconditioned matrix of Mikh-
lin’s method depends on n.

9. Conclusions

In this paper we have presented two uniquely solvable boundary integral equations for solving Laplace’s equation with
the Dirichlet boundary condition or the Neumann condition on both bounded and unbounded regions. The integral equa-
tions are second kind Fredholm integral equations with the generalized Neumann kernel which has been derived and studied
in [17–20,24,25].

To illustrate the accuracy of the presented methods, we solve the Dirichlet problem and the Neumann problem on a
bounded and an unbounded multiply connected regions. The integral equations are solved numerically by the Nyström
method with the trapezoidal rule. The presented numerical results illustrate that the proposed method can be used to pro-
duce approximations of high accuracy. We presented also numerical comparison between our method and Mikhlin’s method
which is a classical boundary integral method for solving the Dirichlet problem and the Neumann problem [15,7,9].

An efficient method for solving the linear system obtained by discretizing the integral equation of Mikhlin’s method has
been presented in [7,9] where the linear system is solved by GMRES iterative method powered by the Fast Multiple Method
(FMM). Solving the linear system obtained by discretizing our integral equations by such an efficient iterative method is cer-
tainly recommended when the connectivity of the region assumes much larger value or when the boundary components Cj

lie closed to each other where more discretization points are needed. It is worth mentioning that due to the properties of the
generalized Neumann kernels, our integral equations has some advantages over the integral equation of Mikhlin’s method.
The matrix of the linear system obtained by discretizing the integral equation of Mikhlin’s method has in general complex
eigenvalues (see [7, Fig. 4]). However, the eigenvalues of the matrices of the linear systems obtained by discretizing our inte-
gral equations are positive real numbers clustered around 1, belong to the interval (0,2] for the integral equation (26) and
belong to the interval (0,2) for the integral equations (59), (60) (see Figs. 4 and 5.) In view of [22, p. 866], the latter property
means that the GMRES method will converge for our linear system faster than for the linear systems in [7,9].
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