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ABSTRACT 

 

 

 

Benzoylation of biphenyl with benzoyl chloride is an important acylation 

reaction, producing monosubstituted product, 4-phenyl benzophenone (4-PBP) and 

disubstituted product, 4, 4’- dibenzoylbiphenyl (4, 4’-DBBP). 4, 4’-DBBP is a 

monomer used as a component in emitting layer in polymer light emitting (PLED) 

devices. The objective of this study is to synthesize and characterize a highly active 

sulphated AlMCM-41 acid catalyst by enhancing its acidity through sulphation. 

Firstly, the AlMCM-41 with various SiO2/Al2O3 ratios was prepared by direct 

synthesis, followed by conversion to H-AlMCM-41 via ion exchange of NaAlMCM-

41 with ammonium nitrate. Finally, sulphated AlMCM-41 was prepared by 

impregnation of sulphuric acid in toluene. The sulphated MCM-41 materials possess 

high surface area (>500 m2/g) and large quantities of Brönsted acid sites after 

characterizing with surface analyzer and pyridine infrared spectroscopy. 27Al MAS 

NMR indicates the presence of octahedrally coordinated extra-framework sulphated 

aluminiums (EFAL) and aluminium sulphate. The Hammett indicators show that the 

acid strength of the sulphated AlMCM-41 materials was stronger than sulphuric acid 

and H-AlMCM-41 because of sulphate groups attached to aluminium atom in 

sulphated AlMCM-41. The results of comparative study on the dibenzoylation of 

biphenyl reaction indicate that only sulphated AlMCM-41 gives both 

monosubstituted 4-PBP and disubstituted 4, 4’-DBBP with the highest activity 

compared to sulphuric acid, H-AlMCM-41 and sulphated amorphous silica.  
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ABSTRAK 
 
 

 

Benzoilasi bifenil dengan benzoil klorida merupakan tindak balas pengasilan 

yang penting, menghasilkan hasil penukargantian mono, 4-fenil benzofenon (4-PBP) 

dan hasil penukargantian dwi, 4, 4’- dibenzoilbifenil (4, 4’-DBBP). 4, 4’-DBBP 

merupakan monomer yang digunakan dalam lapisan pemancaran dalam peranti 

pemancar cahaya polimer (PLED). Objektif kajian ini adalah untuk meningkatkan 

keasidan mangkin yang digunakan dalam tindak balas pemangkinan dwibenzoilasi 

bifenil melalui modifikasi H-AlMCM-41. AlMCM-41 dengan nisbah SiO2/Al2O3 

disintesiskan melalui kaedah sintesis secara langsung, diikuti dengan menukarkannya 

kepada bentuk H-AlMCM-41 melalui penukaran ion menggunakan ammonium 

nitrat. Akhirnya, AlMCM-41 tersulfat disediakan melalui kaedah pengisitepuan 

dengan asid sulfurik dalam toluena. Mangkin AlMCM-41 tersulfat mempunyai luas 

permukaan yang tinggi (>500 m2/g) dan kuantiti tapak asid Brönsted yang banyak 

selepas dicirikan dengan penganalisis permukaan dan spektroskopi inframerah 

piridina. 27Al MAS NMR menunjukkan kehadiran Al tersulfat luar bingkaian yang 

berkoordinatan oktahedra dan aluminium sulfat. Penunjuk Hammett menunjukkan 

bahan MCM-41 tersulfat mempunyai kekuatan asid yang lebih tinggi daripada asid 

sulfurik dan H-AlMCM-41. Keputusan tindak balas dwibenzoilasi bifenil 

menunjukkan bahawa hanya AlMCM-41 tersulfat memberikan hasil penukargantian 

mono (4-PBP) dan dwi (4, 4’-DBBP) dengan keaktifan tertinggi berbanding dengan 

asid sulfurik, H-AlMCM-41 dan silika amorfus tersulfat. 
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CHAPTER 1 

 
 
 
 

INTRODUCTION 

 
 
 
 
1.1 Research Background and Problem Statement 

 
 

Catalyst is defined as a substance that increases the rate of reaction without 

being appreciably consumed in the process [1]. Catalyst increases the reaction rate by 

offering other route of reaction with lower activation energy of the reaction system. 

There are many chemical reactions which need this substance in order to enhance the 

reaction rate. The presence of this substance is essential not only for enhancing 

reaction rate but also decreasing energy consumption and minimizing the waste 

production.   

 

Today, catalysts play a vital role in the chemical industries, with a total 

contribution of ~20% of world GNP [2]. Apart from that, there are approximately 

80% of the industrial reactions such as acylation, oxidation, hydrogenation, 

epoxidation etc. use catalysts. Among the reactions, Friedel-Crafts acylation 

(benzoylation) reaction is of interest in industries due to the importance of preparing 

aromatic ketones as intermediate in the dyes [3], pharmaceutical and fragrance [4] 

industries. An example of benzoylation reaction which has been studied is the 

benzoylation of biphenyl with benzoyl chloride [5-8]. More attention has been 

centered on it because of its applications. The monosubstituted product, 4-

benzoylbiphenyl or 4-phenyl benzophenone (4-PBP) is used in the synthesis of 

antifungal bifonazole agent [7]. The 4-PBP is also an intermediate in the synthesis of 

fructone, an apple scent used in fragrant, detergents [9] and photo initiator [7] whereas 

the disubstituted product, 4, 4’- dibenzoylbiphenyl (4, 4’-DBBP) is used as a 

 1



 2

monomer in producing poly (4, 4’-diphenylene diphenylvinylene) or PDPV, an 

attractive polymer for electroluminescence because it has very high 

photoluminescence efficiency in solid state along with good solubility in common 

organic solvents [10]. As a result, it is used as an emitting layer in polymer light 

emitting (PLED) [11]. 

 

Liquid phase Friedel-Crafts reactions traditionally have been catalyzed by 

strong Brönsted acids such as CF3SO3H, FSO3H, H2SO4 and HF and by soluble Lewis 

acids such as TiCl4, AlCl3 and FeCl3 [12]. These acids are very strong in terms of 

their catalytic activity. Unfortunately, some of the homogeneous catalysts such as 

TiCl4, AlCl3 and FeCl3 are highly sensitive to moisture, corrosive and 

environmentally unfriendly [13]. In industrial processes, the reaction brings another 

disadvantage to this system where it has a difficulty in product purification due to 

production of large amount of side products [14]. Therefore, a demand for searching 

an alternative is a need to overcome this problem. 

 

Recently, the use of solid acid catalysts such as zeolites [3, 4, 7] and 

mesoporous materials [15, 16] has been reported for the acylation reaction. Zeolites 

and mesoporous materials are known for their shape selective properties and they 

have been used widely in a variety of acid and base catalyzed shape selective 

reactions. In addition, these materials are easy to separate from the product, 

environmentally unfriendly, small amount of hazardous corrosive wastes, high 

catalyst reusability, high thermostability, safer and easier to handle [14, 17].   

 

Current research on the production of 4, 4’-DBBP via homogeneous and 

heterogeneous systems is still facing difficulties.  For example, Walczak et al. [15] 

were only able to prepare 4-PBP in 74% of yield by treatment of benzoyl chloride 

with AlCl3 in chloroform at room temperature, followed by addition of biphenyl into 

refluxing solution, Equation 1.1. Another researchers, viz. Han et al. [7] synthesized 

94.2 % yield of 4-PBP by stirring benzoyl chloride with biphenyl and AlCl3 in the 

presence of nitrobenzene at 120 oC, Equation 1.2. 

 

 

 

 2



 3

+ Biphenyl 
oReflux in CHCl3 at 25 C Benzoyl chloride + AlCl3                                                      4-PBP         (Equation 1.1)

                                                   (74%) 
   

 
 

Recently, the first attempt to synthesize 4, 4’-DBBP using H-AlMCM-41 as 

heterogeneous catalyst with 100% selectivity was reported, however with very low 

conversion (0.05%) [5]. According to the researchers, these unsatisfactory results 

might be due to low amount of Brönsted and Lewis acid sites as well as its acid 

strength. In addition, the reaction condition such as effect of temperature, solvent used, 

reactants and catalyst loaded also contribute to these results.  In view from the above, 

it is of importance to (i) develop a new catalyst or modify the existing catalyst in 

order to enhance the amount and the strength of acidity of the materials and (ii) 

improve reaction condition for the selective synthesis of 4, 4’-DBBP. By taking the 

actions suggested, it is expected that the activity of the catalyst will be improved. 

Figure 1.3 shows two possible routes to drive the reaction to obtain targeted product 4, 

4’-DBBP either via direct or consecutive route.  
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Figure 1.1: Two proposed reaction routes: Route1 (direct) and Route 2 (consecutive) 

synthesis of the dibenzoylation of biphenyl using sulphated AlMCM-41 

mesoporous materials and benzoyl chloride. 

+ AlCl3 
oBenzoyl chloride + Biphenyl                                                 4-PBP       (Equation 1.2)

 

Reflux in PhNO2 at 120 C                                                (94.2%)

 3
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1.2 Objectives of Research 

 

The objectives of the research are: 

1. To synthesize and characterize a highly active sulphated AlMCM-41 

heterogeneous acid catalyst.  

2. To relate the acidity to the structural characteristic of the catalyst. 

3. To study the catalytic properties of the developed catalyst in 

dibenzoylation of biphenyl reaction (model reaction). 

4. To study the effect of reaction parameters on the production of 4, 4’-

DBBP.  

 

 

 

1.3 Research Strategies 

 

The flow diagram shown in Figure 1.2 describes about research strategies. 

Generally the studies involve synthesis, modification, catalytic testing and 

optimization. Characterizations are carried out by various techniques as listed. The 

catalytic activity was tested in a model reaction – dibenzoylation of biphenyl reaction. 

The modification, characterization and catalytic activity testing processes were 

repeated until a suitable catalyst was discovered.   

 

 

 

1.4 Scope of Research 

 

The work reported in this study focuses on the synthesis of sulphated 

AlMCM-41 with various of SiO2/Al2O3 ratio using amorphous rice husk ash as silica 

source and sodium aluminate as aluminium source. MCM-41’s template namely 

cetyltrimethyl ammonium bromide (CTABr) was used as structure directing agent. 

The modification was followed by conversion to H-AlMCM-41 via ion exchange of 

NaAlMCM-41 with ammonium nitrate solution followed by calcination and lastly 

impregnated with sulphuric acid in order to obtain sulphated AlMCM-41.  

 4



 

 

5

5

Characterization of each sample was carried out using Fourier Transform 

Infared (FTIR) spectrometer to study the molecular bondings while the crystalinity 

and crystallite size of the samples were analyzed by means of X-ray Diffraction 

analysis (XRD). Furthermore, characterization of the samples was also conducted 

using 29Si and 27Al Magic Angle Spinning NMR (MAS NMR) spectrometers to study 

the silicon and aluminum environments in the structure whereas the textural properties such 

as specific surface area, pore volume, pore diameter and pore wall thickness was measured by 

using  nitrogen gas adsorption-desorption analysis. The thermal stability and volatile 

matter in the MCM-41 samples were determined by utilizing thermogravimetry and 

differential thermal analysis. The acid strength and the type of acid sites were measured 

using Hammett indicators and Fourier Transform Infrared spectroscopy (FTIR) using 

pyridine as the probe base molecule. 

The final part in this study is to test the catalytic capability of sulphated 

AlMCM-41 towards Friedel-craft dibenzoylation of biphenyl with benzoyl chloride as 

the benzoylating agents. The reaction was performed in a batch reactor and the 

products were separated and analyzed quantitatively by gas chromatography (GC) and 

the identification of products were carried out using gas chromatography with mass 

spectrometry detector (GC-MSD). 
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Finish 

MCM-41 materials are characterized to 
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Crystallinity - XRD  

Textural properties (specific surface 

area and pore volume) - N2 adsorption-
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Functional groups - FTIR   

Acidity (type, density and strength) -

Pyridine-FTIR, Hammett indicator 

Thermal stability, volatile matter -

TG-DTA 

Aluminum environment in the 

structure - 27Al MAS NMR 

Silicon environment in the structure -
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Figure 1.2: Flow digram of research strategies. 

Dibenzoylation of biphenyl, a 

model reaction was carried out 

to test the activity of the 

catalysts. 
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various SiO2/Al2O3 ratio 
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Modification of MCM-41

materials 
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