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ABSTRAK 

 

 

 

 

 Pengelasan merupakan satu salah satu bidang kajian dan  aplikasi  rangkaian 

neural yang giat dijalankan. Peta swa-organisasi (PSO) ialah rangkaian neural yang 

mengaplikasikan pembelajaran tanpa seliaan telah membuktikan kemampuannya 

dalam menyelesaikan masalah pengelasan dan pengecaman pola. PSO tidak 

memerlukan sebarang pengetahuan mengenai corak taburan pola seperti kaedah-

kaedah statistik yang sedia ada. Di dalam kajian ini, kaedah pembelajaran multiaras 

telah dicadangkan untuk diimplentasikan ke atas rangkaian neural PSO. Keupayaan 

dan keberkesanan kaedah ini dalam menyelesaikan masalah berkaitan pengelasan 

pola dianalisa. Keadah pembelajaran PSO yang dicadangkan dan kaedah 

pembelajaran PSO piawai dianalisa dengan menggunakan beberapa jenis sukatan 

jarak atau ketakserupaan yang digunakan bagi mengukur keserupaan antara pola. 

Penilaian dibuat terhadap kualiti maklumat yang dipersembahkan di atas peta output 

yang dihasilkan melalui proses pembelajaran menggunakan beberapa jenis sukatan 

ketidakserupaan ini. Hasil yang diperolehi melalui kedua-dua kaedah pembelajaran 

ini digunakan untuk membuat peramalan dan pengelasan ke atas sampel pola yang 

baru. Eksperimen ini dijalankan bertujuan untuk membuat perbandingan terhadap 

keupayaan algoritma PSO menggunakan kaedah pembelajaran multiaras dengan 

pembelajaran piawai. Keberkesanan kedua-dua kaedah ini dapat dibuktikan dengan 

mengimplementasikannya ke atas lima set data.  Hasil kajian menunjukkan bahawa 

kaedah yang dicadangkan berupaya menjadi rangka alternatif bagi masalah 

pengelasan data. Ini adalah ekoran daripada keupayaannya memberi persembahan 

yang baik dari aspek pengelasan data dan mengurangkan masa pemprosesan 

berbanding pembelajaran PSO piawai terutamanya bagi data yang bersaiz kecil dan 

sedarhana. Walaupun begitu, bagi masalah pengelasan yang melibatkan data yang 

bersaiz besar, ia masih didominasi oleh kaedah pembelajaran PSO piawai. 
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ABSTRACT 

 

 

 

 

 Classification is one of the most active research and application areas of 

neural networks. Self-organizing map (SOM) is a feed-forward neural network 

approach that uses an unsupervised learning algorithm has shown a particular ability 

for solving the problem of classification in pattern recognition. Classification is the 

procedure of recognizing classes of patterns that occur in the environment and 

assigning each pattern to its relevant class.  Unlike classical statistical methods, SOM 

does not require any preventive knowledge about the statistical distribution of the 

patterns in the environment. In this study, an alternative classification of self 

organizing neural networks, known as multilevel learning, is proposed to solve the 

task of pattern separation.  The performance of standard SOM and multilevel SOM 

are evaluated with different distance or dissimilarity measures in retrieving similarity 

between patterns. The purpose of this analysis is to evaluate the quality of map 

produced by SOM learning using different distance measures in representing a given 

dataset. Based on the results obtained from both SOM learning methods, predictions 

can be made for the unknown samples. This study aims to investigate the 

performance of standard SOM and multilevel SOM as supervised pattern recognition 

method. The multilevel SOM resembles the self-organizing map (SOM) but it has 

several advantages over the standard SOM. Experiments present a comparison 

between a standard SOM and multilevel SOM for classification of pattern for five 

different datasets. The results show that the multilevel SOM learning gives good 

classification rate, however the computational times is increased compared over the 

standard SOM especially for medium and large scale dataset. 
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

We are living in a world full of data. Every day, people encounter a large 

amount of information and store or represent it as data, for further analysis and 

management. One of the vital means in dealing with these data is to classify or group 

them into a set of categories or clusters. Actually, as one of the most primitive 

activities of human beings, classification plays an important and indispensable role in 

the long history of human development. In order to learn a new object or understand 

a new phenomenon, people always try to seek the features that can describe it, and 

further compare it with other known objects or phenomena, based on the similarity or 

dissimilarity, generalized as proximity, according to some certain standards or rules.  

 

 

Artificial neural networks (ANNs) are simple computational tools for 

examining data and developing models that help to identify interesting patterns or 

structures in the data. The data used to develop these models is known as training 

data. Once neural network has been exposed to the training data, and has learnt the 

patterns that exist in the data, it can be applied to new data thereby achieving variety 

outcomes.  Neural networks can be used to 

 

• Learn to predict future events based on the patterns that have been observed in 

the historical training data. 
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• Learn to classify unseen data into pre-defined groups based on characteristics 

observed in the training data. 

• Learn to cluster the training data into natural groups based on the similarity of 

characteristics in the training data. 

 

 

Recent research activities in ANN also have shown that ANN have powerful 

classification (Dorothea Heiss, C. and Bajla I., 2005) and pattern recognition (Xin-

Hua, S. and Hopke, P.K., 1996) capabilities. Inspired by biological system, ANN is 

able to learn from and generalized from experienced. ANN explore many competing 

hypotheses simultaneously using massively parallel network composed of non linear 

relatively computational elements interconnect by links with variable weights. It is 

this interconnected set of weights that contains the knowledge generated by the ANN 

(Adya, M. and Collopy, F., 1998). 

 

 

ANNs can be divided into two learning categories: supervised and 

unsupervised (Smith, K. A., 2002). In unsupervised learning, a desired output result 

for each input vector is required when the network is trained. An ANN of the 

supervised learning type, such as the multi-layer perceptron (MLP), uses the target 

result to guide the formation of the neural parameters. It is thus possible to make the 

neural network learn the behavior of the process under study. In contrast with 

unsupervised learning, the training of the network is entirely data driven, and no 

target results for the input data vectors are provided. An ANN of unsupervised 

learning type, such as the self-organizing maps (SOM), can be used for clustering the 

input data and find features inherent to the problem. 

 

 

Basically, classification systems are either supervised or unsupervised, 

depending on whether they assign new inputs to one of a finite number of discrete 

supervised classes or unsupervised categories.  Hence, the context of this study is 

limited to the evaluation of SOM algorithm performance in classification task. 
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1.1 Problem Background 

 

 

Kohonen SOM networks have been successfully applied as a classification 

tool to various problem domains.  The self-organizing map (SOM) network is a 

special type of neural network that can learn from complex, multi-dimensional data 

and transform them into visually decipherable clusters. The theory of the SOM 

network is motivated by the observation of the brain operation. Various human 

sensory impressions are neurologically mapped into the brain such that spatial or 

other relations among stimuli correspond to spatial relations among the neurons are 

organized into a two-dimensional map.  The main function of SOM networks is to 

map the input data from an n-dimensional space to a lower dimensional (usually one 

or two-dimensional) plot while maintaining the original topological relations. The 

physical location of points on the map shows the relative similarity between the 

points in the multi-dimensional space. 

 

 

Self organizing maps (SOMS) are a form of competitive neural network 

(Kohonen, T., 1998), which transforms highly dimensional data onto a two 

dimensional grid, while keeping the data topology by mapping similar data items to 

the same cell on the grid (or to neighboring cells), using some form of distance 

measure usually Euclidean distance.  

 

 

In other neural network models, all neurons adjust their weights in response 

to a training presentation while in competitive learning only one or few neurons are 

allowed to adjust their weights. Therefore, this ability made Kohonen networks to 

become more resource efficient compared to other networks. Moreover, the 

unsupervised training of Kohonen network does not require target output for training. 

The network is able to learn the pattern of data itself without knowing all the output. 

The nodes in the network converge to form clusters to represent groups of entities 

with similar properties. The number and composition of clusters can be visually 

determined based on the output distribution generated by the training process. 
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Besides unsupervised training, SOM is able to train in supervised manner 

(Lee T. E., 2005). This method is normally applied if the target outputs have been 

known in priori. The flexibility and ability of SOM has gained interest of the author 

to further research and apply the technique in variety of tasks such as classification. 

 

 

ANN implementations that based on competition method often use some 

means of calculating distance between input vectors and weights (Gopalan, A. and 

Titus, A. H., 2003).  Clearly, an important part of this process is the comparison of 

the input vector elements and weight vector elements. Mathematically, this 

comparison is achieved through the computation of a distance between vectors; 

vectors with the smallest distance are most similar. The goal is to minimize the 

distance between the stored weight vectors and the input vectors.  Term distance is 

also used to convey the idea of dissimilarity. Naturally, this distance should only be 

applicable to real-valued patterns (Lourenço, F et al., 2004). None of the distance 

measure, including Euclidean appropriately handle non-continuous input attributes. 

 

 

Although the term similarity is often used, dissimilarity corresponds to the 

notion of distance, small distance means small dissimilarity, and large similarity 

(Veltkamp, R. C., 2001). So when comparing patterns, it is very useful if they are 

represented in a space that has a metric. The success of unsupervised algorithms, 

such as the SOM and clustering methods, depends crucially on the metric, the 

measure of the distance between the objects of interest. The metrics, on the other 

hand, depends on which kinds of variables selection and feature extraction (Kaski, S. 

et al., 2001) 

 

 

The choice of metric for neural network that implements competitive learning 

rule such as SOM is directly connected to the representation of data and it crucially 

influences the efficiency, accuracy and generalization ability of the results. 
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They are various types of distance measures which all define different kinds 

of metric space. Each method has its own properties and generally gives different 

perspectives of the data turning the matter of choice not trivial (Meyer, 2002). The 

most commonly used methods for calculating distance in SOM learning is Euclidean 

distance measure that considers each observation dimension with the same 

significance whatever the observation distribution inside classes (Fessant, F et al. 

2001).  

 

 

Among all distance measures, some have very similar behaviors in similarity 

queries. others may behave quite differently (Qian, G. et al., 2003). For example, 

Bray Curtis distance and Canberra distance have favorable advantage where both 

measures perform their own standardization. Usually the method is chosen based on 

which distance measure that gives the 'best' results in terms of some error function or 

ability to classify/cluster certain data points.  Changing the distance measure can 

have a major effect on the overall performance of a classification system.  

 

 

 One way of comparing distance measures is to study their retrieval 

performance on a particular application (Qian, G. et al., 2002). Choosing a particular 

distance measures also concern on the impact of computational overhead on system 

performance (Qian, G. et al., 2003). Understanding the relationship among distance 

measures is helpful in choosing a proper one for a particular application. 

 

 

Fessant, F et al. (2001) compare the performance of supervised self-

organizing maps designed with different distance measures: Euclidean distance and 

Mahalanobis distance on data classification application. Concerning on classification 

problems, Mahalanobis distance turns out to be more effective concerning 

classification problem with 92.8% classification accuracy compared to Euclidean 

distance with 94.1%. This is because of the large range of data components 

variations. In fact, the giving up of Euclidean distance is advisable when the 

variances of input vectors components are highly different.  
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In Cure, J. D. and Hill, J. J. (1981) paper, proposed a scheme where both the 

Euclidean distance measure and a simpler unweighted city-block distance are utilized 

together for improving the classification speed of clustering algorithm which used a 

Euclidean distance metric. The proposed scheme described, allow the algorithm to 

decide whether the classification of each pattern vectors is to be achieved by the 

computationally slow Euclidean distance or the faster city-block distance. 

 

 

Keeratipranon, N. and Maire, F. (2005) also highlighted the differences 

between three natural similarity measures for bearing vectors. The researches has 

demonstrated the clear superiority of the Mahalanobis distance for localization based 

on bearings problems with reaches the best classification accuracy of 99.32% 

compared to Euclidean distance achieves 92.17% classification accuracy and Naive 

Bayes distance with 97.14%. 

 

 

Huang, Y. et al. (1998), evaluate the performance of the self-organizing maps 

(SOMs) with different distance measures; Euclidean distance and Bhattacharyya 

distance in retrieving similar images when a full or a partial query image is presented 

to the SOM.  The results show that the Bhattacharyya distance is superior to 

Euclidean distance with 98% of retrieval rates compared to Euclidean distance which 

is 95%. The standard Euclidean distance not yield the best results in retrieving partial 

images based on their histograms due to long time needed to compute color 

histograms compared to Bhattacharyya distance.  

 

 

The SOM as conceived should live the input patterns space, i.e. the codebook 

patterns should lie in the space of the input patterns. The original SOM algorithm 

was defined for real valued patterns. However, when using binary input patterns and 

as consequence of computation, the codebook patterns will assume non-binary (i.e., 

real) values. To keep applying the binary similarity measures we have to envisage 

some way to convert the real valued pattern to a binary one in order to compute the 

best matching unit (BMU). However, for binary data the usual Euclidean distance 
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can be replaced by binary similarity measures that take into account possible 

asymmetries and therefore provide a different point of view for looking at the data.  

 

 

Fernando, L. et al., (2002) in their study, they had proposed two SOM 

architecture that approaches to the BMU problem, the “hard” logic and the dot 

product. When using “hard” logic and the dot product approach, BMU can be 

computed using other types binary similarity measures instead of Euclidean distance 

especially when dealing with binary patterns. In the context of SOM it is clear that 

the range of variation allowed by Euclidean distance cannot be matched by binary-

based measures. This means that at this time it is not realistic to use binary-based 

similarity measures to produce “fine-resolution” clustering, although most of the 

measures used revealed the ability to distinguish major clusters. In their work, they 

have showed that binary-based similarity measures might provide a different insight 

into data, effectively revealing interesting patterns and relations in the data. 

 

 

Based on the previous research, has gained interest for the accomplishment of 

this study in order to evaluate and compare the performance of SOM using different 

distance measures in classification tasks. From these past researches also shows that, 

there is no highly difference in the performance of SOM in terms of its classification 

accuracy when different distance measures is employ to this algorithm. For this 

reason, a new learning methodology is developed to be implemented in SOM 

algorithm to see whether it able to enhanced the performance of SOM in 

classification tasks. This new proposed method is known as multilevel SOM 

learning.  

 

 

By using this approach, original SOM algorithm is divided to two learning 

level, where each level will implement different distance measures during the 

learning process instead of one measures as in original SOM algorithm. Hence, in 

this study, five types of distance such as Euclidean distance, Manhattan distance, 

Bray Curtis distance, Canberra distance and Chebyshev distance was evaluated and 

their performance in SOM learning process was investigated. The new proposed 
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multilevel learning method is then analyzed to find out whether it can improve the 

performance of SOM in pattern classification task. The performance of new 

proposed SOM-based classification system is evaluated in terms of classification 

accuracy and computation times. 

 

 

 

 

1.2 Problem Statements 

 

 

The choice of metric for neural network that implements competitive learning 

rule such as SOM is directly connected to the representation of data and it crucially 

influences the efficiency, accuracy and generalization ability of the results. Euclidean 

distance is commonly used metric in SOM application. Besides Euclidean distance, 

there are different types of distance measures; which all define different kinds of 

metric space. From previous studies shows that, by employing different distance 

measures in SOM has affect the performance of this network in classification 

context. So, this study attempt to evaluate the performance of SOM using different 

distance measures in several real world classification problems. The hypothesis of 

the study can be stated as: 

 

 

“Could the selection of distance measures used to train the SOM can affect the 

performance of SOM?” 

 

 

Based on past researches (Huang, Y. et al., 1998), (Fessant, F et al., 2001) 

and (Keeratipranon, N. and Maire, F., 2005), shows that although the used of 

different distance measures has affect the SOM performance in classification tasks 

but the results obtained is nearly equivalent and not quite promising. For this reason, 

an enhancement learning methodology for SOM algorithm is proposed that is known 

as multilevel SOM learning in order to find out whether it can give better 
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improvement on SOM classification results. The hypothesis for this study can be 

stated as: 

 

 

“Could multilevel learning approach used in Kohonen Self-Organizing Maps (SOM) 

neural network enhanced the accuracy of classification result?” 

 

 

 

 

1.3 Project Aim 

 

 

The aim of this study is to apply multilevel learning approach in Self-Organizing 

Map (SOM) algorithm. This approach is evaluated and analyzed to determine weather 

it can improve SOM learning performance in terms of its capability to produce the 

accurate classification result in less computation times. Further more, different types 

of real-valued dataset are used to represent the classification problem that is going to 

be solved using SOM algorithm designed with multilevel learning approach.  

 

 

 

 

1.4 Objectives Of The Project 

 

 

The objectives of the study are outlined as below: 

 

1. To propose multilevel learning methodology in SOM algorithm 

known as multilevel SOM. 

 

2. To design and develop standard SOM and multilevel SOM model 

which uses various distance measures. 
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3. To evaluate and compare the learning and classification performance 

of standard SOM models and multilevel SOM models.  

 

 

 

 

1.5 Project Scopes 

 

 

Below defined the scope of the study, which involved several areas: 

 

1. Five types of distance measures are employed in SOM algorithm.  

The distance measures are Euclidean Distance, Manhattan Distance, 

Bray Curtis distance, Canberra distance and Chebyshev distance. 

 

2. These algorithms are tested using real-valued data set.  

Four set of universal data being used are Iris, Wine, Glass, Diabetes 

and Pendigits. 

 

3. The programs are built on a Windows environment using Microsoft 

Visual C++ 6.0 programming language. 

 

 

 

 

1.6 Significance Of The Project 

 

 

The study investigates the capabilities of multilevel learning method used in 

Self-Organizing Maps (SOM) to perform in pattern classification tasks. The 

performance of standard SOM and multilevel SOM trained using various distance 

measures such as Euclidean distance, Manhattan distance, Bray Curtis distance, 

Canberra distance and Chebyshev distance are evaluated and compared. The 

performance of SOM which employ multilevel learning approach is evaluate to 
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examine whether this new proposed method is able to give better performance than 

the standard SOM in terms of classification accuracy and computation time.  

 

 

 

 

1.7 Organization Of The Report 

 

 

This report consists of four chapters. Chapter 1 presents the introduction of 

the study. The remainders of this report are structured as follows. Chapter 2 covers 

the literature review of this project, which is divided into 4 parts. The first part, recall 

the basic concepts of SOM network, mainly focused on the architecture and training 

particular processes in Kohonen Self-Organizing Maps (SOM). Next, four types of 

distance measures will be described and their performance differences also 

discussed. A review on relevant and related literature on classification using SOM 

algorithm will be presented. Chapter 3 provides the methodologies in terms of data 

and classification techniques used in this study. Chapter 4 presents the experimental 

result of this project, where the results shows the performance of standard SOM and 

multilevel SOM trained using Euclidean distance, Manhattan distance, Bray Curtis 

distance, Canberra distance and Chebyshev distance when it tested using the dataset 

of real world classification problems, which is taken from universal data. Finally, 

suggestion of future research direction and the conclusion for this study are given in 

Chapter 5. 
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