

VOT 78094

GENERATIVE REUSE APPROACHES FOR COMPONENT-BASED

SOFTWARE ENGINEERING

(GUNA SEMULA GENERATIF UNTUK KEJURUTERAAN PERISIAN

BERASASKAN KOMPONEN)

DAYANG NORHAYATI ABANG JAWAWI

RADZIAH MOHAMED

SAFAAI BIN DERIS

SHAHLIZA ABD. HALIM

ROSBI BIN MAMAT

RESEARCH VOTE NO:

78094

Department of Software Engineering

Faculty of Computer Science and Information System

Universiti Teknologi Malaysia

2007

 ii

ACKNOWLEDGEMENTS

We would like to extend our appreciation to the Ministry of Higher Education for

funding this project and our acknowledgement to the Research Management Center,

Universiti Teknologi Malaysia for their support in managing this research.

 iii

GENERATIVE REUSE APPROACHES FOR COMPONENT-BASED

SOFTWARE ENGINEERING

(Keywords: Software reuse, generator and software product line)

Generative reuse is an approach in software reuse where it combines reusable part
that not only code but also generic architectures and variations of components for
future customization. Generative reuse via application generator is cost effective to
build when many similar software systems are written or when evolution of software
requires the software to be written and rewritten many times during its lifetime.
Software Product Line (SPL) is a suitable field to implement application generator
where it can help to generate similar systems and also customize variations needed to
the systems functionalities. SPL is a type of reuse where common artifacts can be
shared by similar software or members in the product line. Besides sharing common
features, each member in the product line has significant variations referred as
variability. Variability implementation requires focus on two important issues:
delaying design decision and also ease of changes in software. This study is based on
the initial proposal of two methods: stepwise refinements and separation of concerns,
for the use in generator implementation. Generators with the implementation of these
methods have been reportedly used in various SPL implementations. Based on this
motivation we study the underlying concepts of these methods and the origin of its
idea. We also study the issues and its current implementation in generator. The
results of this research can help designer and researcher who are interested in the
development of application generator in SPL to comprehend the underlying methods
and also its usage in generator.

Key researchers:
Dayang Norhayati Abang Jawawi (Head)

Safaai bin Deris
Rosbi bin Mamat

Radziah Mohamed
Shahliza Abd. Halim

 E-mail: dayang@utm.my
 Tel. No.: 07-5532354
 Vote No.: 78094

 iv

GUNA SEMULA GENERATIF UNTUK KEJURUTERAAN PERISIAN

BERASASKAN KOMPONEN

(Kata kunci: Guna semula perisian, penjana and barisan keluaran perisian)

Guna semula generatif adalah satu pendekatan guna semula perisian di mana
ia menggabungkan bahagian-bahagian boleh guna semula yang bukan sahaja kod
perisian tetapi termasuk juga seni bina generik dan variasi komponen untuk
perubahan perisian akan datang. Guna semula generatif dengan penjana aplikasi
boleh menjimatkan kos bila sistem perisian yang hampir sama perlu ditulis berkali-
kali sepanjang proses pembanguan perisian. Barisan keluaran perisian (SPL) adalah
bidang yang sesuai untuk melaksanakan penjana aplikasi yang mana ia boleh
membantu penjanaan sistem yang serupa dan juga perubahan variasi keperluan untuk
berbagai keperluan sistem. SPL adalah teknik guna semula di mana artifak yang
sama boleh dikongsi oleh perisian yang serupa atau ahli dalam satu barisan keluaran.
Di samping berkongsi ciri yang sama, setiap ahli dalam barisan keluaran mempunyai
variasi bererti yang dipanggil kebolehubahan. Perlaksanaan kebolehubahan
memerlukan fokus kepada dua isu: iaitu menangguh keputusan reka bentuk dan
kemudahan perubahan pada perisian. Kajian ini berdasarkan dua kaedah
pelaksanaan penjana yang sediada iaitu: penghalusan berperingkat dan pemisahan
usaha. Dua kaedah ini telah digunakan dalam pelbagai perlaksanaan SPL, oleh itu ia
memberi motivasi kepada kami untuk mengkaji konsep dasar kepada kaedah-kaedah
ini dan asal usul idea ini. Kami juga mengkaji isu dan perlaksanaannya dalam
penjana. Hasil kajian ini boleh membantu pereka bentuk dan penyelidik yang
berminat dalam pembangunan penjana aplikasi SPL untuk memahami kaedah dasar
dan juga penggunaannya dalam penjana.

Key researchers:
Dayang Norhayati Abang Jawawi (Ketua)

Safaai bin Deris
Rosbi bin Mamat

Radziah Mohamed
Shahliza Abd. Halim

 E-mail: dayang@utm.my
 Tel. No.: 07-5532354
 Vote No.: 78094

 v

CONTENTS

TITLE i

ACKNOWLEDGEMENTS ii

ABSTRACT iii

ABSTRAK iv

CONTENTS v

1. INTRODUCTION

Overview

Background of the Problem

Objectives

Scope of the Study

Report Outline

1

1

2

4

4

5

2. LITERATURE REVIEW

Software Reuse

Component-Based Software Engineering

Generative Reuse

Domain Engineering

Software Product Line

6

6

7

8

11

13

 vi

Related Works

16

3. SOFTWARE PRODUCT LINE VARIABILITY
IMPLEMENTATION METHODS AND ITS APPLICATION IN
GENERATOR IMPLEMENTATION

Introduction

Research Framework

Generator Application and its Architecture

SPL Implementation Method to Handle Variability

State of Art fot the SPL Variability Implementation Methods

Conclusion and Future Work

18

18

19

19

20

21

21

4.

GENERATOR TECHNOLOGIES USING FUNDAMENTAL
METHODS IN SOFTWARE PRODUCT LINE

Introduction

Fundamental Methods in SPL

Review Framework

Discussion

Conclusion and Future Work

24

24

25

25

26

27

REFERENCES 29

APPENDIX A 33

CHAPTER I

INTRODUCTION

1.1 Overview

Software reuse is the process of creating software systems from existing software

artifacts rather than building software systems from scratch. This vision was

introduced by Mc Illroy in 1968. Software reuse is the use of existing software or

software knowledge to construct new software. Reusable assets can be either

reusable software or software knowledge (Frakes and Kang, 2005).

Biggerstaf and Perlis have divided technologies in software reuse into two groups,

the composition based and generation based (Biggerstaff and Perlis, 1989).

Composition based reuse in concrete library has its own drawback in terms of scaling

problem when the software evolve over time. Vertical scaling resulted from the

developer’s tendency to add new requirement to already existing component because

of there is simply lesser code to add in an already existing component and also the

components already exist are free of bugs. This can save a lot of developer’s time but

it will affect the size of the components where it will keep increasing. This scenario

will make it difficult for the component to fit in other application. Another scenario

is horizontal scaling where in order for the components to have high potential to fit in

the target application the developer tends to create variations of the components.

While this horizontal scaling gives the components wider variability for usage, it will

be only marginally reusable and not really fit well in the target application because of

its generic nature (Biggerstaff, 1998). Sources of change stem not only from new (or

2

variant) functional and non functional requirements but also from new version of

computing environment such as tools, operating systems and networks (Jarzabek and

Knauber, 1999). The changes of the component version for each combination of

these variants will make the components grow in size and number. The cumulative

effect of this uncontrolled growth may likely become prohibitive to reuse.

Generative reuse avoids the scaling problem by customizing the components based

on the variant requirements of the product or software system. Application

generators generalize and embody the commonalties and the software systems are

implemented once and then reused each time a software system is built using the

generator (Krueger, 1992). In another field of research initiated by Parnas in 1976,

software is viewed as product line where it arises situations when we need to develop

multiple similar products for different clients, or from a single system over years of

evolution. Members of a product line share many common requirements and

characteristics (Zhang and Yang, 2003). With the use of application generator in the

software product family system, it can maximize the automation of application

development. Given a system specification, generators use a reusable components

derived from Component Based Software Engineering (CBSE) to generate the

concrete system (Czarnecki, 2000).

1.2 Background of the Problem

“Feature combinatorics problem” have the effect of scalability in component library

thus affecting programmers productivity. Batory et al. in 1993 has studied C++ data

structure libraries where features relate to data structure, memory allocation, scheme,

access mode, concurrency etc. Based on the study, features may appear in classes in

many different combinations. As there is need for a unique class for each legal

combination of features, there is also need to develop and maintain a large number of

similar classes. Form the study, (Batory et al., 1993) concluded that in order to have

scalable library, the library must offer much more primitive building blocks and be

accompanied by generators that compose blocks to yield data structures needed by

application programmer (Jarzabek, 2003). The similar problem also being researched

by (Biggerstaff, 1998) where he refers to this problem as the scaling dilemma and he

3

has further categorized the scaling dilemma into two types of scaling, the vertical and

the horizontal scaling.

Software Product Line (SPL) requires generic assets to cover all elements the product

family is built from, and their corresponding composition rules. Clarifying how the

various parts may be combined is a very challenging task. Generic assets in SPL in

SPL differ than the asset of one system in the fact that they embrace common and

variable product aspects. Generic assets can be instantiated, that is, product specific

asset can be derived from them. In order for SPL to handle the variability in its

product the implementation approach in SPL tends to have the same feature

combinatorics and also horizontal and vertical scaling problem (Anastasopoules,

2001).

In generative reuse, candidates are identified and instantiated at the modeling level

rather than at the coding level and all the work necessary to integrate the customized

components code into the application is done automatically by generators. In order to

automate the component assembly, the application generator needs configuration

knowledge in order to map abstract user requirements onto appropriate

configurations of components. Figure 1.1 shows three components which are

essential to implement generative reuse based on (Czarnecki, 1999). They are

problem space, configuration knowledge and solution space.

Figure 1.1: Components essential for generative reuse

Problem space
-domain
specific
concepts
-features

Configuration knowledge
-illegal feature combination
-default settings
-default dependencies
-construction rules
-optimizations

Solution Space
-elementary
components
-maximum
combinability
-minimum
redundancy

4

The three essential components lead to three main challenges generative reuse as

shown in Figure 1.2. The challenges mainly in specification and generator structure

that cover all the three components in Figure 1.1. In order to propose solution for the

challenges two basic questions need to be answered: the architecture of generator and

the methods and mechanism of generator implementation.

Figure 1.2: Challenges in generative reuse

1.3 Objectives

1. To study on the basic architecture of a generator.

2. To study the mechanism of generators implementation.

1.4 Scope of the Study

The scope of this research was limited to the following;

1. This study concentrates on code generation only and human intervention is

still needed in order to execute the code because there will be no compiler

or parser built for the purpose of code execution.

2. This study only considers the use of application generators in Software

Product Line only.

Specification
-Written in
Domain
specific
language

Generator
-Encoding of domain knowledge

-Encoding system building knowledge

-Encoding Configuration knowledge

Target system

-Code of the
system
in targeted
language

Challenges:

-Create domain specific
language for specification
i.e textual or graphical

- Define domain coverage and domain
concept into fix and variable part

- Automation of component assembly
needs configuration knowledge to map
abstract user requirement onto appropriate
component configuration

5

1.5 Report Outline

Chapter II discusses the literature review related to this study. In this chapter, the

core elements of this research: generative reuse, CBSE, application generator,

domain engineering and SPL will be reviewed in detail.

Chapter III describes the application generator and the basic architecture of a

generator. The chapter also discusses state of the art for SPL variability

implementation methods.

In Chapter IV, the review results on generator technologies using two fundamental

methods for handling variability in SPL: stepwise refinements and separation of

concerns will be concluded.

CHAPTER II

LITERATURE REVIEW

2.1 Software Reuse

Traditionally, software development addressed challenges of increasing complexity

and dependence on external software by focusing on one system at a time and on

delivery deadlines and budgets, while ignoring the evolutionary needs of the system.

This has led to a number of problems such as failure of the majority of projects to

meet their deadline, budget, and quality requirements and the continued increase in

the costs associated with software maintenance. To meet these challenges, software

development must be able to cope with complexity and to adapt quickly to changes

(Crnkovic, 2003). Software reuse is one field in software engineering focusing on the

researches solely for the intention to avoid developing software from scratch thus

helping developers to face with the inherent difficulties in software development.

From this prespective Component Based Development (CBD) appears to be the right

approach. In CBD, software systems are built from assembling components already

developed and prepared for integration (Crnkovic, 2003).

The basic concepts of systematic reuse are simply by developing systems of

components of a reasonable size and reuse them (Jacobson et al., 1997). This idea

has been extended beyond the reuse of codes to the reuse of requirements, analysis

models, design and test. Ted in (Biggerstaff and Perlis, 1989), has given the

framework of theory and application in software reuse. In composition technologies,

the components to be reused are atomic and unchanged during its reuse but it can be

7

modified or changed to fit the computational requirement. Generation technologies

on the other hand reused components that are not concrete as composition based

technologies. Instead of in composition reuse, the building block of reusable assets

can be pointed before and after its use, in generative reuse the components being

reused are often pattern woven into the fabric of generator program (Biggerstaff and

Perlis, 1989). Generation technologies are categorized into three groups: language

based, application generators and transformation system. Language based generation

technologies has been particularly successful in the area of programming language

systems, such as compilers, language based editing systems and static program

analyzers (Jarzabek, 1995). Application generators the second group of generation

technologies, translate specifications into application programs. Lastly the

transformation systems are software tools that “rewrite” constellations of concepts

(characters, strings, trees and graphs) into alternative constellations. Practical

transformations systems are extremely generalized compilers where among the

possible applications of transformation systems are translation of code from one

language to another, refactoring and code generation (Baxter, 2002). The framework

for reusability technology is as shown in Table 2.1.

Table 2.1: Framework for reusability technology
Features Approaches to Reusability
Components
Reused

Building Blocks Patterns

Nature of
Component

Atomic and Immutable
Passive

Diffuse and Malleable
Active

Principle of
Reuse

Composition Generation

Emphasis Application
Component
Library

Organization
and
Composition
Principle

Language
Based
Generators

Application
Generators

Transformation
Systems

Typical
System

*Libraries of
Subroutines

*Object
Oriented
*Pipe
Architecture

*VHLLs
* POLs

*File
Mngmt

*Language
Transformation

2.2 Component-Based Software Engineering

CBSE shift the emphasis from programming software to composing software

systems. Foundation of CBSE is the foundation that there is sufficient commonalty in

8

many large software systems to justify developing reusable components to exploit

and satisfy that commonality.

An approach to CBSE is component composition. Under component composition,

there are two important issues:

a. given a set of components, and a schema for composing them, check that the

proposed composition is feasible (verification) and satisfies a given set of

requirements (validation); this is referred as the composition verification and

validation problem and

b. given a set of requirements, find a set of components within a component

library whose combined behavior satisfies the requirements; we refer to this

as the bottom up design problem.

Our previous works on software reuse at analysis and design level using software

analysis pattern and component-based software engineering (CBSE) (Jawawi et. al,

2005) have found that in order for the end-users or software developers to fully

benefited the reuse from the CBSE, an environment which is tightly coupled to the

domain engineering process must be provided. The generative reuse approach

(Frakes and Kang, 2005), has been identified as an approach to provide this

environment since, it can give higher system reliability by replacing error prone

human processes in software development by automation that can produce a more

reliable system.

2.3 Generative Reuse

Generative reuse is done by encoding domain knowledge and relevant system

building knowledge into a domain specific application generator. New systems in the

domain are created by writing specifications for them in a domain specific

specification language. The generator then translates the specification into code for

the new system in a target language. The generation process can be completely

automated, or may require manual intervention (Frakes and Kang, 2005).

9

As mentioned in the previous section, there are three generation technologies but in

this study focuses only on the application generator concept. Constructing an

application generator is appropriate (Krueger, 1992):

1. when many similar software systems are written,

2. when one software system is modified or rewritten many times during its

lifetime, or

3. when many prototypes of a system are necessary to converge on a usable product

The first point is the applicable reason why application generator is chosen and the

reusable assets are extracted from domain analysis of software product line.

2.3.1 Application Generator

Domain specific language and application generators represent a flexible form of

reuse that not only allows the reuse of the implementations of abstract functional

units as in component-based approaches, but also allows the reuse of how these

functional units are combined to form a complete system. Furthermore, application

generator allows this knowledge to be reused by non-programmers because the

domain-specific language can provide an interface to the domain-user in familiar

notations (Thibault and Charles, 1997).

In (Goebl, 2000), application generators is viewed as soft automatic programming

systems where all soft automatic programming approaches can be seen as software

reuse approaches. All of these soft automatic programming systems reuse patterns

inside the generators. Soft automatic programming such as GUI builders reuse the

knowledge on how to translate the high level graphical specification into executable

code. Compiler and parser generators reuse the knowledge how to generate a

compiler from the input grammar and generative CASE tools build class-templates

from Business Object model to relational database structures.

Cleaveland (1998) has suggested a few steps in building an application generator

which are described in the following sections:

10

2.3.1.1 Recognizing domains

Domain that is amenable to generator technology will have implementations with

recognizable patterns at the source code level, or at higher levels in the form of

similar programs, designs and architectures. The pattern recognition can be done by

identifying similarity patterns or cloning in application systems (Jun and Stan, 2005),

(Basit et al., 2005), (Rajapakse and Jazarbek, 2005).

2.3.1.2 Defining Domain Boundaries

Domain boundaries determine the range of the generator in terms of what features

should be included or excluded (i.e., setting the domain coverage). Increasing the

domain coverage allows the generator to handle more problems but typically makes

the generator less efficient and harder to use. Narrowing the domain width increases

the domain leverage, so that the generator can do more work but for a limited range

of problems.

2.3.1.3 Defining an Underlying Model

Identifying the abstraction presented to the user of the application generator.

Common abstractions include sets, directed graphs, trees, formal logic systems, and

computational models such as finite-state machines and spreadsheets.

2.3.1.4 Defining Variant and Invariant Parts

A generators variant part usually corresponds to system specification. Invariant parts

(the how) are usually fixed assumptions about the domain or implementation. They

are design details that the user prefers not to worry about. In order to build

application generator, understanding of the domain common and variant structures

must be done earlier. This process is basically done in domain analysis. The

modeling of variations and also the commonalties in the application domain is

crucial because the variations contribute to the independent changes to the

components and the commonalties of the components contribute to the generic

architecture of the existing components.

11

2.3.1.5 Defining the Specification Input

Defining the way in which the user specifies each instance of a generated program.

As mentioned earlier, options include textual specification languages (application-

oriented languages, fourth generation languages, etc.), templates, graphical diagrams,

interactive menu-driven dialog, and structure oriented editing.

2.3.1.6 Defining and Implementing Products

Defining product of application generator is to determine what output the generator

will produce. Typically a generic software design must be developed that will meet

the needs of all applications in the domain. The generator must tailor the generic

design for each application.

2.4 Domain Engineering

To enable product-line engineering, a well-accepted convention is to divide the

engineering process into two different processes: domain engineering and application

engineering as stated in (Macala et al., 1996), (Harsu, 2002). Domain engineering

and application engineering can be called engineering-for reuse and engineering-

with-reuse, respectively. The purpose of domain engineering is to provide the

reusable core assets that are exploited during application engineering when

assembling or customizing individual applications.

Domain engineering is most often divided into three phases: domain analysis,

domain design, and domain implementation. In the following sections, the phases in

domain engineering will be elaborated further while application engineering due to

its varieties of implementation in application generator will be presented in

subsection on related work.

2.4.1 Domain Analysis

Domain analysis is first introduced by Neighbors to denote studying the problem

domain of a family of applications (Neighbors, 1980). The output of domain analysis

12

is domain model. (Harsu, 2002) has generalized the common artifacts or processes

belonging to domain model as follows:

• Domain scoping (domain definition, context analysis)

• Commonality analysis

• Domain dictionary (domain lexicon)

• Notations (concept modeling, concept representation)

• Requirements engineering (feature modeling)

Generative reuse is closely related with the domain analysis where the knowledge of

the domain will be kept in the application generator in order for it to customize

affected components based in the configuration knowledge. Domain is defined as a

family or set of systems including common functionality in a specified area (Hwang,

2006). Domain analysis for reusability is the process of analyzing an application

domain in order to built reusable design. Domain analysis for reusability is

concerned with examining a variety of related applications to identify their common

architectures, reusable components, design alternatives and domain oriented

terminology. This information can then be expressed in terms of abstract classes and

subclasses, protocols, framework constraints and inference rule (Lubars, 1991).

However software has many variables, which differ from the reusability of hardware,

and software variations are much more difficult to standardized, identify and control

(Hwang 2006). A suitable domain analysis method is crucial in order for a systematic

analysis to capture the domain applications commonalties and also variants can be

achieved.

2.4.2 Domain Design

Domain design means designing the core architecture for a family of applications.

It comprises the selection of the architectural style (Czarnecki, 1999), (Harsu, 2002).

In addition, the common architecture under design should be represented using

different views. The core architecture should also provide variability between

applications. In this phase, it is decided how to enable this variability or

configurability. According to feature models and commonality documents, it should

also be selected which components or items (such as requirements) are provided in

13

the core architecture and which items are implemented as variations in individual

applications (Harsu, 2002).

2.4.3 Domain Implementation

Domain implementation covers the implementation of the architecture, components,

and tools designed in the previous phase. This comprises, for example, writing

documentation and implementing domain-specific languages and generators. The

purpose of domain engineering is to produce reusable assets that are implemented in

this phase. Thus, the result of whole domain engineering phase comprises

components, feature models, analysis and design models, architectures, patterns,

frameworks, domain-specific languages, production plans, and generators (Harsu,

2002).

2.5 Software Product Family (SPL)

The goal of the software product family approach is the systematic reuse of core

artifacts for building related software products or product diversities. A software

product family typically consists of a product family architecture, a set of

components and a set of products. Each product derives its architecture from the

product family architecture, instantiates and configures a subset of the product family

components and usually contains some product specific code. Product diversification

is based on the concept of variability and appears in all family artifacts where the

behavior of the artifacts can be changed, adapted or extended (Jaring, 2004). In

software product line, among the main issues that have to be catered are how to

capture the features of SPL and how to map the features to develop suitable

architectures for SPL. The subsequent sections describe these two main issues.

2.5.1 SPL Models

The terms ”domain” and ”product line” are very close to each other. However, the

difference is that a domain consists of conceptual items, while a product line

14

comprises concrete products or applications to be developed (Harsu, 2002). SPL

engineering involves the analysis, design and implementation of a product line that

satisfies the requirements of all target applications (Aquil Saleh, 2005). The main

focus of SPL is to model the commonalties and also the variabilities of SPL. Backer

defines variability as represents a capability to change or adapt a system. Such a

change or adaptation can affect the behavior of the system as well as it qualities.

Viewed from technical perspective, variability is a means to delay a design decision

to a later phase in the lifecycle of the software system.

Feature diagrams are often used to model common and variant product line

requirements. Feature diagrams provide a graphical tree-like notation that shows the

hierarchical organization of the features. By traversing the feature trees, we can find

out which variants have been anticipated during domain analysis.

Features are classified as mandatory, optional and alternative and or-features (Zhang

and Yang, 2003), (Czarnecki, 2000). Common requirements can be modeled as

mandatory features whose ancestors are also mandatory. Variant requirements can be

modeled as optional, alternative, or or-features (Zhang and Yang, 2003). An example

of feature diagram for a car is as shown in Figure 2.1 taken from (Czarnecki, 1999).

Figure 2.1: Feature diagram of a simple car

Based on the diagram mandatory features are marked with filled circle in the head of

the line. Optional features have an empty circle in the head of the line. For example,

a car can either pull a trailer or cannot. Alternative features are connected with an

empty arc and filled arc connecting features denotes or-features. From the diagram, it

15

shows twelve different car variants where there are two different transmissions, three

kinds of engine and an optional trailer coupling. Constraints that cannot be expressed

in a feature diagram have to be recorded separately (Czarnecki, 1999).

A multiple-view model for a software product line defines the different

characteristics of a software family, including the commonality and variability

among the members of the family. A multiple-view model is represented using the

UML notation and considers the product line from different perspective. The

functional requirements of a system are defined in terms of use cases and actors.

When modeling a SPL, kernel use cases are those use case required by all the

members of the family. Optional use cases are those use cases required by some but

not all the members of the family. Some use case may be alternative, that is different

versions of the use case are required by different members of the family (Aquil

Saleh, 2005).

2.5.2 SPL Architecture

Software architecture is defined as a set of components that interact with each other

through well defined interfaces (connector) to deliver the required system behavior.

A Product-Line Architecture is a design for families of related applications;

application construction also called product instantiation is accomplished by

composing reusable components. SPL architecture or generic software architecture is

different from software architecture for a specific system that it forms a blueprint for

a family of systems. A generic architecture is customized during program

construction time to accommodate variant requirements into a target system. An

instance of a generic architecture that results from customization forms a runtime

architecture for a specific system (Cheong, 1999).

16

2.6 Related Works

Application generators are practical and attractive when high-level abstractions from

an application domain can be automatically mapped into executable software system

(Krueger, 1992). The main problem in product line development is the design of

common set of assets (Nitto, 1997) and also handling the variabilities for the

customization of the product line. The related work is focused on how other

researcher models the commonalities and variabilities, for which common sets of

assets (generic assets) do they focused on and what are the implementation approach

to variability (Anastasopoules, 2001) they use to implement the configuration

knowledge in the generator.

(Cheong, 1999) has used frames as an implementation approach for customizing

generic architecture of Facility Resource System SPL. The variant requirement is

mapped into sequence of activities. The customization method has reported as having

the advantages of domain independence, have partially transformed the requirements

to implementation and language independent. The implementation has a few

weaknesses where there is lack of support in requirement dependency and also if

there are changes to the SPL, an in-depth knowledge of the frame assembly is needed

in order to implement new requirement.

Another implementation approach for research in application generator in SPL is by

(Czarnecki, 1999). Gen Voca architecture is used for domain grammar and reflection

approach in the form of template metaprogramming. Reflection approach relates

strongly to metaprogramming where objects in higher levels of abstraction

(metalevels) are established to represent entities like operating systems,

programming languages, processors, object models, etc. Reflection enables access to

such metaobjects and therefore allows architecting flexible systems. Reflection can

be combined with dynamic class loading in order to load modules unknown until

runtime, depending on the deployment context and invoke operations on these

modules. Base functionality can be “reflected” and manipulated according to a

configuration.

17

(Czarnecki, 1999) reported that the approach is hard to debug and maintain and

suggest the use of active libraries instead. (Anastasopoules, 2001) also reflected the

same problem with reflection and added the difficulty in understanding the nature of

reflection and strongly recommended for its use in special systems (e.g. object

inspectors) and its usage in other systems should be handled with care.

(Jarzabek, 2003) and (Jun, 2005) has also implemented reflection approach for

unifying similarity pattern to open source JDK 1.1 Buffer library and also to a web

portal SPL. The unifying pattern refers to the similar program structure of any kind

and granularity repeated many times within a program or across programs. With the

use of reflection, the XVCL metaprogramming, the size of the original web portals

have been reduced by 61% (Jun 2005) and with the JDK library by 68% (Jarzabek,

2003).

The use of Aspect oriented programming (AOP) has been reported in (Saleh, 2005).

Aspect Oriented Programming (AOP) is a technique developed at Xerox PARC

which enables the modularization of crosscutting concerns, namely aspects, as well

as the integration of join points. Join points are the locations in systems that are

affected by one or more cross-cutting concerns. The process of integrating join points

involves describing how a cross-cutting concern affects code at one or more join

points. The integration process is referred to as composition or weaving

(Anastasopoules, 2001).

While it is reported that with the use of AOP, a better understanding of the product

line can be obtained by separating the common source code from the variable source

code, the optimization of code when using AOP have not been reported.

The basic concepts underlying the generation based reuse and also SPL has been

identified. From the literature, all the implementation approaches in SPL such as

inheritance, parameterizations, dynamic class loading, frames, reflection, AOP and

design pattern has the potential in handling the product line variability at code level.

Further review is required to identify the methods and mechanisms used in each

approach.

Software Product Line Variability Implementation Methods and its
Application in Generator Implementation

Shahliza Abd Halim, Dayang Norhayati Abg Jawawi and Safaai Deris
Faculty of Computer Science and Information Systems, Universiti Teknologi Malaysia,

81310 Skudai, Johor, Malaysia
shahliza@utm.my, dayang@ utm.my, safaai@ utm.my

Abstract
Software Product Line (SPL) is a type of reuse
where common artifacts can be shared by similar
softwares or members in the product line. Besides
sharing common features, each member in the
product line has significant variations referred as
variability. Variability implementation requires
focus on two important issue, delaying design
decision and also ease of changes in software. This
study is based on the initial proposal of two
methods, stepwise refinements and separation of
concerns for the use in generator implementation.
Generators with the implementation of these
methods have been reportedly used in various SPL
implementations. Based on this motivation we
study the underlying concepts of these methods and
the origin of its idea. We also study the issues and
its current implementation in generator. The result
of this paper can help designer and researcher who
are interested in the development of application
generator in SPL to comprehend the underlying
methods in SPL implementation and also its usage
in generator.

1. Introduction

Software Product Line (SPL) is software reuse
which concentrates on large grain reuse of software
asset. Granularity of reusable software asset as
described by Reusable Asset Specification (RAS)
by Object Management Group (OMG)[1] increases
when it addresses multiple problems, and/or may
offer alternative solutions to the problems. In SPL,
common artifacts and software assets can be shared
by multiple similar softwares or members in the
product line. Besides sharing common features,
each member in the product line has significant
variations referred as variability. Variability has
been seen as the core issue in SPL and the
management of variability can be seen as the
essence in SPL practice and various variability
mechanisms have been published for the purpose
of managing variability in different artifact level
[2]. In this paper we concentrate on
implementation-level and application-level artifact
of variability mechanism.

In SPL, variability can be achieved by delaying
design decision to a later phase in the lifecycle of
the software system. It is important also for SPL
implementation to anticipate changes and thus the
programs should facilitate design which is easy to
change. In order to achieve the delayed design
decision and alleviate changes in software, two
classic methods in software design i.e. stepwise
refinement and module specification (later on
known as separation of concern by [3]) has been
proposed as suitable for SPL implementation more
than three decades ago [4-7]. Variations of these
methods were still implemented by various
researchers since then in different kinds of SPL
implementation [8-18]. Based on the importance
of these two methods in SPL implementation, we
will study the underlying concepts of these
methods and the origin of its idea. Another focus of
this paper is to study the generative reuse with the
use of generator where it has also been reportedly
used in SPL implementation [8-10, 15-19].

Generative reuse is reuse at the specification level
with application generators or generators [20].
Generative reuse is done by encoding domain
knowledge and relevant system building
knowledge into a domain specific application
generator [21].

The main contribution of this paper is the study

of the current variability implementation method
and its mechanism: separation of concern and
stepwise refinement in generator implementation.
The basic concepts of these two methods will also
be discussed. In this paper we will discuss in detail
the basic architecture of a generator.

The remainder of this paper is organized as

follows: In section 2 we discuss the research
framework of this paper. Section 3 discusses the
application of generator and the basic architecture
of a generator. In Section 4 these two methods will
be discussed in detail. The following section,
section 5 discusses the current implementation of
these methods in generator implementation. Lastly
in section 6, the conclusion and also the future
work of this research will be discussed.

18

mailto:shahliza@utm.my
mailto:dayang@utm.my
mailto:safaai@utm.my

2. Research Framework

The framework of our study comprises of
literature study, initial findings and state of art
analysis of variability implementation method as
shown in Figure 1. Firstly we reviewed literatures
on generator architecture for identifying the basic
structure of generators. Secondly we reviewed
related literatures on basic methods proposed for
SPL implementation in order to identify the most
common method used in various SPL
implementations.

Our initial results were the basic architecture of

generator in general and also the study of the two
basic methods for SPL implementation separation
of concerns and stepwise refinements. Finally we
did an analysis on the state of art in mechanism
used in generator implementation which
specifically uses the variability implementation
methods and produce a table encompassing the
analysis results. The results can be used as a
reference for the various mechanisms for SPL
implementation.

Figure 1 Research Framework

3. Generator Application and its
Architecture

Application generator or simply generator has

been applied successfully in the area of
programming language systems such as compilers,
language based editing systems and static program
analyzers [9] and also database generators [22]. It’s
usage has been extended in [23] to handle
scalability problem in traditional library of
software components and its effectiveness has been
reported in [23, 24] and experimented in [11].
Previously reported generator success focused on
generating domain specific application. As stated
in [25] application generator implementation is
appropriate when many similar software systems
are written, or when one software system is

modified or rewritten many times during its
lifetime, or when many prototypes of a system are
necessary to converge on a usable product.
Generator has then been used for generating
multiple similar application in SPL where it was
used as a mechanism to handle variability in the
SPL implementation [10, 11, 26-29] .
There are several papers [30-33] describing the
basic architecture in a generator. Figure 2 show the
basic architecture of a generator which consists of
the front-end of generator and also its back-end
adapted from [30, 33]. Basically generator accepts
input of abstract specifications to describe the
software either in a text or graphical form. Textual
input specification requires the front-end of the
generator to have a lexer in order to break the
specifications into tokens. Parser then parse the
token into parse tree and semantic analyzer checks
for semantic error [31, 33].

The intermediate representation for the
generator or also known as an underlying model
based on [31] can be in the form of sets, directed
graphs, formal logic systems and computational
model like finite-state machine. Other specification
formats (i.e., graphical representation) may map
straightforwardly to the intermediate
representation.

Generator also has been reported to encode domain
knowledge and design knowledge and use
repository of components for customization in
order to produce code for new system in the
domain [33]. Domain knowledge consist of domain
specific scheme for encapsulation of system
knowledge [32]. For an ideal design knowledge,
[34] has referred it as design history where it
records the original specification of the problem,
series of transformation applied to the specification
and the justification for these transformation. In the
repository, component interfaces are specified
formally and also with adapters for composition
purposes [32]. This repository can be based on any
component model available.

In [16, 30] the use of transformation engine is
highlighted in order to implement transformation to
the intermediate representation. With
transformation, a concrete executable program
which is still in intermediate representation form
(represented as a flow graph or an abstract syntax
tree) will be generated. The final process is where
the program generator transforms the intermediate
representation into textual representation which is
usually in the form of high-level programming
language.

19

Figure 2 Basic Architecture of a Generator

4. SPL Implementation Method to
Handle Variability

Variability is the main issue in SPL
implementation. In delaying design decisions, a
family member will share the same software assets
until it come to the point where it differs from other
member of the family and this point is referred as
variation point. Variability also requires the
programs to anticipate the changes that might occur
hence accommodate the ease of change facility.

We concentrate on two methods for
development of program families or SPL i.e.
programming by stepwise refinement and module
specification based on the first proposal by Parnas
in [6]. These methods are introduced as it is
suitable for postponing and therefore giving the
programmer the ease to change decisions about
program implementation.

4.1 Separation of Concern

Most software engineering activities involve

certain type of concerns. For example, among the
concerns in software design are on the features,
non functional requirements and many other
concerns. In [18], concerns is identified as any area
of interest in program solution either in functional
features, quality requirements, software
architecture, detail design or implementation.
Dijkstra was the first person to introduced the
concept of separation of concern [18]. He refers to
this concept as an effective ordering of ones
thought where one particular aspect is considered
in isolation from other aspects. Other aspects
however are not being ignored but merely
irrelevant at that time [3].

With concerns basically separated among each
other, the complexity of dealing with all concerns
at the same time can be lowered and developers
can deal with the concern individually. Module
specification introduced by Parnas in [35] can be
associated with separation of concern where the
former method is the separation of concern
implementation as it separates the concern of what
services a module offers and how the services are
implemented within the module with the help of
API [18].

There are few stated problems when concerns are
implemented conceptually in conventional
programming language. Among the problems are
inadequate abstraction of concern at the
implementation level results in intertwined code
[36] making the code hard to understand and
modify. Concerns which are scattered in different
levels of software development known as
crosscutting concerns are hard to be localized in
single modular decomposition and requires
unconventional solutions such as generative
techniques to separate concerns at a meta-level
extra plane [18].

4.2 Stepwise Refinement

Stepwise refinement on the other hand concentrates
on the refinements of an abstract concept to a more
concrete and concise implementations. This
method starts with describing functionality at a
very high level specification, then successively
decomposing design decisions into more detailed
levels one level at a time until the detail forms into
a target code [37, 38].

The notion of stepwise refinement was first
introduced by Dijkstra in [7]. His idea revolves
around a concept which views the top most part of
a program as an abstract form, the lower part as the
refinement of the abstraction and the bottom part as
standard interface. He also envisioned an
incomplete program where the top half of it can be
regarded as a complete program to be executed and
the bottom half gives a feasible implementation.

In [4] the detail implementation of Dijkstra’s
idea was shown by refining specification until the
specification is precise and its near to programming
implementation. The incomplete programs
envisioned by Dijsktra is viewed by Parnas as an
intermediate stages represented by programs which
are complete except for the implementation of
certain operators and operands type [6]. This
ability can be used for delaying design decision.

20

The initial intention of stepwise refinement was
as a method for program correctness [4, 6, 7].
Since refinement has its intermediate stages, it
allows programmers to codify design decision
without committing to an implementation
technology up front where refinements can be
encode as COM objects, Java objects or as meta-
programs [11].

With this ability stepwise refinement not also

can be used in delaying design decision but it can
also support separation of concern where concern
in implementation technology is separated from
application design [11]. In [11] also, the author has
acknowledge the problem of the sizing the scale in
refinement.

5. State of Art for the SPL Variability
Implementation Method

Related work focuses on the researchers that
have been done which reportedly incorporate either
one or both of these two methods in the
implementation of their generator for generating
SPL application.

Czarnecki separates problem domain concerns
which become intimately and unavoidably
interwoven with problem solution concerns in
program components [16, 18]. With the use of
configuration knowledge, abstract requirements in
the problem domain is mapped onto appropriate
configurations of components in the problem
solution [16].

Separation of concern implementation also has
been reportedly used for the generic architecture of
SPL [9, 10, 14, 39]. Domain models and generic
software architectures facilitate the reuse of
code[9]. In [10], separation of concern revolves
around separating specification of how variant
affect a generic component separately from the
component itself. The variant specification and also
generic architecture guides generator in
customizing components.

The implementation of separation of concern
also governs the aspect oriented based generator as
reported in [17]. In [17] concerns are separated by
the separation of common source code from the
variable source code. Code weaving is used to
customized target applications hence an executable
program will be generated.

Generators concentrates fundamentally on
refinements of specification where it takes the
abstract specifications and progressively making
the specifications into a concrete program [30].

GenVoca use stepwise refinement to refine layers
of components

Based on the problem of scale in stepwise
refinement implementation, Batory in [15] has
implement algebraic specification using AHEAD
as composer to transform equation in order to
refine code and noncode artifacts to form a
synthesized system. Algebraic specification
enables a consistent refinement of artifacts hence
lowering the scalability problem. Another work in
[19] has reportedly combined the use of aspect
oriented programming in the refinement of mixin
layers in AHEAD.

Table 1 Approach for SPL Methods in
Generator Implementation

Approach Method

Used
Mechanism

Configuration
knowledge

Separation of
concern

Template
metaprogramming

XVCL Separation of
concern

Tree Structure of
XVCL command

Aspect Oriented Separation of
concern

Modularized unit of
concern

GenVoca Stepwise
refinement

Refinements of Mixin
Layers

AHEAD stepwise
refinement

Scaling refinements of
Mixin Layers

AHEAD stepwise
refinement and
separation of
concern

Aspectual refinements
of Mixin Layers

The state of art for generator implementations are

not an exhaustive review as there are numerous
other implementations of these methods implicitly
reported in the literature. We merely chose
literatures either by prominent researchers in this
field or literature which explicitly proclaim the use
of this technique in their research. Table 1 shows
the summary of these works where it shows
majority of the work done are based on either
stepwise refinement or separation of concern but it
can be seen that there is one research which
combine both methods in order to separate
concerns and refine the program in generator.

6. Conclusion and Future Work

It can be said generally that with the

implementation of stepwise refinement concept it
helps in postponing the design decision and with
the use of separation of concern ease of changing
design decisions can be achieved. In stepwise
refinement, this method has more formal approach
with the use of algebraic specification compared to

21

separation of concern which is more abstract in its
approach. Although majority of the work focuses
in using either methods, but it can be seen that the
most current work has focused on using both
methods in the generator.

For future work, we will do a comparison of
generator technology. In order to achieve this we
have to find features that suitably reflect the
generator implementation. Two of the features
have already been identified in this paper,
refinement and also separation of concern.

6. References

[1] OMG Object Management Group.

Reusable Asset Specification: Version 2.2.
Needham: Object Management Group.
2003.

[2] Clements, P.C. Managing Variability for
Software Product Lines: Working with
Variability Mechanisms. in 10th
International Software Product Line
Conference (SPLC '06). 2006. Baltimore,
Maryland , USA: IEEE.

 [3] Dijkstra, E.W., On the Role of Scientific
Thought. Springer-Verlag, New York,
1982(Selected Writings on Computing: A
Personal Perspective): p. 165-182.

[4] Wirth, N., Program Development by
Stepwise Refinement. Communications of
the ACM, 1971. 14(4): p. 221-227.

[5] Parnas, D.L., On the Criteria to be Used
in Decomposing Systems into Modules.
Communications of the ACM, 1972.
15(12): p. 1053-1058.

[6] Parnas, D.L., On the Design and
Development of Program Families. IEEE
Transactions on Software Engineering,
1976. SE-2(1).

[7] Dijkstra, E.W., Structured Programming,
in Software Engineering Techniques, B.J.
N and R. B, Editors. 1970. p. 84-87.

[8] Don Batory, V.S., Jeff Thomas, Sankar
Dasari, Bart Geraci, Martin Sirkin, The
Gen Voca Model of Software-System
Generators. IEEE Software, 1994.

[9] Jarzabek, S., From reuse library
experiences to application generation
architectures. ACM, 1995 p. 114-122.

[10] Jarzabek, S., Knauber, P., Synergy
between Component-based and
Generative Approaches. Lecture Notes in
Computer Science, Springer Verlag, 1999:
p. 429-445.

[11] Smaragdakis, Y. and D. Batory,
Application Generators. Software

Engineering volume of the Encyclopedia
of Electrical and Electronics Engineering.
2000: J. Webster, John Wiley and Sons.

[12] Hong Yu Zhang, S.J., Soe Myat, Swe,
XVCL Approaches to Separating
Concerns in Product Family Assets.
Lecture Notes in Computer Science.
Proceedings of the Third International
Conference on Generative and
Component-Based Software Engineering,
2001. 2186: p. 36-47.

[13] Krueger, C.W. Using Separation of
Concerns to Simplify Software Product
Family Engineering. in In Dagstuht
Seminar No. 01161. 2001. Dagstuhl
Castle, Wadern, Germany, April, 2001.

[14] Zyl, J.v. Product Line Architecture and
the Separation of Concern. in Software
Product Line Conference. 2002: Springer-
Verlag Berlin Heidelberg.

[15] Batory, D., Scaling Step-Wise Refinement.
IEEE Transactions on Software
Engineering, 2004. 30(6): p. 1-17.

[16] Czarnecki, K. Overview of Generative
Software Development. in In J.-P. Banâtre
et al. (Eds.): Unconventional
Programming Paradigms (UPP) LNCS
3566, . 2005. Mont Saint-Michel, France.

[17] Saleh, M. and Gomaa, H. Separation of
Concerns in Software Product Line
Engineering. in International Conference
on Software Engineering. 2005. St. Louis,
Missouri.

[18] Jarzabek, S., Chapter from book
"Software Maintenance and Evolution:
Reused based Approach". 2007:
AUERBACH Publications.

[19] Don Batory, V.S., Jeff Thomas, Sankar
Dasari, Bart Geraci, Martin Sirkin, The
Gen Voca Model of Software-System
Generators. IEEE Software, 1994.

[20] Apel, S., T. Leich, and G. Saake. Aspect
Refinement in Software Product Lines. in
In Aspects and Software Product Lines
(ASPL'05): An Early Aspects Workshop at
SPLC-Europe'05. 2005. Rennes, France.

[21] Prieto-Diaz, R., Status report: software
reusability. IEEE Software, 1993.
Volume 10(Issue 3): p. 61 - 66.

[22] Frakes, W.B., Kang, K., Software Reuse
Status and Future. IEEE Trans. On
Software Engineering, 2005. 31. No 7: p.
529-536.

[23] Horrowitz, E., A. Kemper, and B.
Narasimhan, A Survey of Application
Generators. IEEE Software 1995. 12: p.
40-54.

22

[24] Biggerstaff, T.J., A Perspective of
Generative Reuse. . Annals of Software
Engineering, 1998. 5: p. 169-226.

[25] Biggerstaff, T.J. The Library Scaling
Problem and the Limits of Concrete
Component Reuse. in 3rd International
Conference on Software Reusability.
1994. Rio de Jeneiro, Brazil: IEEE Press.

[26] Batory, D. Refinements and Separation of
Concerns. in Second Workshop on Multi-
Dimensional Separation of Concerns,
International Conference on Software
Engineering. 2000. Limerick, Ireland.

[27] Krueger, C., W., Software Reuse. ACM
Computing Surveys, 1992. 24(2): p. 132-
183.

[28] Hongyu Zhang, Jarzabek, S., XVCL: A
Mechanism for Handling Variants in
Software Product Lines. Science of
Computer Programming Elsevier Science,
2004. 53.

[29] Batory D., C.J., Bob MacDonald and Dale
von Heeder. Achieving Extensibility
through Product Lines and Domain-
Specific Languages: A Case Study. in
International Conference on Software
Reuse. 2000. Vienna Austria.

[30] Cheong, Y.C.a.J., S., Modeling Variant
User Requirements in Domain
Engineering for Reuse. Information
Modeling and Knowledge Bases: p. 220-
234.

[31] Stan Jarzabek, W.C.O.a.H.Z., Handling
Variant Requirements in Domain
Modeling. The Journal of Systems and
Software, 2003. 68: p. 171-182.

[32] Batory, Y.S.a.D., Application Generators.
Software Engineering volume of the
Encyclopedia of Electrical and Electronics
Engineering. 2000: J. Webster, John
Wiley and Sons.

[33] Cleaveland, C., J., Building Aplication
Generators. IEEE Software, 1988: p. 25–
33.

[34] Marcelo Sant'Anna, J.C.S.a.A.F. A
Generative Approach to Componentware.
in Workshop on Component-Based
Software Engineering, International
Conference on Software Engineering
(ICSE'98). 1998. Kyoto, Japan.

[35] Frakes, B., et al., Panel: Linking Domain
Analysis and Domain Implementation.
IEEE Software, 1998.

[36] Batory, D. Program Comprehension in
Generative Programming: A History of
Grand Challenges. in 12th International
Workshop on Program Comprehension
(IWCP ’04). 2004. Bari, Italy.

[37] Parnas, D.L., A Technique for Software
Module Specification with Examples.
Communications of the ACM, 1972.
15(5).

[38] Hursch, W.L. and C.V. Lopes. Separation
of Concerns. in Technical Report NUCCS-
95-03. 1995. College of Computer
Science, Northeastern University.

[39] Robert G. Reynolds, J.I.M., Stephen E.
Porvin, Stepwise Refinement and Problem
Solving. IEEE Software, 1992. 9(5): p. 79-
88.

[40] Howe, D. (2007) FOLDOC - The Free
Online Dictionary of Computing.

[41] Jaring, G. and Bosch, J., On the Notion of
Variability in Software Product Lines.
IEEE, 2001.

23

Generator Technologies Using Fundamental Methods in Software Product
Line

Shahliza Abd Halim, Dayang Norhayati Abg Jawawi and Safaai Deris

Faculty of Computer Science and Information Systems, Universiti Teknologi Malaysia, 81310
Skudai, Johor, Malaysia

shahliza@utm.my, dayang@ utm.my, safaai@ utm.my

Abstract

Software generator when applied to Software
Product Line (SPL) can reap the benefit of
automation in software development and also
systematic reuse. Software Product Line (SPL) is a
type of reuse where common artifacts can be shared
by similar members in the product line. In addition
each member in the product line also has significant
variations referred as variability. There are two
fundamental methods for handling variability in SPL:
stepwise refinements and separation of concerns.
Generators with the implementation of these methods
have been reportedly used in various SPL
implementations. Our review approach is to study the
mechanism of generators implementation based on
the review framework that we have presented in the
paper. Although there are reviews being done on
generator technologies, but to our best knowledge
there are no explicit review based on these two
methods.

Keywords: Software Product Line, Generator,
variability, scalability, stepwise refinement,
separation of concern.

1. Introduction

Generator is a program that takes a higher-level
specification of a piece of software and produces its
implementation. The piece of software could be a
large software system, a component, a class, a
procedure and so on [1]. Using generator as a means
for reuse is referred by reuse community as
generative reuse. In [2], generative reuse is defined
as reuse at the specification level with application
generators or generators. Generative reuse is done by
encoding domain knowledge and relevant system
building knowledge into a domain specific
application generator [3].

Generative reuse via generator is cost effective to
build when many similar software systems are
written or when evolution of software requires the
software to be written and rewritten many times
during its lifetime[4, 5]. We are interested in the first
application of generator where we analyze generator
implementation in Software Product Line (SPL)
domain. Software Product Line (SPL) is a type of
reuse where common artifacts can be shared by
similar members in the product line. In addition each
member in the product line also has significant
variations referred as variability.

In SPL, variability can be achieved by delaying
design decisions to a later phase in the lifecycle of
the software system. It is important also for SPL
implementation to anticipate changes and thus the
programs should facilitate design which is easy to
change. In order to achieve the delayed design
decision and alleviate changes in software, two
classic or fundamental methods in software design
i.e. stepwise refinement and module specification
(also known as separation of concern by [6]) has
been proposed in [7]. The motivation in writing this
paper is based on the different approaches of these
methods were still implemented by various
researchers since then in different kinds of SPL
implementation [8-13]. Although there are reviews
being done on generator technologies, but to our best
knowledge there are no explicit review based on
these two fundamental methods. i.e. separation of
concern and also stepwise refinements.

The remainder of this paper is organized as
follows: Section 2 outlines the fundamental methods
in SPL. In Section 3 our review framework together
with the details of the review are highlighted. Section
4 discusses the findings of the review. The last
section presents the conclusion of this paper.

24

mailto:shahliza@utm.my
mailto:dayang@utm.my
mailto:safaai@utm.my

2. Fundamental Methods in SPL

We concentrate on two methods for development of
program families or SPL i.e. programming by
stepwise refinement and separation of concern based
on the first proposal by Parnas in [7] for variability.
implementation method.

2.1 Separation of Concern

In [14], concerns are identified as any area of

interest in program solution either in functional
features, quality requirements, software architecture,
detail design or implementation. With concerns
basically separated among each other, the complexity
of dealing with all concerns at the same time can be
lowered and developers can deal with the concern
individually.

There are few stated problems when concerns are
implemented conceptually in conventional
programming language. Among the problems are
inadequate abstraction of concern at the
implementation level resulting in intertwined code
[15] making the code hard to understand and modify.
Another problem is when the concerns are scattered
in different module known as cross cutting concern
where the concern is hard to be localized in single
modular decomposition. Separation of concerns
contribute to variability implementation in SPL
where this method can help in accommodating
difference in design decision when instantiating
members of the product line

2.2 Stepwise Refinement

Stepwise refinement on the other hand concentrates
on the refinements of an abstract concept to a more
concrete and concise implementations. Traditional
work on step-wise refinement focused on
microscopic program refinements where numerous
refinements have to be applied to yield admittedly
small programs. Notion of stepwise refinement was
first seen as an incomplete programs envisioned an
then viewed by Parnas as an intermediate stages
represented by programs which are complete except
for the implementation of certain operators and
operands type [7].

In [16], the problem of the size of the scale in
refinement has been acknowledged. Stepwise
refinement facilitate in variability implementation
where design decisions can be delayed until the

implementation comes to the point of variation where
the decision differs from other members of the
product line.

3. Review Framework

This section contributes to the review of
generator technology based on 3 elements its
classification, the fundamental methods in SPL and
also scalability of its implementation. The following
is the discussion of the three elements:

i) The classification of generator
technologies

 Classification of generators has been done
based on various focuses. In this section we try to
classify the generator based on the classes or group
mostly reported in the literature [1, 17-19]. We apply
the classification based on technical distinction in
[17] where distinct technologies for implementing
generators and its components have been highlighted
and among the technologies are compositional,
metaprogramming and transformational. Alongside
the classification we also include sample approaches
for each classification as technical distinctions are
not enough in discussing generators [16, 20].
However in [17] there is no mentioning of sample
approach in its classification and we further refer in
[18, 19] for sample approach on each classification of
the generator technology.

ii) Fundamental methods in SPL
There is no explicit discussion on what

fundamental methods that generators use except in
[14] where a few generator technologies have been
associated with implementing separation of concern.

iii) Reuse Scalability Dimension
 Scalability in reusing components has two
dimensions i.e. vertical and horizontal scaling as in
[21]. Vertical scaling refers to how well the generator
scale in terms of raw size and programming leverage.
Horizontal scaling on the other hand looks at how the
generator scales up in terms of feature variation (also
being associated with technological aspect) [19, 21].
In the following subsections we discuss the
classification of generator together with its sample
applications..

3.1 Transformation

Transformation systems basically applies
transformational programming where program is
constructed by using successive application of
transformation rules starting from specification and
ends with executable program [22].

25

Draco, Anticipatory Optimization Generator (AOG)
and Aspect Oriented Programming (AOP) are
examples of transformation generator technology.
Stepwise refinement methods can be observe in
Draco mechanism where phased refinements were
implemented to map an abstract domain language
into one or more mini domain languages until the
whole program has been translated into targeted
conventional programming language [18]. Draco has
been reportedly experienced search space problem in
its transition and AOG [23], has been designed to
overcome the problem. In AOG a tag-driven
transformation control which allows cross-
component and cross domain optimizations in the
programming language domain thus it has lower
search space compared Draco. Both generators
implemented stepwise refinement concept in their
generators implementation.

OAG and AOP were reportedly to have separation of
concern in its implementation [19]. In terms of
scaling Draco implementation scaled horizontally
where it support scaling in feature variation whereas
AOG and AOP having both horizontal and vertical
scaling in their implementation as reported in [18].

3.2 Composition

Composition based generators are called
forward-refinements transformation in [1]. Forward
refinements are transformation of higher level
representation into a lower level without redefining
the modular structure of the higher level
representation. Generators with composition
technology are Gen Voca, and Algebraic Hierarchical
Equations for Application Design (AHEAD).

GenVoca extends stepwise refinement by scaling
refinements to a component or layer (i.e., multi-class-
modularization), so that each refinement adds a
feature to a program, and composing a few
refinements yields an entire application [24] there is
no separation of concern reportedly implemented in
Gen Voca.

AHEAD elevate separation of concerns to user level
requirements [14]. For stepwise refinement
implementation, instead of using conventional
programming language specification as in Gen Voca,
algebraic specification is used in AHEAD and
composer is used to transform equation in order to

refine code and noncode artifacts to form a
synthesized system [11].

In terms of scaling dimension, Gen Voca has both
scaling dimensions [19]. As for AHEAD, its
mechanism has also being reported in [11] to have a
higher scalability as algebraic specification enables a
consistent refinement of artifacts.

3.3 Metaprogramming

The importance of metaprogramming in generator
technology has been reported in [1, 25]. XVCL and
templat metaprogramming are examples of SPL
generators which are based on metaprogramming.
With XVCL, separation of concern is implemented
by separating the specification variability from the
components. In XVCL, generic architecture
implements commonality in a software product line
while metalanguage is used to specify variations to
be implemented in the custom system [10] .On the
other hand in [12], concerns on problem domain are
separated from the concern in problem solution using
configuration knowledge in the form of template
metaprogramming in C++. Though there were no
explicit statements to highlight how well the
scalability in XVCL implementation, experiments
have been done to show it can scale component
vertically by removing redundant code in J2EE
libraries [26] and also horizontally in SPL
implementation [10, 27]. However, there is no
reported experiments being done t
o show the vertical and the horizontal scaling of
template metaprogramming.

4. Discussion
This discussion is based on Table 1 which
summarizes the review framework discussed in
previous section. Generators in transformation class
have the advantage of optimizing each
transformation to reorganize program for
performance. With optimization, it promises a higher
custom component fit to the target application hence
horizontal scaling is achieved. Though gaining
optimization in performance, building
transformational generator is inherently more
complicated where each generation of
implementation have to be coordinated for different
higher level construct [1].

26

Table 1. Generator Classification with Sample Approaches Corresponding Fundamental Methods
and Scaling Dimension

Methods Scale Generator Class Sample Approach
SC SR Vertical Horizontal

Draco - √ √ √
AOG - √ √ √

Transformation

Aspect Oriented √ - √ √
GenVoca - √ √ √ Composition
Ahead √ √ √ √
XVCL √ - √ √ Metaprogramming
Templat
Metaprogramming
C++

√ - NA NA

Note: SC – Separation of Concern SR – Stepwise Refinement NA– Not Available

For application which does not rely on performance
as one of its qualities, using compositional generator
is more cost effective [19]. Metaprogramming using
XVCL also reportedly to have more lightweight
approach where report from industrial experience
shows that it can shortens time and have small effort
in development [27].

Table 1 shows that for all generator classes, each
sample approach has implemented either one or both
fundamental methods of SPL. Only one sample
approach AHEAD has use both of these methods in
its implementation. This shows the possibility of
hybridizing both methods in generator
implementation where current research in AHEAD
[28] has reportedly combined the use of aspect
oriented programming in the stepwise refinement of
mixin layers in AHEAD.

Based on Table 1 also, almost all of the sample
approaches in generator have both scaling
dimensions. However the intensity of how well it
scale is different as shown in [18]. The reason is due
to the fact that all the generators were domain
specific thus they must have programming leverage
in order to scale vertically. At the same time in order
to accommodate the variability implementation in
SPL these generators must exhibit feature variations
criteria and as a result their implementations have to
be scaled horizontally. This shows the challenge in
SPL generator where it must satisfies both scaling
dimensions.

5. Conclusion and Future Work

From our study of the fundamental methods
implementation in generator technology, it shows

these methods have undergone various improvements
and also the implementations of these fundamental
methods have been refined thus achieving the
scalability dimensions. There are also possibilities in
hybridizing both methods to reap even more benefit
in generator. Our future work is to study the
lightweight approach in XVCL generator technology,
in handling variability in SPL implementation. This
is due to the fact that XVCL is cost effective
generator in terms of reducing development time and
also development effort.

6. References

[1] Czarnecki, K. and Eisenecker, U., Generative
Programming- Methods , Tools and Applications.
2000, Boston MA: Addison-Wesley.
[2] Prieto-Diaz, R., Status report: software
reusability. IEEE Software, 1993. Volume 10
(Issue 3): p. 61 - 66.
[3] Frakes, W.B., Kang, K., Software Reuse
Status and Future. IEEE Trans. On Software
Engineering, 2005. 31. No 7: p. 529-536.
[4] Cleaveland, C., J., Building Aplication
Generators. IEEE Software, 1988: p. 25–33.
[5] Mili, H., Mili, F & Mili, A, Reusing
Software: Issues and Research Directions. IEEE
Transactions on Software Engineering, 1995.
Volume 21.
[6] Dijkstra, E.W., On the Role of Scientific
Thought. Springer-Verlag, New York,
1982(Selected Writings on Computing: A Personal
Perspective): p. 165-182.
[7] Parnas, D.L., On the Design and
Development of Program Families. IEEE
Transactions on Software Engineering, 1976. SE-
2(1).

27

[8] Batory, D., et al., The Gen Voca Model of
Software-System Generators. IEEE Software,
1994.
[9] Jarzabek, S., Knauber, P., Synergy between
Component-based and Generative Approaches.
Lecture Notes in Computer Science, Springer
Verlag, 1999: p. 429-445.

[10] Zhang, H. Y., Jazarbek, S., Swe S. M., .
XVCL Approaches to Separating Concerns in
Product Family Assets. in Proceedings of the Third
International Conference on Generative and
Component-Based Software Engineering. 2001.

[11] Batory, D., Scaling Step-Wise Refinement.
IEEE Transactions on Software Engineering, 2004.
p. 1-17.

[12] Czarnecki, K. Overview of Generative
Software Development. in In J.-P. Banâtre et al.
(Eds.): Unconventional Programming Paradigms
(UPP) LNCS 3566, 2005. Mont Saint-Michel,
France.

[13] Saleh, M.and Gomaa, H., Separation of
Concerns in Software Product Line Engineering. in
International Conference on Software Engineering.
2005. St. Louis, Missouri.

[14] Jarzabek, S., Chapter from book "Software
Maintenance and Evolution: Reused based
Approach". 2007: AUERBACH Publications.

[15] Hursch, W.L. and C.V. Lopes. Separation of
Concerns. in Technical Report NUCCS-95-03.
1995. College of Computer Science, Northeastern
University.

[16] Smaragdakis, Y.and Batory, D., Application
Generators. Software Engineering volume of the
Encyclopedia of Electrical and Electronics
Engineering. 2000: J. Webster, John Wiley and
Sons.

[17] Batory, D. Domain Analysis for GenVoca
Generators. in Proceedings. Fifth International
Conference on Software Reuse. 1998. Los
Alamitos, California.

[18] Biggerstaff, T.J. Reuse Technologies and
Their Niches. in International Conference on
Software Engineering. 1999. Los Angeles CA:
ACM.

[19] Biggerstaff, T.J., A Characterization of
Generator and Component Reuse Technologies.
IEEE Software, 2001.

[20] Smaragdakis, Y., Huang, S. S., Zook, D.,
Program Generators and the Tools to Make Them.
in ACM/SIGPLAN Workshop Partial Evaluation
and Semantics-Based Program Manipulation.
Proceedings of the 2004 ACM SIGPLAN
symposium on Partial evaluation and semantics-
based program manipulation 2004. Verona, Italy.

[21] Bill Frakes, D.B., Ted Biggerstaff, Kyo Kang,
Panel: Linking Domain Analysis and Domain
Implementation. IEEE Software, 1998.

[22] Partsch H, Steinbrueggen R.., Program
Transformation Systems. ACM Computing
Surveys, 1983.

[23] Biggerstaff, T.J., A New Architecture for
Transformation-Based Generators. IEEE
Transactions on Software Engineering, 2004.
30(12): p. 1036-1054.

[24] Batory, D., Johnson, C., Mc Donald, B. and
Heeder, D. Achieving Extensibility through
Product-lines and Domain -Specific Languages: A
Case Study. ACM Transactions on Software
Engineering and Methodology (TOSEM), 2002.
11(2): p. 191-214.

[25] Jarzabek, S, Zhang, H.Y., Ru, S., Lam, V. T.
and Zhenxin, S. Analysis of Meta-programs: an
Example. Journal of Software Engineering and
Knowledge Engineering, 2006. 16(1): p. 77-101.

[26] Jarzabek, S., Shubiao, L. Eliminating
Redundancies with a "Composition with
Adaptation" Metaprogramming Technique. in
Proc. European Software Egineering Conference
and ACM SIGSOFT Symposium on the
Foundations of Software EngineeringESEC-
FSE'03. 2003. Helsinki.

[27] Pettersson, U. and Jarzabek, S. Industrial
Experience with Building a Web Portal Product
Line Using Lightweight Reactive Approach. in
Proc. European Software Egineering Conference
and ACM SIGSOFT Symposium on the
Foundations of Software Engineering. 2005.
Lisbon.

[28] Apel, S., T. Leich, and G. Saake. Aspect
Refinement in Software Product Lines. in In
Aspects and Software Product Lines (ASPL'05):
An Early Aspects Workshop at SPLC-Europe'05.
2005. Rennes, France.

28

REFERENCES

Anastasopoules, M. a. G., C. (2001). Implementing Product Line Variabilities.

Symposium on Software Reusability. Proceedings of the 2001 symposium on

Software reusability: putting software reuse in context . Ontario, Canada.

Aquil Saleh, M. (2005). Software Product Line Engineering Based on Web Services.

Information and Software System Engineering. Fairfax, Virginia, George Mason

University. Doctoral of Philosophy: 277.

Basit, H., A., Rajapakse, Damith C. and Jazarbek, S. (2005). Beyond Templates: a

Study of Clones in the STL and Some General Implications. Conference on

Software Engineering, ICSE'05, Missouri, USA, ACM.

Batory, D., Singhal, V.,Sirkin, M. and Thomas, J. (1993). Scalable Software

Libraries. ACM SIGSOFT'93: Symposium on the Foundations of Software

Engineering, Los Angeles, California, ACM.

Baxter, I. D. (2002). Transformation Systems: Generative Reuse for Software

Generation, Maintenance and Reengineering, Springer-Verlag Berlin

Heidelberg.

Becker, M. Mapping Variabilities onto Product Family Assets.

Biggerstaff, T. J. (1998). "A Perspective of Generative Reuse. ." Annals of Software

Engineering 5: 169-226.

Biggerstaff, T. J., Perlis, Alan, J (1989). Software Reusability Concepts and Models,

 30

ACM Press and Addision Wesley.

Biggerstaff, T. J., Perlis, Alan, J (1989). Software Reusability Concepts and Models,

ACM Press and Addision Wesley.

Cheong, Y. C. a. J., S. (1999). Frame-based Method for Customizing Generic

Software Architecture. Symposium on Software Reusability, SSR'99, Los

Angeles, USA.

Cleaveland, C., J. (1988). "Building Aplication Generators." IEEE Software: 25–33.

Crnkovic, I. (2003). Component-based Software Engineering-New Challenges in

Software Development. 25th Int Conference Information Technology Interfaces

IT 2003, Cavtat, Croatia.

Czarnecki, K. a. E., U. (1999). Components and Generative Programming, Springer-

Verlag/ACm Press.

Czarnecki, K. a. E., U. (2000). Generative Programming- Methods , Tools and

Applications. Boston MA, Addison-Wesley.

Frakes, W. B., Kang, K. (2005). "Software Reuse Status and Future." IEEE Trans.

On Software Engineering 31. No 7: 529-536.

Goebl, W. (2000). A Survey and a Categorization Scheme of Automatic

Programming Systems. GCSE'99, Springer-Verlag Berlin Heidelberg.

Harsu, M. (2002). A Survey on Domain Engineering, Institute of Software Systems,

Tampere University of Technology: 48.

Hwang, H.-J. (2006). Domain Analysis for Components Based Developments

International ConferenceComputational Science and Its Applications - ICCSA

2006 Glasgow, UK, Lecture Notes in Computer Science, Springer Berlin /

Heidelberg

 31

Jacobson, I., Griss, M., Jonsson, P. (1997). Software Reuse Architecture, Process and

Organization for Business Success, ACM Press.

Jaring, M. a. B., J. (2004). Variability Dependencies in Product Family Engineering.

PFE2003, Springer-Verlag Berlin Heidelberg.

Jarzabek, S. (1995). ”From reuse library experiences to application generation

architectures." ACM: 114-122.

Jarzabek, S. a. S., L. (2003). Adapting Redundancies with a "Composition with

Adaptation" Meta-programming Technique. European Software Engineering

Conference and ACM SIGSOFT Symposium on the Foundation of Software

Engineering, Helsinki, ACM Press.

Jarzabek, S., Knauber, P. (1999). "Synergy between Component-based and

Generative Approaches." Lecture Notes in Computer Science, Springer Verlag:

429-445.

Jawawi D. N. A., Rosbi Mamat and Safaai Deris, “Analysis Patterns for Component-based

Development of Autonomous Mobile Robot Software.” Proc. Of The 2nd International

Conference on Mechatronics 2005, Vol. 1., May 2005, Kuala Lumpur, pp. 185-192.

Jun, Y. a. J., Stan (2005). "Applying a Generative Technique for Enhanced

Genericity and Maintainability on the J2EE Platform."

Krueger, C., W. (1992). "Software Reuse." ACM Computing Surveys 24(2): 132-183.

Lubars, M., D. (1991). Reusing Designs for Rapid Application Development.

ICC'91.

Macala, R. M., Stuckey, L and Gross, D. (1996). "Managing Domain-Specific,

Product-Line Development." IEEE Software.

 32

Neighbors, J. M. (1980). Software Constructions Using Components. Department of

Information and Computer Science, University of California, Irvine.

Nitto, E. a. F., A. (1997). Product Lines: What Are the Issues, IEEE Press.

Parnas, D. (1976). "On the Design and Development of Program Families." IEEE

Transactions on Software Engineering SE-2(1): 1-9.

Rajapakse, D., C. and Jazarbek, S. (2005). An Investigation of Cloning in Web

Application. International Conference on Web Engineering (ICWE'05).

Saleh, M. a. G., H. (2005). Separation of Concerns in Software Product Line

Engineering. International Conference on Software Engineering, St. Louis,

Missouri.

Thibault, S. a. C., Charles (1997). A framework for application generator design.

Symposium on Software Reusability, Proceedings of the 1997 symposium on

Software reusability, Boston, United States, ACM Press New York, NY, USA

Zhang, H. J., S. and Yang, B. (2003). Quality Perdiction and Assesment for Product

Line. Springer-Verlag Berlin Heidelberg: 681-695.

 33

APPENDIX A

Papers Published from this Research Work

Shahliza Abd Halim, Dayang Norhayati Abg Jawawi and Safaai Deris, “Underlying
Software Product Line Methods and Generator Implementation”, FSKSM
Postgraduate Annual Research Seminar 2007 (PARS’s 07), July 2007, Skudai.

Shahliza Abd Halim, Dayang Norhayati Abg Jawawi and Safaai Deris, “Generator
Technologies Using Fundamental Methods in Software Product Line”, Malaysian
Software Engineering Conference (MySEC2007), December 2007, Kuala
Lumpur.

	I8 CIII.pdf
	1. Introduction
	2. Research Framework
	
	3. Generator Application and its Architecture
	4. SPL Implementation Method to Handle Variability
	
	4.1 Separation of Concern
	4.2 Stepwise Refinement
	5. State of Art for the SPL Variability Implementation Method
	6. Conclusion and Future Work
	
	6. References

	I9 CIV.pdf
	
	1. Introduction
	2. Fundamental Methods in SPL
	
	2.1 Separation of Concern
	2.2 Stepwise Refinement
	
	3. Review Framework
	
	3.2 Composition
	

	3.3 Metaprogramming
	

	6. References

