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In Bingham plastic fluids, a central pre-yield or plug region exists in the middle of the concentric annular flow. In this region, the local shear stress
is less than the dynamic yield stress, so the plug behaves like a rigid solid. This is the main feature that distinguishes the flow of a Bingham plastic
fluid from that of a power law fluid. In this work, a simple-to-use correlation is developed to predict the boundaries of the plug of Bingham plastic
fluids for laminar flow through annulus as a function of dimensionless yield stress and aspect ratio parameters for given values of the rheological
constants, pressure gradient and the dimensions of the annulus. The results are found to be in excellent agreement with reported data in the
literature with an average absolute deviation of less than 1.7%.
The predictive tool is simple and straightforward and can be readily implemented in a standard spreadsheet program. The prime application of
the method is as a quick-and-easy evaluation tool in engineering studies where plug boundaries of Bingham plastic fluids for laminar flow through
annulus are being considered. The method may also serve as a benchmark in numerical and rigorous simulation studies.

Keywords: non-Newtonian fluid, Bingham plastic fluid, concentric annulus, Vandermonde matrix, predictive tool, yields stress, aspect ratio
parameter

INTRODUCTION

ABingham plastic fluid has a yield point, which is the shear
stress that has to be overcome so that the fluid can start
to flow.[1–4] The main feature that distinguishes the flow

of a Bingham plastic fluid from that of a power law fluid is the
existence of a plug region in which the shear stress is less than
the yield stress,[5–8] which means a fluid with a yield stress will
flow only if the applied stress (proportional to pressure gradient)
exceeds the yield stress.[9–12] Therefore, there will be a solid plug-
like core flowing in the middle of the pipe where shear stress is
less than the yield stress.

Extensive works on non-Newtonian fluid mechanics and annu-
lar flows have been presented in the literature.[13–17] The flow of
viscoplastic materials is present in a large number of industrial
processes. The large variety of fluids and industrial applications
of annular flows of non-Newtonian fluids has been a major
motivation for research in annular flow with varying degrees of
complexity.[18,19] One important example is sterilisation or pack-
aging processes of foods, pharmaceutics products, cosmetics and
lubricants, the drilling process of oil wells and the extrusion
of ceramic catalyst supports.[20] In the petroleum industry, the
drilling muds are typically either Bingham plastic or power-law
type fluids. Other examples include the extrusion of plastic tubes
and pipes in which the molten polymer is forced through an
annulus and the flow in double-pipe heat exchangers.[21–23]

The laminar axial flow of Bingham plastic fluids through a
concentric annulus has generated great interest, even more than
power-law fluids in non-Newtonian fluid mechanics. The calcu-
lation of the velocity distribution and the mean velocity of a fluid
flowing through an annulus of outer radius ‘R’ and inner radius
‘�R’ (Figure 1) is more complex than that for flow in a pipe
or between two parallel planes.[24,25] In this work, the proposed
method is suitable in conceptual development and scoping studies
where the estimation of the boundaries of plug for Bingham plas-

tic fluids through an annulus as a function of dimensionless yield
stress (�0) and aspect ratio parameter (�) are being considered.
This gives us the confidence to offer our findings for engineering
applications where a rough and ready programmable estimate is
sought.

Mathematical Modelling

In Figure 1, consider the flow of the fluid situated at a distance
not greater than r from the centre-line of the pipe. The shear force
acting on this fluid comprises two parts: one is the drag on its
outer surface (r = R), which can be expressed in terms of the shear
stress in the fluid at that location; the other contribution is the drag
occurring at the inner (solid) boundary of the annulus, that is at
r = �R. This component cannot be estimated at present; however,
alternatively, this difficulty can be obviated by considering the
equilibrium of a thin ring of fluid of radius r and thickness dr
(Figure 1). The pressure force acting on this fluid element is[24,25]:

2�r dr(p − (p +�p)) (1)

The only other force acting on the fluid element in the
z-direction is that arising from the shearing on both surfaces of
the element. Note that, not only will the shear stress change from
r to r + dr, but the surface area over which shearing occurs will
also depend upon the value of r. The net force can be written as:

2�rL�rz|r+dr −2�rL�rz|r (2)
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Figure 1. Flow in a concentric annulus.

At equilibrium, therefore:

2�r dr
(−�p

L

)
L = 2�L( r�rz|r+dr −r�rz|r) (3)

or:

r�rz|r+dr −r�rz|r
dr

= r

(−�p
L

)
(4)

Now taking limits as dr → 0, it becomes:

d

dr
(r�rz) = r

(−�p
L

)
(5)

The shear stress distribution across the gap is obtained by inte-
gration:

�rz = r

2

(−�p
L

)
+ C1

r
(6)

where C1 is a constant of integration. Because of the no-slip
boundary condition at both solid walls, that is at r = �R and r = R,
the velocity must be maximum at some intermediate point, say
at r = �R. Then, for a fluid without a yield stress, the shear stress
must be zero at this position. Thus, the constant of integration,
C1, can be evaluated using the condition of �rz = 0 at r = �R, and
hence:

C1 = −�
2R2

2

(−�p
L

)
(7)

and this allows Equation (6) to be rewritten as:

�rz =
(−�p

L

)
R

2

(
� − �2

�

)
(8)

where �= r/R, is the dimensionless radial coordinate.
In principle, the velocity distribution and the mean velocity of a

Bingham plastic fluid flowing through an annulus can be deduced
by substituting for the shear stress in Equation (8) in terms of the
Bingham plastic model. Figure 2 shows qualitatively the salient
features of the velocity distribution in an annulus for Bingham
plastic fluid. However, the signs of the shear stress (considered
positive in the same sense as the flow) and the velocity gradients
in the two flow regions need to be treated with special care. The

Figure 2. Schematics of velocity profile.

shearing force on the fluid is positive (�R ≤ r ≤ �− R) where the
velocity gradient is also positive. Thus, in this region[24,25]:

�rz = �B
0 + �B

(
dVZ
dr

)
(9)

On the other hand, in the region �+ R ≤ r ≤R, the velocity gra-
dient is negative and the shearing force is also in the negative
r-direction, and hence:

−�rz = �B
0 + �B

(
−dVZ

dr

)
(10)

Equations (9) and (10) can now be substituted in Equation (8)
and integrated to deduce the velocity distributions. The constants
of integration can be evaluated by using the no-slip boundary
condition at both r = �R and r = R. However, the boundaries of
the plug existing in the middle of the annulus are not yet known;
nor is the plug velocity known. The unknown boundaries are
evaluated by applying the following conditions: the continuity of
velocity at r = 	− R and r = �+ R (the velocity gradient is also
zero at these boundaries), and the force balance on the plug of
fluid is[24,25]:

2�R(�+ 	)�B0 =
(

−�P
L

)
�[(�+ R)2 − (�− 	)2] (11)

The algebraic steps required to carry out the necessary inte-
grations and the evaluation of the constants are quite involved
and tedious. Thus, these are not presented here, and readers
are referred to the original papers (Laird, 1957) or to the book
by Skelland[25] for detailed derivations. Instead, consideration is
given here to the practical problem of estimating the necessary
pressure gradient to maintain a fixed flow rate of a Bingham plas-
tic fluid or vice versa. Fredrickson and Bird[20] organised their
numerical solutions of the equations presented above in terms of
the following dimensionless parameters:

Dimensionless velocity : V∗
Z = 2 �B VZ

R2((−�P)/L)
(12)

Dimensionless yield stress : �0 = 2�B
0

R((−�P)/L)
(13)

Dimensionless flow rate : 
 = Q

QN
(14)
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where QN is the flow rate of a Newtonian liquid of viscosity, �B,
and thus:

QN = �R4

8 �B

(−�p
L

)
(15)

In view of the above, in this work, the boundaries (�+) of
plug for Bingham plastic fluids laminar flow through an annu-
lus is correlated as a function of dimensionless yield stress and
aspect ratio parameter for given values of the rheological con-
stants, pressure gradient and the dimensions of the annulus. This
paper discusses the formulation of such a predictive tool in a
systematic manner along with an example to show the simplic-
ity of the method and usefulness of such a tool. The proposed
method is an exponential function, which leads to well-behaved
(i.e. smooth and non-oscillatory) equations enabling more accu-
rate and non-oscillatory predictions. This is the distinct advantage
of the proposed method.

Fredrickson and Bird[20] presented data showing relationships
between �0,
 and �. In this work, for given values of the rheolog-
ical constants (�B, �

B
0 ) and the dimensions of the annulus (�, R),

the boundaries of plug (�) for Bingham plastic fluids laminar flow
through an annulus is calculated as a function of dimensionless
yield stress and aspect ratio parameter.

METHODOLOGY FOR THE DEVELOPMENT OF NOVEL
PREDICTIVE TOOL

The primary purpose of the present study is to accurately correlate
the boundaries of plug (�) for Bingham plastic fluids through an
annulus as a function of dimensionless yield stress (�0) and aspect
ratio parameter (�).

In this work, the Vandermonde matrix is used to adjust the
parameters. The denials of the Vandermonde matrix is reported
in the appendix of this paper.

The required data[20,24] to develop this correlation include the
values of the boundaries of plug for Bingham plastic fluids
through an annulus as a function of dimensionless yield stress
(�0) and aspect ratio parameter (�).

The following methodology[26–29] using Matlab[30] has been
applied to develop this correlation. Firstly, data values of the
boundaries of plug for Bingham plastic fluids through an
annulus[20,24] are correlated as a function of aspect ratio param-
eter (�) for different dimensionless yield stress (�0) values, then
the calculated coefficients for these equations are correlated as a
function of dimensionless yield stress (�0). The derived equations
are applied to calculate new coefficients for Equation (16) to pre-
dict the boundaries of plug for Bingham plastic fluids through an
annulus.

Table 1 shows the tuned coefficients for Equations (17)–(20)
to predict the boundaries of plug (�) for Bingham plastic fluids
through an annulus.[20,24]

In brief, the following steps are repeated to tune the correla-
tion’s coefficients using Matlab[30]:

(1) Correlate the boundaries of plug (�) for Bingham plastic fluids
through an annulus as a function aspect ratio parameter (�)
for a given dimensionless yield stress (�0) value.

(2) Repeat step 1 for other dimensionless yield stress (�0) data.
(3) Correlate corresponding polynomial coefficients, which were

obtained for dimensionless yield stress (�0) data versus ‘�0’
parameter, a = f(�0), b = f(�0), c = f(��0), d = f(�0) (Equa-
tions 17–20).

Table 1. Tuned coefficients used in Equations (17)–(20)

Value of dimensionless Value of dimensionless
yield stress (�0) yield stress (�0)

Coefficient less than 0.5 greater than 0.5

A1 −1.150276192 −2.175571164
B1 1.475517695 × 10−1 5.953316650
C1 4.051711092 −7.242934287
D1 −4.008893104 3.540015028
A2 3.283658498 2.256507132
B2 7.724316435 −2.516165737
C2 −3.077839119 × 101 1.444928294 × 101

D2 2.661170364 × 101 −1.463844785 × 101

A3 −4.098751522 7.299848912 × 101

B3 −2.038451497 × 101 −3.007070405 × 102

C3 5.533689317 × 101 3.365693174 × 102

D3 −4.584582868 × 101 −1.024886714 × 102

A4 1.978128142 −3.663618770 × 102

B4 1.43715826 × 101 1.595992468 × 103

C4 −2.925170868 × 101 −2.185947051 × 103

D4 3.164537814 × 101 9.600108170 × 102

Equation (16) represents the proposed governing equation in
which four coefficients are used to correlate the boundaries of plug
(�) for Bingham plastic fluids through an annulus as a function
of dimensionless yield stress (�0) and aspect ratio parameter (�).
The relevant coefficients have been reported in Table 1

ln(�) = a + b� + c�2 + d�3 (16)

where:

a = A1 + B1�0 + C1�
2
0 + D1�

3
0 (17)

b = A2 + B2�0 + C2�
2
0 + D2�

3
0 (18)

c = A3 + B3�0 + C3�
2
0 + D3�

3
0 (19)

d = A4 + B4�0 + C4�
2
0 + D4�

3
0 (20)

The optimum tuned coefficients given in Table 1 can be further
retuned quickly according to the proposed approach if more data
become available in the future. Figure 3 shows the flow chart to
adjust the tuned coefficients for Equations 17–20.

In this work, our efforts were directed at formulating a correla-
tion which can be expected to assist engineers for rapid calculation
of the boundaries of plug (�) for Bingham plastic fluids through
an annulus as a function of dimensionless yield stress (�0) and
aspect ratio parameter (�). The proposed novel tool developed
in the present work is a simple and unique expression, which
is non-existent in the literature. Furthermore, the selected expo-
nential function to develop the tool leads to well-behaved (i.e.
smooth and non-oscillatory) equations enabling reliable and more
accurate predictions.

RESULTS

Figures 4 and 5 show the proposed method’s results to estimate
the boundaries of plug (�) for Bingham plastic fluids through
an annulus as a function of dimensionless yield stress (�0) and
aspect ratio parameter (�). Figure 6 shows the smoothness of
predictive tool’s results in the prediction of the boundaries of
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Figure 3. General workflow of algorithm used for tuning the coefficients
in Equations (17)–(20).

plug for Bingham plastic fluids laminar flow through an annulus
as a function of dimensionless yield stress (�0) and aspect ratio
parameter (�).

Figure 7 illustrates a parity chart to illustrate the excellent
performance of the method. Table 2 illustrates the accuracy of
proposed correlation for predicting the boundaries of plug for
Bingham plastic fluids through an annulus as a function of
dimensionless yield stress (�0) and aspect ratio parameter (�) in
comparison with some reported data.[20,24]

The deviation of correlation in terms of average absolute devia-
tion is around 1.7%. It is expected that our efforts in formulating
a simple tool will pave the way for arriving at an accurate

Figure 4. The performance of predictive tool in comparison with
data[20,24] to calculate the boundaries of plug for Bingham plastic fluids
through an annulus as a function of dimensionless yield stress (�0) and
aspect ratio parameter (�) dimensionless yield stress (�0) less than 0.5.

Figure 5. The performance of the predictive tool in comparison with
data[20,24] to calculate the boundaries of plug for Bingham plastic fluids
through an annulus as a function of dimensionless yield stress (�0) and
aspect ratio parameter (�) dimensionless yield stress (�0) greater than
0.4.

| VOLUME 91, SEPTEMBER 2013 | | THE CANADIAN JOURNAL OF CHEMICAL ENGINEERING | 1593 |



Figure 6. The smooth performance of the predictive tool to the
boundaries of plug for Bingham plastic fluids through an annulus as a
function of dimensionless yield stress (�0) and aspect ratio parameter (�)
dimensionless yield stress (�0) less than 0.5.

prediction of the boundaries of plug for Bingham plastic fluids
through an annulus as a function of dimensionless yield stress
(�0) and aspect ratio parameter (�), which can be used by engi-
neers for monitoring the key parameters periodically.

The tool developed in this study can be of immense practi-
cal value for experts and engineers to have a quick check on
prediction of the boundaries of plug for Bingham plastic fluids
through an annulus as a function of dimensionless yield stress
(�0) and aspect ratio parameter (�) without opting for any exper-
imental trials. In particular, engineers would find the approach to
be user-friendly with transparent calculations involving no com-
plex expressions. Sample calculations[20,24] shown below clearly
demonstrate the simplicity of the proposed tool and the benefits
associated with such estimations.

Figure 7. Parity chart to illustrate the accuracy of the predictive tool in
predicting the boundaries of plug for Bingham plastic fluids flow through
an annulus.

Table 2. Comparison of calculated values with typical data[20,24]

Reported the Calculated
Value of boundaries of the boundaries Absolute

Aspect dimensionless plug for Bingham of plug for deviation
ratio yield stress fluid data Bingham fluid percent

0 0 0.3 0.316 5.3
0.2 0 0.535 0.526 1.7
0.3 0 0.608 0.618 1.6
0.4 0 0.674 0.693 2.8
0.5 0 0.735 0.751 2.2
0.6 0 0.791 0.795 0.5
0.7 0 0.843 0.834 1.1
0.8 0 0.9 0.875 2.8
0.9 0 0.95 0.93 2.1
1 0 1 1.01 1
0 0.1 0.326 0.333 2.1
0.2 0.1 0.591 0.580 1.9
0.3 0.1 0.661 0.678 2.6
0.4 0.1 0.724 0.749 3.5
0.5 0.1 0.7826 0.798 2
0.6 0.1 0.842 0.835 0.8
0.7 0.1 0.9 0.876 2.7
0.8 0.1 0.952 0.935 1.8
0.9 0.1 1 1.03 3
0 0.2 0.352 0.371 5.4
0.2 0.2 0.635 0.637 0.3
0.3 0.2 0.708 0.732 3.4
0.4 0.2 0.778 0.796 2.3
0.5 0.2 0.835 0.838 0.4
0.6 0.2 0.896 0.875 2.3
0.7 0.2 0.952 0.927 2.6
0.8 0.2 1 1.02 2
0 0.3 0.417 0.427 2.4
0.1 0.3 0.602 0.574 4.7
0.2 0.3 0.692 0.695 0.4
0.3 0.3 0.762 0.782 2.6
0.4 0.3 0.826 0.838 1.5
0.5 0.3 0.891 0.879 1.3
0.6 0.3 0.95 0.927 2.4
0.7 0.3 1 1.01 1
0 0.4 0.5 0.496 0.8
0.1 0.4 0.665 0.642 3.5
0.2 0.4 0.743 0.754 1.5
0.3 0.4 0.817 0.829 1.5
0.4 0.4 0.883 0.880 0.3
0.5 0.4 0.943 0.929 1.5
0.6 0.4 1 1 0
0 0.5 0.565 0.568 0.5
0.1 0.5 0.717 0.709 1.1
0.2 0.5 0.802 0.81 1
0.3 0.5 0.874 0.876 0.2
0.4 0.5 0.939 0.930 1
0.5 0.5 1 1 0
0 0.6 0.648 0.640 1.2
0.1 0.6 0.792 0.786 0.8
0.2 0.6 0.87 0.88 1.1
0.3 0.6 0.935 0.949 1.5
0 0.7 0.7 0.709 1.3
0.1 0.7 0.852 0.855 0.4
0.2 0.7 0.935 0.933 0.2
0.3 0.7 1 0.97 3
0 0.8 0.8 0.789 1.4
0.1 0.8 0.926 0.922 0.4
0.2 0.8 1 1.00 0
0 0.9 0.9 0.90 0
0.1 0.9 1 1 0

Average absolute deviation percent 1.65
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Example

A molten chocolate (density = 1500 kg/m3) flows through a
concentric annulus of inner and outer radii 10 and 20 mm, respec-
tively, at 30◦C at the constant flow rate of 0.03 m3/min. The
steady-shear behaviour of the chocolate can be approximated by a
Bingham plastic model with �B

0 = 35 Pa and �B = 1 Pa s, �0 = 0.048.
Determine the size of the plug.

Solution

�B
0 = 35 Pa and �B = 1 Pa s, �= (10/20) = 0.5, R = 20 × 10−3 m and

Q = 0.03 m3/min = (0.03/60) m3/s.
We can now calculate pressure gradient for �0 = 0.048

(−�P
L

)
= 2�B0
R�0

= 2 × 35
20 × 10−3 × 0.048

= 73 000 Pa/m = 73 kPa/m

From new proposed correlation. For �0 = 0.048 and �= 0.50:

1. a = −1.134301 (from Equation 17).
2. b = 3.586455 (from Equation 18).
3. c = −4.95478 (from Equation 19).
4. d = 2.604067 (from Equation 20).
5. �= 0.76 (from Equation 16).

From the definition of � from Equation (11), we have:

(�− 	)
R

2

(−�P
L

)
= �B

0

Substitution of values of �, R, �B
0 and (−(�P)/L) gives 	= 0.71.

Thus, the plug region extends from R − 	 to R + �, that is from 14.2
to 15.2 mm. These calculations assume the flow to be laminar. As
a first approximation, one can define the corresponding Reynolds
number based on the hydraulic diameter, Dh

Dh = 4 × flow rate
wetted perimeter

= 4�R2(1 − �2)
2�R(1 + �)

= 2R(1 − �)

= 2 × 20 × 10−3(1 − 0.5) = 0.02 m,

Reynolds number (Re) = �VDh

�B
= 1500 × 0.53 × 0.02

1
= 16

Thus, the flow is laminar and streamlined.

CONCLUSIONS

In this work, simple-to-use equations are presented here for the
estimation of the boundaries of plug for Bingham plastic fluids
through an annulus as a function of dimensionless yield stress
(�0) and aspect ratio parameter (�). Unlike complex mathematical
approaches, the proposed correlation is simple-to-use and would
be of immense help for engineers, especially those dealing with
fluids flow in concentric annulus.

Additionally, the level of mathematical formulations associated
with the estimation of the boundaries of plug for Bingham plastic
fluids through an annulus can be easily handled by an engi-
neer or practitioner without any in-depth mathematical abilities.
Furthermore, estimations are quite accurate as evidenced from
the comparisons with literature data[20,24] (with average absolute
deviation being around 1.7%). The proposed method has clear
numerical background, wherein the relevant coefficients can be
retuned quickly if more data become available in the future.

NOMENCLATURE

A tuned parameter
B tuned parameter
C tuned parameter
D tuned parameter
i index
j index
m power law consistency coefficient
n power-law flow behaviour index
p pressure (N/m2)
Q volumetric flow rate (m3/s)
R pipe radius/annulus outer radius (m)
r radial coordinate (m)
u coefficient of polynomial
V Vandermonde matrix
Vz point velocity of flow in z-direction (m/s)
V∗
Z non-dimensional point velocity

x data point
X maximum data point
y distance from wall (m)
z axial coordination in flow direction (m)

Greek Symbols

	 lower boundary of plug of Bingham plastic in annular flow
� upper boundary of plug of Bingham plastic in annular flow
�B Bingham plastic viscosity (Pa s)
� non-dimensional radial coordinate
� non-dimensional inner radius of annulus
� shear stress in fluid (N/m2)
�B

0 yield stress in Bingham plastic model (Pa)
�rz shear stress in fluid (Pa)
�0 non-dimensional stress ratio

 non-dimensional flow rate

APPENDIX

The Vandemonde matrix is a matrix with the terms of a geometric
progression in each row, that is an m × n matrix[31–33]

V =

⎡
⎢⎢⎢⎢⎣

1 ˛1 ˛2
1 · · · ˛n−1

1
1 ˛2 ˛2

2 · · · ˛n−1
2

1 ˛3 ˛2
3 · · · ˛n−1

3
...

...
...

. . .
...

1 ˛m ˛2
m · · · ˛n−1

m

⎤
⎥⎥⎥⎥⎦ (A.1)

or

Vi,j = ˛
j−1
i (A.2)

For all indices i and j, the determinant of a square Vandermonde
matrix (where m = n) can be expressed as[31–33]:

det(V) =
∏

1≤i<j≤n
(˛j − ˛i) (A.3)

The Vandermonde matrix evaluates a polynomial at a set of
points; formally, it transforms coefficients of a polynomial a0 +
a1x+ a2x

2 + · · · + an−1x
n−1 to the values the polynomial takes at

the point’s ˛i. The non-vanishing of the Vandermonde determi-
nant for distinct points ˛i shows that, for distinct points, the map
from coefficients to values at those points is a one-to-one corre-
spondence, and thus that the polynomial interpolation problem is
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solvable with unique solution: this result is called the unisolvence
theorem[31–33]

They are thus useful in polynomial interpolation, since solving
the system of linear equations Vu = y for u with V and m × n
Vandermonde matrix is equivalent to finding the coefficients uj
of the polynomial(s)[31–33]:

P(x) =
n−1∑
j=0

ujx
j (A.4)

For degree ≤n − 1 which has (have) the property:

P(˛i) = yi for i = 1, . . . ,m (A.5)

The Vandermonde matrix can easily be inverted in terms of
Lagrange basis polynomials: each column is the coefficients of
the Lagrange basis polynomial, with terms in increasing order
going down. The resulting solution to the interpolation problem
is called the Lagrange polynomial[31–33]:

P′(x) = anx
n + an−1x

n−1 + · · · + a2x
2 + a1x+ a0 (A.6)

The statement that P′ interpolates the data points means that:

P′(xi) = yi forall i∈{0, 1, . . . , n} (A.7)

If we substitute Equation (1) in here, we get a system of linear
equations in the coefficients ak . The system in matrix–vector form
reads:

V =

⎡
⎢⎢⎣
xn0 xn−1

0 xn−2
0 · · · x0 1

xn1 xn−1
1 xn−2

1 · · · x1 1
...

...
...

...
...

xnn xn−1
n xn−2

n · · · xn 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣
an
an−1

...
a0

⎤
⎥⎥⎦

⎡
⎢⎢⎣
y0

y1
...
yn

⎤
⎥⎥⎦ (A.8)

This system is solved for ak to construct the interpolant p(x).
The matrix on the left is commonly referred to as a Vandermonde
matrix.[31–33]
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