DATABASE MANAGEMENT INVENTORY SYSTEM

SYAHIDA BT ARIPIN

A project report submitted in partial fulfillment of the requirements for the award of the degree of Master of Science (Construction Management)

> Faculty of Civil Engineering Universiti Teknologi Malaysia

> > **JULY, 2006**

A time to remember family and friends, too; A time to reminisce, and say "Thank You."

> For my beloved parents, Aripin bin Jasin & Rokiah binti Ghazali

Ny husband, Ahmad Sahiri bin Maasah

My love is no ends.

Appreciation on your supervision, Dr. Arham Abdullah En. Mohd Zamri Ramli

Your co-operation, LND, PROPEL Berhad

For my family, K/Tie, A/Man, K/Sela, A/Usop, A/Emi, K/Intan Aqilah, Danish, Dania, Darwish

And also for my friends...

May Allah bless you all...

ACKNOWLEDGEMENTS

In preparing this thesis, I was in contact with many people, researchers, academicians, and practitioners. They have contributed towards my understanding and thoughts. In particular, I wish to express my sincere appreciation to my main project supervisor, Dr. Arham Abdullah, for encouragement, guidance, critics and friendship. I am also very thankful to my co-supervisor, En. Mohd Zamri Ramli for his guidance, advices and motivation. Without their continued support and interest, this project would not have been the same as presented here.

I am also indebted to LMD, PROPEL Berhad; especially En. Suhaimi bin Aripin as the project engineer, Cik Aziah as the clerk in-charged in inventory system, Pak Harun as the storekeeper and other staffs involved directly or indirectly.

My fellow postgraduate students should also be recognised for their support. My sincere appreciation also extends to all my colleagues and others who have provided assistance at various occasions. Their views and tips are useful indeed. Unfortunately, it is not possible to list all of them in this limited space. I am grateful to all my family members.

ABSTRACT

Inventory control systems in construction industry needs systematic database management system. Inventory involved in construction industry are materials, machineries, spare parts, etc. This study is about to develop the inventory system that can be applied in construction industry. The objectives are to identify the problems involved in the implementation of the current inventory system at the spare parts store, Logistics and Machineries Department (LMD), PROPEL Berhad, to identify the needs of systematic inventory system at the spare parts store and to develop the prototype of the inventory system that can be implemented at the spare parts store. A case study has been carried out at LMD, PROPEL Berhad for the prototype development. The prototype used Microsoft Access and Bar Coding System. The prototype not only benefit to the person who in-charged with the system, but also benefit to all staffs dealing with the spare parts store by making it faster, more accurate and easier.

ABSTRAK

Sistem kawalan inventori dalam industri pembinaan memerlukan sistem pengurusan pengkalan data yang sistematik. Inventori yang terlibat dalam industri pembinaan ialah bahan-bahan, mesin, alat ganti, dan sebagainya. Kajian ini adalah tentang membina sistem inventori yang boleh diaplikasikan dalam industri pembinaan. Objektifnya adalah untuk mengenalpasti masalah yang terlibat dalam perlaksanaan sistem inventori yang sedia ada di stor alat ganti, *Logistics and Machineries Department* (LMD), PROPEL Berhad, untuk mengenalpasti keperluan sistem inventory yang sistematik di stor alat ganti tersebut dan untuk membina prototaip sistem inventory yang boleh dilaksanakan di stor alat ganti tersebut. Kajian kes dijalankan di LMD, PROPEL Berhad untuk pembangunan prototaip. Prototaip tersebut menggunakan Microsoft Access dan system barkod. Prototaip yang dibina bukan sahaja berfaedah kepada orang yang ditugaskan terhadap system tersebut, tetapi juga bermanfaat kepada semua staf yang berurusan dengan stor alat ganti tersebut dengan mempercepatkan, memudahkan dan membuatkan urusan lebih tepat.

TABLE OF CONTENTS

CHAPTER

TITLE

PAGE

Title	i
Declaration of originality and exclusiveness	ii
Dedication	iii
Acknowledgements	iv
Abstract	v
Abstrak	vi
Table of Contents	vii
List of Tables	xiv
List of Figures	XV
List of Appendices	xviii

1INTRODUCTION11.1Background11.2Problem Statement31.3Aim and Objectives of Research41.4Scope of Research51.5Importance of Research5

LIT	ERAT	URE REV	/IEW	6
2.1	Traditional File-Based Systems			
	2.1.1	Limitatic	ons of the File-Based Approach	7
		2.1.1.1	Uncontrolled Data	8
			Redundancy	
		2.1.1.2	Inconsistent Data	8
		2.1.1.3	Inflexibility	9
		2.1.1.4	Limited Data Sharing	9
		2.1.1.5	Difficult Data Integration	9
		2.1.1.6	Poor Enforcement of Standards	1(
			and Controls	
		2.1.1.7	Excessive Program	1
			Maintenance	
		2.1.1.8	Productivity Losses	1
2.2	Datab	ase Manag	gement System (DBMS)	1
	2.2.1	Characte	ristics of a DBMS	1
		2.2.1.1	Data Independence	1
		2.2.1.2	Complex Data Relationships	1
			and Control of Application	
			Data Redundancy	
		2.2.1.3	Application Generality	1
		2.2.1.4	Ease of Use	1
	2.2.2	Compone	ents of the DBMS Environment	2
		2.2.2.1	Hardware	2
		2.2.2.2	Software	2
		2.2.2.3	Data	2
		2.2.2.4	Procedures	2
		2.2.2.5	People	2
	2.2.3	Advantag	ges of DBMS	2
		2.2.3.1	Control of Data Redundancy	2
		2.2.3.2	Data Consistency	2
		2.2.3.3	More Information from the	2
			Same Amount of Data	

2

	2.2.3.4	Sharing of Data	26
	2.2.3.5	Improved Data Integrity	26
	2.2.3.6	Improved Security	26
	2.2.3.7	Enforcement of Standards	27
	2.2.3.8	Save Cost	27
	2.2.3.9	Balance of Conflicting	28
		Requirements	
	2.2.3.10	Improved Data Accessibility	28
		and Responsiveness	
	2.2.3.11	Increased Productivity	28
	2.2.3.12	Improved Maintenance	29
		through Data Independence	
	2.2.3.13	Increased Concurrency	29
	2.2.3.14	Improved Backup and	29
		Recovery Services	
2.2.4	Database l	Design Methodology	30
	2.2.4.1	Critical Success Factors in	33
		Database Design	
Facilit	y Managen	nent: Operations and	33
Mainte	enance		
2.3.1	System Re	ecords Management and	35
	Document	Control	
2.3.2	How a Co	mputerized Maintenance	35
	Managem	ent System (CMMS) Works	
2.3.3	Selecting	a CMMS	36
2.3.4	Implemen	ting the CMMS	37
2.3.5	CMMS in	Digital	38
	2.3.5.1	Barcoding	39
Invent	ory System	I	39
2.4.1	Effects of	Inaccurate Inventory Data	40
	2.4.1.1	Impact on Systems	40
	2.4.1.2	Impact on Users	41
	2.4.1.3	Impact on the Business	42

2.3

2.4

	2.4.2	Automatic Identification			42
		2.4.2.1	Bar Coding System		43
			2.4.2.1.1	Bar Code	45
				Symbologies	
			2.4.2.1.2	Bar Code Printers	51
			2.4.2.1.3	Bar Code Scanners	51
	2.4.3	Other Iden	tification T	echnologies	52
	2.4.4	Available	Inventory S	system in the Market	53
2.5	Relate	d Past Rese	archs		54

3	RES	SEARC	H METHOD	OLOGY	57
	3.1	Introd	uction		57
	3.2	Collecting Data			58
		3.2.1	Preview Curr	rent Inventory System	59
		3.2.2	Interview		59
		3.2.3	Questionnair	es	60
	3.3	Entity	Relationship	Modeling	60
		3.3.1	The Concept	s of the Entity-Relationship	60
			Model		
			3.3.1.1 E	ntities	61
			3.3.1.2 A	ttributes	62
			3.3.1.3 R	elationships	64
		3.3.2	Building an I	Entity-Relationship Diagram	66
			(ERD)		
	3.4	Databa	ise Manageme	ent Inventory System Design	67
		Metho	dology		
		3.4.1	Conceptual a	nd Logical Database Design	70
		3.4.2	Physical Data	abase Design	74
	3.5	Databa	ise Manageme	ent Inventory System	77
		Protot	pe Developm	ent: Microsoft Access 2002	
		3.5.1	Capabilities of	of Microsoft Access	77

	3.5.1.1	True Relational Database	77
		Management	
	3.5.1.2	Context-Sensitive Help and the	78
		Office Assistant	
	3.5.1.3	Ease-of-Use Wizards and	78
		Builders	
	3.5.1.4	Importing, Exporting and	78
		Linking External Files	
	3.5.1.5	WYSIWYG Forms and	79
		Reports	
	3.5.1.6	Multiple-Table Queries and	80
		Relationships	
	3.5.1.7	Business Graphs and Charts	80
	3.5.1.8	DDE and OLE Capabilities	81
	3.5.1.9	Built-In Functions	81
	3.5.1.10	Macros: Programming without	82
		Programming	
	3.5.1.11	Modules: Visual Basic for	82
		Applications – Database	
		Programming	
3.5.2	Compone	nts on the Access Screen	82
3.5.3	The Sever	n Steps Method of Design	84
Bar C	oding Syste	em	85
3.6.1	Symbolog	gy: Code 39 – Full ASCII	86
	3.6.1.1	The Character Set	87
	3.6.1.2	Character Density Loss with	87
		Code 39 – Full ASCII	
	3.6.1.3	The Start and Stop Characters	87
Concl	usion		88

3.6

3.7

4	PRO	OTOTY	YPE SYST	TEM DEVELOPMENT AND	89		
	OP	OPERATIONS					
	4.1	Quest	ionnaires A	Analysis	89		
		4.1.1	Backgrou	ind	89		
		4.1.2	Inventory	v System	92		
	4.2	Entity	-Relations	hip Diagram (ERD)	97		
		4.2.1	Entities		97		
		4.2.2	Attribute	S	97		
		4.2.3	Relations	hips	100		
			4.2.3.1	One-to-One Relationships	100		
			4.2.3.2	One-to-Many Relationships	101		
			4.2.3.3	Many-to-Many Relationships	102		
		4.2.4	Develope	ed Entity-Relationship Diagram	103		
			(ERD)				
	4.3	Datab	ase Manag	gement Inventory System	104		
		Prototype Operation					
		4.3.1	Tables		104		
		4.3.2	Relations	hips	105		
		4.3.3	Queries		106		
			4.3.3.1	Choose Records and Perform	107		
				Calculation			
			4.3.3.2	Create Forms based on a	108		
				Query and Make Table			
				Changes			
			4.3.3.3	As a Source of Data for Other	109		
				Queries (Subquery)			
		4.3.4	Forms		110		
		4.3.5	Reports		111		
		4.3.6	Macros		111		
		4.3.7	Prototype	e Operation	112		
		4.3.8	Security	Mechanisms	121		
			4.3.8.1	Password	121		
			4.3.8.2	Startup Options	121		

5	CONCLUSION AND RECOMMENDATIONS		
	5.1 Summary	124	
	5.2 Recommendations	125	
	5.3 Conclusion	125	

REFERENCES

127

122

APPENDICES A – E 129 – 154

LIST OF TABLES

TABLE	TITLE	PAGE
NO.		
2.1	Table of Symbologies	48
2.2	TrueLine Construction System's Descriptions	54
4.1	Importance Level of Data Accuracy in a Database	95
4.2	Respondent's Knowledge about Bar Code System	95
4.3	Needs of Systematic Database Management Inventory System at	96
	the Spare Parts Store, LMD	
4.4	Characteristics Needed in the Systematic Database Management	96
	Inventory System at the Spare Parts Store, LMD	

LIST OF FIGURES

FIGURE NO.	TITLE	PAGE
2.1	File-Based Processing	7
2.2	Database Processing	13
2.3	Three Record Types in a 'Flat File' Student Registration	17
	System	
2.4	Three Record Types in a Database Student Registration	17
2.5	A Personnel Database	18
2.6	DBMS Environment	20
2.7	DreamHome Hardware Configuration	21
2.8	Conceptual Database Design Phase	30
2.9	Logical Database Design Phase	31
2.10	Physical Database Design Phase	32
2.11	FM Components	34
2.12	Linear Symbology	45
2.13	2D Stacked Symbology	45
2.14	2D Matrix Symbology	46
2.15	Composite Symbology	46
3.1	Research Methodology Chart	58
3.2	Deriving ER Data Model Components	61
3.3	Entities	62
3.4	Attributes	62
3.5	One-to-One Relationship	64
3.6	One-to-Many Relationship	65
3.7	Many-to-Many Relationship	65
3.8	The Microsoft Access Window	83
3.9	The Seven Steps of Design Flowchart	84
3.10	Code 39 – Full ASCII	86

4.1	Respondent's Role in the Company	90
4.2	Respondent's Frequency Dealings with the Spare Parts	91
	Store, LMD in a Week	
4.3	Respondent's Types of Dealings with the Spare Parts	91
	Store, LMD	
4.4	Respondent's Problems Dealings with the Spare Parts	92
	Store, LMD	
4.5	Manual File System Currently Used	93
4.6	Current Inventory System Problems at the Spare Parts	94
	Store, LMD	
4.7	Data Redundancy and Inconsistent Data	94
4.8	Attributes – Supplier	98
4.9	Attributes – Supplier Specialization	98
4.10	Attributes – Spare Parts	99
4.11	Attributes – Machineries	99
4.12	Attributes – Transaction	99
4.13	Attributes – Transaction Info	99
4.14	Supplier – Supplier Specialization Relationship (One-to-	100
	One Relationship)	
4.15	Supplier – Spare Parts Relationship (One-to-Many	101
	Relationship)	
4.16	Spare Parts – Transaction Relationship (One-to-Many	101
	Relationship)	
4.17	Transaction Info – Transaction Relationship (One-to-	102
	Many Relationship)	
4.18	Spare Parts – Machineries Relationship (Many-to-Many	102
	Relationship)	
4.19	Improved Spare Parts – Machineries Relationship	103
4.20	Developed ERD	103
4.21	Table Design Window	104
4.22	Table Machineries	105
4.23	Involved Relationships	106
4.24	Developed Queries List	107

4.25	Query Design Window	107
4.26	Query MM	108
4.27	Form Milling Machine	109
4.28	Query Transaction	109
4.29	Query Current Balance Spare Parts Design View	110
4.30	Developed Forms List	110
4.31	Data Mode	111
4.32	Macro for Password Application	112
4.33	Prototype Operations Flow Chart	113
4.34	Startup Options	122
4.35	Bar Code Design	123
4.36	Bar Code Catalogue Sheet	123

xviii

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
А	Questionnaires	121
В	Microsoft Access (Tables)	141
С	Microsoft Access (Query)	145
D	Microsoft Access (Reports)	149
E	Bar Coding: Catalogue Sheet	153

CHAPTER 1

INTRODUCTION

1.1 Background

According to Concise Oxford Dictionary (COD10) on CD-ROM Tenth Edition, 'data' means 'the quantities, characters, or symbols on which operations are performed by a computer'. Meanwhile, 'database' means 'a structured set of data held in a computer'. Connolly and Begg said that 'database' is 'a shared collection of logically related data (and a description of this data), designed to meet the information needs of an organization'. They also said that 'Database Management System (DBMS)' means a software system that enables users to define, create, and maintain the database and provides controlled access to this database'. According to Concise Oxford Dictionary (COD10) on CD-ROM Tenth Edition, 'inventory' means 'a complete list of items such as goods in stock or the contents of a building'. Meanwhile, 'system' means 'a complex whole; a set of things working together as a mechanism or interconnecting network.

Inventory control systems require the frequent identification of things to the computer. For instance, to record the movement of a pallet of material from one point in the facility to another, three identifications must be made: the material being moved, its origin and its destination. In large warehouses and distribution centers, tens of thousands of identifications can be needed each day. Automatic identification is faster than manual identification and keying. It also can save labour cost (Young J.B., 1991).

Nowadays, bar coding is the most widely automatic identification technology applied. Bar code technology is well developed, the equipment required to print and read bar codes is inexpensive, and the resulting reliability and accuracy are extremely high. A bar code is a series of light and dark printed bars. The pattern of the bars is pre-established to represent alphabetic and numeric characters in any of a number of standard schemes. When a laser beam is run across the bars at a constant velocity, light is reflected from the bars and spaces in a series of pulses that can be electronically detected and converted into the appropriate characters.

Because bar code symbols are printed, they are not easily updated. Bar codes, therefore, are most applicable when the information to be encoded does not change rapidly. Things that can be readily identified with bar codes including products (a bar-coded label might be attached to a pallet or preprinted on the product or its carton), storage locations (often labels are attached to the rack or bin), employees (the bar code is usually on an ID badge or card), vehicles, tote pans, etc. in all these cases, the information contained in the bar code is constant and unvarying; it serves to identify one particular item or kind of item among many similar ones without doubt and with only a small chance for error.

Young (1991) said that in early 1950s or late 1940s, the first large-scale application was in railroad car identification. A program was sponsored by the American Association of Railroads in 1960, with Sylvania Manufacturing (now a part of GTE) producing the equipment. The railroad car identification project ultimately failed because the bar codes were not able to withstand the wear and lack of maintenance that railroad equipment is subjected to. The idea, however, was a good one and made a good test bed for bar coding as a concept. Industry has gained a great deal as a result.

In 1970, the Uniform Code Council was formed and the Universal Product Code (UPC) became a reality. It is intended specifically for retail sales applications but has possible uses wherever retail products are handled. Bar code development accelerated in the 1970s and 1980s. In 1974, the Code 39 was developed. In 1982, the Department of Defense adopted bar coding standards. In 1983 the American National Standards Institute accepted bar coding. And since that time developments have occurred at an ever-accelerating pace (Young J.B., 1991).

1.2 Problem Statement

Most businesses require a continuing flow of materials and supplies. To avoid disruption of that flow, most make an effort to keep track of the amounts of each item on hand. In small businesses with small amounts of inventory, it is often sufficient for a human to remember approximate inventory records. When the human thinks that supplies may be getting low, he or she can walk to the stock room and check. Even a moderately industrious person can effectively control several dozen items this way.

However, as the amount of inventory increases and as the rate of material flow into and out of stock increases, it becomes more and more difficult for a human to remember even approximate inventory balances. Some form of record keeping is needed to supplement the human mind.

In most businesses it is normal for several people to be involved in the keeping of inventory records. Often the clerical job of doing the arithmetic and writing the results on cards is separated from the material handling jobs of placing items on shelves, removing them when they are needed, and performing occasional counts to verify the recorded balance. In a typical manual system, material handlers move material into and out of the warehouse and create written records (called transactions) as they work. Periodically, the transactions are turned over to a clerk for posting to ledger cards. When things go right, manual inventory records can be an efficient way for businesses to assure that they have the materials they need. Unfortunately, this method of keeping inventory records, simple as it may seem, is vulnerable to a long list of possible problems (Young J.B., 1991).

The next step up from clerk and cards system is computerization in a batch environment. Batch inventory systems simply automate the clerical portion of the inventory system. Material handlers still manually record the receipt and shipment of material for central processing. But the written transactions are keyed and electronically posted to records inside a computer. There is little or no change in data gathering and material handling procedures.

Independent data collected usually keyed in by human actions which may cause errors. It is important that the information be removed from the control of humans to the extent possible to eliminate errors. Bar code error rates are very low, and they make it impossible, for all practical purposes, to cheat. Bar coding, therefore, is an effective way of gathering independent data.

Projek Penyelenggaraan Lebuhraya (PROPEL) Berhad currently have 42 machineries to support their highway project over Malaysia which is covers from North to South. All these machineries handled under Logistics and Machineries Department (LMD). They maintain these machineries more than 50 percent by their own. To support the maintenance, they have their own spare parts store which is located at Southbound Dengkil Rest and Service Area (RSA), ELITE Highway. With the current situation at the spare parts store, the department uses the combination of manual file system and file-oriented system for their current inventory system to manage about 260 items of spare parts, it is necessary to develop a new inventory system to eliminate current problems. The problems facing with current inventory system are data redundancy, difficult to update and maintain, inconsistent data, bad security, difficult to impose constraints on various data file and difficult to backup.

1.3 Aim and Objectives of Research

The aim of this research is to develop the inventory system that can be applied in construction industry.

The objectives of this study are:

- i. to identify the problems involved in the implementation of the current inventory system at spare parts store, LMD, PROPEL Berhad;
- to identify the needs of systematic inventory system at spare parts store, LMD, PROPEL Berhad;
- iii. to develop the prototype of the inventory system that can be implemented at spare parts store, LMD, PROPEL Berhad.

1.4 Scope of Research

This research was done to provide Database Management Inventory System for the spare parts store at LMD, PROPEL Berhad. It involved operating data in the spare parts store which are capturing, validation, sorting, classifying, calculation, summarizing, storing, retrieving, reproducing and communicating. The system uses bar code system and Microsoft Access 2002.

1.5 Importance of Research

This research was made to prepare the Database Management Inventory System for the spare parts store at Logistics and Machineries Department (LMD), PROPEL Berhad. This research could provide useful inventory system as the outcome of the research for the spare parts store.

REFERENCES

- Burke H. E. (1984). Handbook of Bar Coding Systems. USA: NCR Corporation.
- Connolly T. M. and Begg C. E. (1999). *Database Systems: A Practical Approach to Design, Implementation and Management.* USA: Addison-Wesley.
- Gaydasch A. (1988). Effective Database Management. USA: Prentice Hall, Inc.
- H. Li et. al. Application of integrated GPS and GIS technology for reducing construction waste and improving construction efficiency. Automation in Construction (2005) 323 – 331.
- M. -Y. Cheng and J. –C. Chen. *Integrating barcode and GIS for monitoring construction progress*. Automation in Construction (2002) 23 33.
- Microsoft Corporation. (1992-2001). Microsoft ® Access 2002. Microsoft Corporation.
- Oxford University Press. (2001). Concise Oxford Dictionary (COD10) on CD-ROM. Microsoft Corporation.
- Ponniah P. (2003). Database Design and Development: An Essential Guide for IT Professionals. USA: John Wiley & Sons, Inc.
- Prague C. N. and Irwin M. R. (1997). Access 97 Bible. USA: IDG Books Worldwide, Inc.
- Seagull Scientific, Inc. (1992-2003). *BarTender: Label Printing Software*. Microsoft Corporation.

- Smith P. R. et. al. (2001). Facilities Engineering and Management Handbook: Commercial, Industrial and Institutional Buildings. USA: McGraw-Hill.
- Teicholz E. (1992). *Computer-Aided Facility Management*. USA: McGraw-Hill Companies.
- Teicholz E. (2001). Facility Design and Management Handbook. USA: McGraw-Hill.
- Thomkins J. A. and White J. A. (1984). *Facilities Planning*. USA: John Wiley & Sons, Inc.
- Young J. B. (1991). *Modern Inventory Operations: Methods for Accuracy and Productivity*. USA: Van Nostrand Reinhold.
- Z. Chen, H. Li, C.T.C. Wong, *An application of bar-code system for reducing construction wastes*, Automation in Construction (2002) 521 533.