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ABSTRACT

Glass fibre reinforced polymer (GFRP) is a composite material, which
consists of polyester thermosetting resin as matrix and glass fibres as reinforcement.
GFRP is mainly used as structural sections and as structural rehabilitation and repair
material. It is observed that the current required technical and design data of
pultruded GFRP sections is rather limited especially with regard to material
properties and its performance in the tropical climate. Therefore, this study is
conducted experimentally to investigate the engineering properties of the GFRP
material and sections, and its performance to the local tropical climate. Special
observations on the effects of the fibre orientations and stacking sequences in
laminates are also made. Testing procedures are basically in accordance with the
requirements of the American Standard of Testing and Materials (ASTM), and the
British Standards (BS). There are six different fibre orientations of GFRP plates and
two different fibre orientations of GFRP box sections of 6.35 mm nominal thickness
with different stacking sequence selected for the test samples. They were fabricated
by local manufacturer according to the commercial quality requirements. A total of
2304 GFRP samples were tested, 1152 of the samples were exposed to the outdoor
environment, while the other 1152 samples were kept in the laboratory environment
as control samples. The samples were tested for physical and mechanical
performance. Among the visual observations made were the surface appearance,
thickness variation and weight gain. Samples were also tested for tension,
compression and in-plane shear to indicate the mechanical performance.
Measurements were taken at 3, 6, 12 and 24 months period of exposure to
weathering. Four point bending tests were also conducted on 900 mm span of GFRP
box section beams to investigate the structural performance under tropical weather.
Twenty-four beams were tested for this purpose after being exposed to the outdoor
environment and the other twenty-four beams were tested under controlled
environment. The statistical test data were analysed using Weibull distribution. The
test results showed that the GFRP material is significantly affected by tropical
weather conditions. In general, surface degradation was significant after 12 months
exposure due to fungal attack. Surface roughness and discoloration on the top
surface of the samples were also observed with the bottom surface not affected by
the exposure at all. The effect of tropical weather conditions on mechanical
performance of the exposed GFRP samples was significant, but varied with fibre
quantity. The reduction in flexural capacity of GFRP box beams was also observed
due to weathering after a period of 24 months. Ultimately, the mechanical properties
and structural beam performance with respect to the period of exposure under
tropical weather was formulated and presented at the end of this study.
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ABSTRAK

Polimer bertetulang gentian kaca (GFRP) ialah bahan komposit yang terdiri
daripada resin polyester termoset sebagai matriks dan gentian kaca sebagai tetulang.
GFRP digunakan terutama sebagai anggota struktur dan pemuliharaan struktur dan
bahan baikpulih. Berdasarkan perkembangan terkini, keperluan data teknikal dan
reka bentuk bagi keratan GFRP telah dikenalpasti amat terhad terutama daripada
segi sifat bahan dan keupayaan terhadap iklim tropika. Oleh yang demikian, kajian
secara ujikaji makmal ini dijalankan untuk mengkaji sifat-sifat kejuruteraan bahan
dan keratan GFRP, dan keupayaan terhadap iklim tropika. Pemerhatian khusus juga
dilakukan ke atas pengaruh orientasi dan susun atur gentian di dalam laminat.
Tatacara ujikaji merujuk kepada kaedah yang disyorkan dalam piawaian-piawaian
Amerika (ASTM) dan British (BS). Enam reka bentuk keratan plat GFRP dan dua
reka bentuk keratan kekotak GFRP dengan ketebalan nominal 6.35 mm yang
berbeza daripada segi orientasi dan susun atur gentian telah dipilih sebagai sampel
yjian. Keratan GFRP telah difabrikasi dan dibekalkan oleh pengeluar tempatan
berpandukan kehendak kualiti pasaran. Sejumlah 2304 sampel GFRP telah diuji,
yang mana 1152 sampel dikenakan dedahan luar manakala 1152 sampel lagi untuk
dedahan normal dalam makmal sebagai kawalan. Semua sampel diuji untuk prestasi
fizikal dan mekanikal. Kajian tinjauan visual dijalankan termasuk perubahan rupa
bentuk permukaan, ketebalan dan capaian berat sampel. Sampel juga diuji untuk
sifat-sifat tegangan, mampatan dan ricih satah untuk mengkaji pengaruh dedahan
luar ke atas prestasi mekanikal bahan. Pemantauan dilakukan ke atas sampel untuk
tempoh dedahan selepas 3, 6, 12, dan 24 bulan. Ujian lenturan empat titik juga
dijalankan ke atas rasuk keratan kekotak GFRP dengan rentang 900 mm untuk
mengkaji pengaruh dedahan cuaca tropika terhadap keupayaan rasuk. Untuk tujuan
ini, dua puluh empat sampel rasuk telah diuji untuk dedahan luar manakala dua
puluh empat sampel rasuk lagi diuji sebagai kawalan. Data ujian dianalisis
menggunakan kaedah statistik Weibull. Keputusan ujian telah menunjukkan bahawa
bahan GFRP mengalami kesan yang ketara disebabkan dedahan cuaca tropika.
Secara umum, kesan degradasi yang ketara ke atas permukaan sampel] telah
dikenalpasti berlaku selepas 12 bulan disebabkan serangan kulat. Terdapat juga
kesan kekasaran permukaan dan ubah rupa warna pada permukaan atas sampel,
tetapi tidak ketara pada permukaan bawah sampel. Kesan ke atas prestasi mekanikal
sampel dedahan luar didapati amat ketara, tetapi berubah-ubah dengan kuantiti
gentian. Pengurangan dalam keupayaan lentur rasuk kekotak GFRP juga
dikenalpasti berlaku selepas tempoh dedahan 24 bulan. Rumusan bagi sifat-sifat
mekanikal bahan dan prestasi rasuk GFRP terhadap tempoh dedahan kepada iklim
tropika telah diterbitkan dan diperincikan di peringkat akhir kajian.
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& t+

INTRODUCTION

1.1 General

Since 1990s, the use of the glass fibre reinforced polymeric composites in the
construction industry has grown very rapidly especially in developed countries. The
applications of the composite material are mainly in building structures, bridges,

offshore structures, etc.

The development of the material in the construction industry in Malaysia is
still at its infancy. In local current applications, the use of the material is only visible
in marine and aircraft technology, and chemical industries where fabrication process
are employed mainly by close- and open-moulded techniques. But, in the
construction industry, the existing fabrication technology can also be employed to
fabricate structural components. The material has been used for secondary structures

such as water tanks, light poles, platform gratings, beams, cladding and piping.

The composite material has been slowly being accepted locally as an
alternative construction material due to its ability to sustain structural loads
comparable to the existing conventional materials such as concrete, steel and timber.
Generally, the composite material is non-corrosive and dimenéionally stable; it has
an advantage that fulfils the durability aspects for the applications. However, study
on the durability of GFRP materials is still new and more data are required from a
wide range of weather conditions especially the tropical climate. Previous studies on

the GFRP composite materials indicated that there were some basic understandings




on the variations of material properties as a guide for in-depth studies. The material

properties depend on several factors, such as:

i) the fabrication process or method of manufacturing,
it) the type of reinforcement fibre, ¢ *

iii)  the fibre orientation and stacking sequence,

iv) the type of resin used as a matrix,

V) the environmental conditions, and

vi) the method of testing.

These parameters affect the properties of end products and must be carefully

selected to ensure suitability of the final applications.

1.2  Background and Rationale of the Project

Glass fibre reinforced polyester (GFRP) pultruded composite consists of
polyester resin (thermosetting polymer) as a matrix and glass fibre as reinforcement.
It is manufactured through a continuous pultrusion process to form structural
sections. During the manufacturing process, the form(s) of continuous glass fibres
are pulled from one end of the line into a resin bath that contains liquid polyester
resin, curing agent (initiator), and other ingredients. The fibre-resin is then passed
through in the heated die for curing to form a hard, solid and continuous structural

section.

In structural applications, pultrusion process is considered the most practical
and economical manufacturing method for producing structural sections, as
compared to other methods because it is able to produce sections in continuous
uniform shapes. The process can also produce prefabricated components in various
shapes such as hollow sections, I-sections, H-sections and many more according to

the requirement of the consumers. Prefabrication of components is a key feature of



the present dominant technologies; thus the pultrusion process offers greater scope to

prefabricated components.

Pultruded GFRP is categorised as a high-performance composite material
due to its ability to sustain structural loading. In-addifion, it has the advantages of
high strength-weight ratio, dimensional stability, and with the right selection of resin
formulation, will give good weathering properties, chemical resistance, electrical

properties, fire and heat resistance.

Presently, due to the rapid development of fibre systems in continuous forms,
the desired property data of pultruded GFRP sections must be concurrently
developed. The properties of pultruded GFRP materials would largely depend on
process parameters such as resin viscosity, running speed and thermal application on
the die during the process. Thus, manufacturers must decide the adequate process
parameters to ensure a good quality of material and compliance with consumer’s
requirements. At this stage, the technical know-how and experience of

manufacturers on the processing system are often played the important roles.

In present applications of GFRP, the use of gel coat as a finished layer on the
hand-laid up products have been applied successfully to improve the durability of the
materials. But for pultruded GFRP sections, the employment of gel coat as a finished
layer is impractical since it would cause non-uniformity in shapes and dimensions.
Therefore, as an alternative solution, manufacturers usually apply a modified resin to
improve sustainability to the environmental. However, the effectiveness of the
modified resin ingredient is questionable since the exposed surface is still
unprotected. Instead, besides applying the modified resin system, the contribution of
fibres in terms of quantity or volume ratio and arrangement systems in the GFRP
materials has also to be considered. With the optimum quantity and proper
arrangement system of fibres in the material will probably improve sustainability to
the environment or weather. The fibres may act as filler in the material to minimise
deterioration effects due to environmental factors or weathering. Since, it is still as a

hypothesis, an in-depth study has to be conducted to collect adequate data to support

the argument.



It is understood that environmental factors such as temperature, humidity and
ultraviolet rays may have some influence on the durability of GFRP. The common
features of tropical hot-wet weather in Malaysia are high humidity and frequent
sunlight. As the sections are exposed to this weather, their properties may change
with time. Thus, this phenomenon will adversely afféet the overall performance of
GFRP. To utilise the full potential of GFRP sections their response to the weather
must be observed. This is conducted experimentally under indoor and outdoor

laboratory studies.

For the purpose of this study, it is essential to assume that some climatic
factor will affect the physical and mechanical properties of GFRP. The total
variation in the properties may be due to the integrated effect from these factors. The
physical features of the sections may change due to chemical reactions between the
constituents and factors such as moisture, temperature, solar radiation (ultra violet),
acid rain and some gases that exist in atmosphere. Consequently, the changes in
physical pfoperties will cause variation in mechanical properties of the material
considered in structural design such as tension, compression and shear. As a result,

the changes in properties of weathered GFRP will affect their long-term

performance.

Insufficient test data is observed and reported by the previous researchers.
There are some important issues that need to be addressed and studied in depth with
regard to the durability particularly of the pultruded GFRP materials and sections for

future applications, such as:

i) The material properties in both principal directions, longitudinal and
transverse,

ii) The properties of multilayer fibre laminates of pultruded GFRP,

ii1) The material performance to the tropical climate in order to establish the
durability of material,

iv) The overall material and structural performance under exposed tropical
climate, and

V) Establishing the appropriate test methods.



1.3  Overall Objectives and Scope of the Study

1.3.1 Objectives of the Study

The main objectives of the study are: « %

1

2)

3)

4)

5)

to characterise the engineering properties of pultruded GFRP sections
produced by a local manufacturer, and establish structural design data
of pultruded GFRP sections with regard to continuous glass fibres for

structural applications,

to study the effect of continuous glass fibres and orientations on the

physical and mechanical properties of pultruded GFRP sections,

to investigate the long-term durability of pultruded GFRP sections

exposed to tropical climate,

to study the structural performance of pultruded GFRP box beams
exposed to tropical climate in association to the material

performance,

to propose and validate empirical models in GFRP structural design
with regard to continuous glass fibres and its applications in tropical

climate.

1.3.2 Scope of the Study

The scope of the study was established to fit into the desired objectives and

the period of weathering exposure. The study was mainly focussed on experimental

work in laboratory. All testing activities were subject to actual tropical climate

except for the certain procedures already specified by referred standards of practice.



For the purpose of study, the isopthalic polyester resin, Crystic 491E
produced by Scott Bader Comp. Ltd., UK was employed. The continuous E-glass
type fibres, which were compatible with the polyester resin, were used as
reinforcements. The pultruded GFRP plate bars of 76.2 mm width and 6.35 mm
thickness, and square hollow sections of 76.2 man depth by 76.2 mm width and 6.35
mm thickness (3 in. by 3 in. by 0.25 in.) were manufactured and supplied by a local

fabricator.

The pultruded GFRP plate bars were fabricated in six-laminate systems
consisting of three different single oriented fibre laminates (or single layer fibre
laminates) and three different combined oriented fibre laminates (or multilayer fibre

laminates) as follows:

1) unidirectional roving,

ii) continuous filament mat,

ii1) woven roving,

iv) the multilayered fibres of continuous filament mat and unidirectional roving
laminate,

v) the multilayered fibres of woven roving and unidirectional roving laminate,

Vi) the multilayered fibres of continuous filament mat with unidirectional and

woven roving laminate.

All the multilayer fibre laminates were of balance laminate. The samples
were prepared in specified sizes to test their physical and mechanical properties
according to the existing standards of practice, such as American Standard of
Testing and Materials, British Standard BS 2782, and some other recommended test

procedures proposed by previous researchers.

The experimental program was briefly divided into two major parts. In the
first part, the study on initial performance of pultruded GFRP was established by
conducting elementary tests on physical and mechanical properties of the GFRP. The
physical property tests included density, constituent content, dimensional tolerances

and variation, water absorption and hardness were carried out. The mechanical



property tests included strength and elastic properties in tension, compression, and
in-plane shear. The second part of the experimental program was exposure tests of
the GFRP samples under out-door tropical climate, which was set up after the first
part had been completed. Another group of GFRP samples was subject to room
environment as a control. The samples were exposed Yor 3, 6, 12 and 24 months and
tested for physical and mechanical properties. In order to verify the effects of
tropical climate on the structural performance of GFRP section, flexural test was
conducted on GFRP box beams under four-point loading system. Only two laminate
systems of GFRP beams were employed for the test. They were continuous filament
mat to represent single layer fibre laminate, and multilayer fibre laminate consisting

of continuous filament mat with unidirectional roving and woven roving fibres.

1.4 Conclusion

The cﬁrrent development of GFRP materials in the construction industry has
tremendously grown especially in the developed countries since 1990s. But their use
in Malaysian industries is still at infancy due to insufficient database on the material
properties and durability aspects. Environmental factors have significant effects on
the physical and mechanical properties of GFRP materials; normally reducing the

properties on long term exposure.

For structural applications, the pultruded GFRP sections are most practical
since the system are produced in uniform prefabricated sections with various shapes
and sizes. The materials have been developed to increase their ability to sustain
primary loads by improving on the production technology from time to time. In
addition, their durability to sustain environmental factors must also be
simultaneously improved in various weather conditions. There are many specific
areas, in facts that require proper in-depth studies on the durability of GFRP
pultruded materials. This may assist the fabricator and engineers to improve the

material quality and provide established database for design works in the future.
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