SCHEDULING ON TRANSPORTATION FOR INDUSTRIALIZED BUILDING SYSTEMS

FOONG KOK LI

This project report is submitted as a fulfilment of the requirements for the award of the degree of Master of Science (Construction Management)

> Faculty of Civil Engineering Universiti Teknologi Malaysia

> > APRIL 2006

Dedication

To my beloved father and mother

ACKNOWLEDGEMENT

At first, I would like to express my sincere appreciation to my supervisor, Associate Professor Dr. Abdul Kadir Marsono for his guidance and encouragement. Without his guidance and support, this project would not have been completed.

Other than that, I am also very grateful to my parents and friends for their support and encouragement throughout this project. I would to thank Mr Cheng from Country View Sdn Bhd for giving me the key plan and architectural drawings for the shop houses at Taman Universiti.

ABSTRACT

Now, the construction is facing the challenges from the four main aspects, which are quality, cost, time and safety. However, by implementing the industrialized building system (IBS), all those challenges can be faced easily. In this study, double storey shop houses will be used as a model to illustrate the management of IBS transportation for fabricators. Besides, the number of trucks required each day will be discussed here based on proper scheduling using project management software. Other than that, this study focuses on the scheduling by optimization. This project highlights a proper management of the trucks used in the delivery of IBS components for construction.

ABSTRAK

Kini, industri pembinaan sedang menghadapi cabaran daripada empat aspek iaitu kualiti, kos, masa dan, keselamatan. Namun demikian, melalui pelaksanaan sistem bangunan secara berindustri (IBS), semua cabaran dapat dihadapi dengan mudahnya. Dalam kajian ini, rumah kedai dua tingkat akan digunakan sebagai model untuk mengilustrasi pengurusan bagi pengangkutan IBS untuk pembuat-pembuat IBS. Selain itu, bilangan trak yang diperlukan bagi setiap hari akan dibincangkan bergantung kepada penjadualan yang sistematik dengan penggunaan pengurusan projek perisian. Di samping itu, kajian ini menumpu kepada penjadualan dengan menggunakan kaedah optimum. Projek ini menitikberatkan pengurusan yang sistematik dalam penghantaran komponen IBS untuk pembinaan.

TABLE OF CONTENTS

CHAPTER	TIT	LE	PAGE
	TIT	LE OF PROJECT	i
	DEC	CLARATION	ii
		DICATION	iii
		KNOWLEDGEMENTS	iv
		TRACT TRAK	v vi
	ADS		VI.
CHAPTER I	INT	RODUCTION	1
	1.1	Introduction	1
	1.2	Problem Statement	3
	1.3	Objectives	4
	1.4	Scope of Study	4
	1.5	Significant of the Study	4
CHAPTER II	LIT	ERATURE REVIEW	6
			•

2.1 Definition of Industrialization 6

2	2.2	Charac	eteristics of Industrialization	6
		Proces	S	
2	2.3	Indust	rialized Building Systems	7
		2.3.1	Advantages of Industrialized	8
			Building Systems	
		2.3.2	Limitations of Industrialized	9
			Building Systems	
		2.3.3	Aspects Considered in the	11
			Selection of an Industrialised	
			System	
		2.3.4	Precast Units	12
2	2.4	Materi	als Management	13
2	2.5	Just-in	-time Management	15
		2.5.1	Principles of Just-in-time	15
			Management Philosophy	
		2.5.2	JIT and Lean Production	17
2	2.6	Produc	ction Management	21
		2.6.1	Classification of Inventories	23
		2.6.2	Cost of Keeping Inventory	23
2	2.7	Prefab	rication Planning	24
2	2.8	Transp	ortation of Precast Components	26
		2.8.1	Precast Concrete Handling	28
		2.8.2	Unloading at Site	29
2	2.9	Produc	ction Planning and Control	29
		2.9.1	Process Planning	30
		2.9.2	Loading	30
		2.9.3	Scheduling	31
		2.9.4	Project Planning Methods	32

	2.9.5	Planning in the Delivery and	33
		Erection	
2.10	Facilit	y Management	34
2.11	Quein	g Theory	36
2.12	Optim	ization	40

CHAPTER III METHODOLOGY 43

3.1	Introduction	43
3.2	Selection on Type of Buildings	43
3.3	Determination Location of Study	43
3.4	Data Sources	44
3.5	Determination Location and Number of Shop Houses	44
3.6	Determination of Precast Components	44
3.7	Scheduling Demands for Precast Components	44
3.8	Transportation Scheduling	45
3.9	Analysis	45
3.10	Conclusion	45

CHAPTER IV	RES	ULTS AND ANALYSES	47
	4.1	Introduction	47
	4.2	Problem Definition	47
	4.3	Benefits of Scheduling	48

4.4	Sched	uling Software	49
4.5	Gener	al Description	51
	4.5.1	Description of Site	51
	4.5.2	Description of Fabrication Plant	52
	4.5.3	Description of Shop Houses	52
4.6	Sched	uling Demand at Site	53
	4.6.1	Assumptions	53
	4.6.2	Detail Scheduling of Demands at Site	54
4.7	Transj	portation Scheduling	61
	4.7.1	Assumptions	61
	4.7.2	Detail Scheduling of	62
		Transportation	6.0
4.8	Analy	S1S	69
	4.8.1	Case 1: 50 km Distance	70
		4.8.1.1 Time Estimation	70
		4.8.1.2 Rescheduling (50 km)	73
	4.8.2	Case 2: 100 km Distance	96
		4.8.2.1 Time Estimation	97
		4.8.2.2 Rescheduling (100 km)	99
	4.8.3	Analysis Cases of Transportation Break Down	111
		4.8.3.1 Analysis for Case 100 km	111
		4.8.3.2 Analysis for Case 50 km	114

CHAPTER V CONCLUSION AND SUGGESTION 119

5.1	Introduction	119
5.2	Discussion on the Study	119
5.3	General Conclusion	121
5.4	Suggestions for Future Study	121

REFERENCES 123

APPENDICESAppendix A125Appendix B132Appendix C133Appendix D134Appendix E138Appendix F142

LIST OF TABLES

TABLE NO.	TITLE	PAGE
2.1	Relative Advantage and Disadvantage of	10
	Industrialization Under Various Conditions	
4.1	No of Shop Houses for Each Site	51
4.2	Number of Components for One Shop House	52
4.3	Description of Symbol Used in the Scheduling	54
4.4	Explanation of Symbols in An Example	55
4.5	Assumptions for the Weight of Components	63
4.6	Number of Components per Truck	63
4.7	Time Estimation for 1 st Truck (50 km)	70
4.8	Time Estimation for 2 nd Truck (50 km)	71
4.9	Time Estimation for 3 rd Truck (50 km)	71
4.10	Time Estimation for 4 th Truck (50 km)	72
4.11	Time Estimation for 5 th Truck (50 km)	72
4.12	Time Estimation for 1 st Truck (100 km)	97
4.13	Time Estimation for 2 nd Truck (100 km)	97
4.14	Time Estimation for 3 rd Truck (100 km)	98
4.15	Time Estimation for 4 th Truck (100 km)	98
4.16	Time Estimation for 5 th Truck (100 km)	98
4.17	Time Estimation for 1 st & 2 nd Trucks (Case 1:100	111
	km)	
4.18	Time Estimation for 3 rd & 4 th Trucks (Case1: 100	112
	km)	
4.19	Time Estimation for 1 st & 2 nd Trucks (Case 2: 100	113
	km)	
4.20	Time Estimation for 1 st & 2 nd Trucks (Case 1:50 km)	114

- 4.21Time Estimation for 3^{rd} & 4^{th} Trucks (Case 1:50 km)1154.22Time Estimation for 1^{st} & 2^{nd} Trucks (Case 2:50 km)116
- 4.23 Time Estimation for 1^{st} & 2^{nd} Trucks (Case 3:50 km) 117

LIST OF FIGURES

FIGURE NO	TITLE	PAGE
2.1	Flowchart for JIT Deliveries Without Buffer Stocks	20
2.2	Modified JIT Deliveries With 2 Days' Buffer: Production	21
	to Installation	
2.3	Critical Path Diagram. Numbers Correspond to Events,	33
	and Letters Correspond to Activities and The Time	
	Taken to Complete the Activity	
2.4	Facility Management Overview	35
2.5	Busy Periods, Idle Periods and Interarrival Times	39
2.6	Decomposition of Busy Period Into Sub-busy Periods	39
2.7	Evolution to high-order facility	42
3.1	Research Methodology	46
4.1	Example of Demands Scheduling	55
4.2	Demands at Site 2 (Day 1)	56
4.3	Demands at Site 2 (Day 14)	57
4.4	Demands at Site 2 (Day 25)	58
4.5	Demands at Site 2 (Day 27)	59
4.6	Demands at Site 2 (Day 52)	60
4.7	Demands at Site 2 (Day 69)	61
4.8	Example 1 of Scheduling the Trucks Required	64
4.9	Example 2 of Scheduling the Trucks Required	65
4.10	Example 3 of Scheduling the Trucks Required	66
4.11	Example 4 of Scheduling the Trucks Required	67
4.12	Example 5 of Scheduling the Trucks Required	68
4.13	Example 6 of Scheduling the Trucks Required	69
4.14a	Example 1 of General Scheduling	74

4.14b	Example 1 of Rescheduling	75
4.15a	Example 2 of General Scheduling	76
4.15b	Example 2 of Rescheduling	76
4.16a	Example 3 of General Scheduling	77
4.16b	Example 3 of Rescheduling	78
4.17a	Example 4 of General Scheduling	79
4.17b	Example 4 of Rescheduling	79
4.18a	Example 5 of General Scheduling	80
4.18b	Example 5 of Rescheduling	81
4.19a	Example 6 of General Scheduling	82
4.19b	Example 6 of Rescheduling	82
4.20a	Example 7 of General Scheduling	83
4.20b	Example 7 of Rescheduling	84
4.21a	Example 8 of General Scheduling	85
4.21b	Example 8 of Rescheduling	85
4.22a	Example 9 of General Scheduling	86
4.22b	Example 9 of Rescheduling	87
4.23a	Example 10 of General Scheduling	88
4.23b	Example 10 of Rescheduling	88
4.24a	Example 11 of General Scheduling	89
4.24b	Example 11 of Rescheduling	90
4.25a	Example 12 of General Scheduling	91
4.25b	Example 12 of Rescheduling	91
4.26a	Example 13 of General Scheduling	92
4.26b	Example 13 of Rescheduling	93
4.27a	Example 14 of General Scheduling	94
4.27b	Example 14 of Rescheduling	94
4.28a	Example 15 of General Scheduling	95
4.28b	Example 15 of Rescheduling	96
4.29a	Example 16 of General Scheduling	100
4.29b	Example 16 of Rescheduling a	100
4.29c	Example 16 of Rescheduling b	101
4.30a	Example 17 of General Scheduling	102

4.30b	Example 17 of Rescheduling	102
4.31a	Example 18 of General Scheduling	103
4.31b	Example 18 of Rescheduling	104
4.32a	Example 19 of General Scheduling	105
4.32b	Example 19 of Rescheduling a	105
4.32c	Example 19 of Rescheduling b	106
4.33a	Example 20 of General Scheduling	107
4.33b	Example 20 of Rescheduling	107
4.34a	Example 21 of General Scheduling	108
4.34b	Example 21 of Rescheduling	109
4.35a	Example 22 of General Scheduling	110
4.35b	Example 22 of Rescheduling	110

LIST OF SYMBOLS

ړ	-	Intensity coefficient
ρ	-	Probability
t	-	Time
Y	-	Length of the full busy period
G(y)	-	Busy period distribution
$\overset{{}_\circ}{G}(s)$	-	Moment generating function
f(w)	-	Cost of building a road
W	-	Width
F(w)	-	Capacity
D	-	Minimum capacity
Ν	-	Minimum number of roads
S 1	-	Site 1
S2	-	Site 2
S3	-	Site 3
S4	-	Site 4
SB	-	Short beam
LB	-	Long beam
С	-	Column
()	-	Day

LIST OF APPENDICES

TITLE	PAGE
Architectural drawings for double	125
storey shop houses	
Key plan for Taman Universiti	132
Drawing for double storey shop	133
houses using IBS.	
General Scheduling	134
Rescheduling for 50 km case	138
Rescheduling for 100 km case	142
	Architectural drawings for double storey shop houses Key plan for Taman Universiti Drawing for double storey shop houses using IBS. General Scheduling Rescheduling for 50 km case

CHAPTER I

INTRODUCTION

1.1 Introduction

The construction industry plays a very vital role in the economic growth besides providing basic necessity for everyone. Besides, it also provides various types of job opportunities to the Malaysian. However, due to the advancement in the science and technology, the construction industry now is very competitive and also facing the challenges. Besides, according to the concrete association of India (1973), the use traditional building materials and construction practices has become rather costly due to one or more of the following reasons such as substantial increase in the cost of materials, uneconomical structural designs, slow and laborious process of construction, comparatively shorter life or higher cost of maintenance.

In fact, the construction industry now is unlike the past twenty years ago. Now, the construction industry put more emphasis on the aspects of time, cost, quality and safety. It can be said that each construction process is related to the four aspects as stated earlier. Time is a significant aspect in the construction in which every project should be completed on time or earlier in order to prevent the undesirable losses of money. Therefore, the control of time in each construction process is very important. Other than that, each project now ought to be controlled within the estimated cost. The quality of the construction product is also a common issue that be disputed. In this case, quality control is a very important aspect in this industry. Besides, the construction industry also faces the challenge of safety. For instance, how to prevent accident and implementing safety regulations at site are the issues that always been emphasis on. Those four aspects are the most challenges that construction industry has to face today.

In order to achieve those aspects, the construction method used must progressing. The traditional method of construction that always been adopted in Malaysia is cast-in-situ method. Although this construction practice has been used for a long time, however, it is found that this method still has its own weakness. Hence, a systematic system, which is the industrialized building system (IBS), should be used in the construction industry in Malaysia in order to supplement the traditional method.

IBS or precast concrete has been in the use since the latter part of the 19th century (Joseph J. Waddell, 1974). However, it is seldom been utilized in Malaysia. According to Fazlur R. Khan (1976), the early use precast construction for structural members of multi-storey buildings was mostly dictated by the need for quality control of construction constraints due to extreme bad weather and unusual location of construction. Industrialization of building or 'system building' is a term in the building industry which indicates the industrialized process by which components of a building are conceived, planned, fabricated, transported and erected on site (Syed Mansur Syed Junid, 1986). Generally, by using this system in the construction industry, a lot advantages can be gained compared to the conventional method.

In this rapid development of science and technology era, the demand of houses also quite high and sometimes it cannot fulfil the demands. However, by using the IBS, this problem can directly be solved. It is because with the IBS system, it can help to reduce the time that normally required building a house. It means that the total construction time of a building will become shorter by implementing the IBS.

Other than that, comprehensive prefabricated elements that are produced in the plant considerably reduce both the amount of work on site. Moreover, it also reduces the dependence on the weather and the skill of available labour. Therefore it is no doubt to implement industrialized building system in the construction industry can make the construction faster, economy, and the product of the construction is more quality. Besides, prefabrication also offered a wealth of architectural shapes and finishes. In this paper, the industrialized building system and its transportation used in the shop houses will be discussed.

1.2 Problem Statement

In these few years, the demand for houses and shop houses are quite high. By using the conventional method, the speed of the construction is quite slow. Nowadays, a lot of construction cannot be completed on time as required in the contract document. It can lead losses to the contractors due to the late finish of the construction.

Other than that, by using the conventional method, the quality in the end of the construction is not so good. For instance, after removing of formworks, there are existence of honey comb in the beams and columns. Therefore, industrialized building systems have been introduced in order to solve those problems.

However, by using industrialized building systems, there also some problems exist. For instance, the late delivery of the precast components to the site and as a result, the construction progress is affected. Besides, sometimes the precast components delivered to the site are not in the right quantity or not in the right types of precast components. The fabricator has to redeliver the components to the site. It is waste of time and also money.

In addition, in some cases, the delivery of precast components to the site is too much early. The space at the site is so limited and therefore causing congestion of precast components at site. Moreover, there are high probability that the damages may occur on the precast components if there is no proper storage area for them. All these problems occur are due to the improper management of fabricator who do not have a detail scheduling on it.

1.3 Objectives

The objectives of this master project are:

- To optimize the number of trucks by scheduling it at specific distance and quantity.
- To find out the number of trucks that should be controlled in the condition of break down.
- To introduce a proper management of the delivery of IBS componenet for fabricator.

1.4 Scope of Study

The scopes of this study are:

- Emphasis on the study in shop houses on prescribed IBS building components
- Sites at Taman Universiti, Skudai, Johor.
- Do the scheduling for site demands and rescheduling to optimise the delivery process.

1.5 Significant of the Study

As the construction industry now is facing the challenges of four aspects; time, cost, quality and safety, it is crucial to have a systematic system or method to be used in this industry. In this study, an industrialised building system used in the shop houses will be introduced. Other than that, this study will be a model for the fabricator of the precast components as a guidelines or ideas in order to know how to manage their trucks in the delivery to the site. Besides, this study will show the fabricator how to optimise their schedules in the delivery. The idea of this study of may help the fabricators to prevent unnecessary problems.

In addition, the progress of construction at site will not be affected due to the late problem of delivery in terms of types and quantity. It is because proper scheduling will make the delivery smoothly. Moreover, it is also a way to accomplish the vision of 2020.