
VOT 71910

DEVELOPMENT OF OPTIMIZATION ALGORITHMS FOR

UNCERTAIN NONINEAR DYNAMICAL SYSTEM

(PEMBANGUNAN ALGORITMA PENGOPTIMUMAN UNTUK

SYSTEM TAK LINEAR TAK PASTI)

MOHD ISMAIL BIN ABD AZIZ

ROHANIN BINTI AHMAD

RESEARCH VOT NO:

71910

Jabatan Matematik

Fakulti Sains

Universiti Teknologi Malaysia

2007

 ii

 iii

ACKNOWLEDGEMENT

 I would like to express my utmost gratitude to Research Management Center,

Universiti Teknologi Malaysia for providing the research grant to support this work.

Most of the work presented in this report is jointly by the written of Dr. Rohanin

Ahmad, my PhD student. Thank you for your hardwork and perservearance in

contributing to this research.ssor ouDr. Mohd. Ismail Abd. Aziz for his excellent

supervision. My thanks to my MSc project students, Ng Hai Yan, Kek Sie Long and

Norliza Abdullah their contribution in testing some features of the algorithms. I

would also like to thank Dr. V.M. Becerra (University of Reading, UK) for his idea

on using momentum terms and his valuable help to us especially on the

understanding of MATLAB. A special thank you for Prof. P.D.Roberts (City

University, UK) for his valuable papers, kind words, and suggestions. Last but not

least, I would like to convey my most sincere gratitude to my friends and colleagues

who have contributed directly or indirectly towards this research.

 iv

DEVELOPMENT OF OPTIMIZATION ALGORITHMS FOR UNCERTAIN

NONINEAR DYNAMICAL SYSTEM

(Keywords:Optimal Control,nonlinear, model reality,DISOPE, momentum terms)

 Nonlinear optimal control problems are problems involving real world
situations where the objectives are the maximization of the return from, or the
minimization of the cost of, the operation of physical, social, and economic
processes. Algorithms used to solve these problems are expected to satisfy the
objectives consistently and since time translates into cost, must also be fast. An
algorithm that definitely can satisfy the objectives is the Dynamic Integrated Systems
Optimization and Parameter Estimation (DISOPE) algorithm. However, this
algorithm has an inherent problem of slow convergence due to its gradient descent
type updating mechanism. Hence, the purpose of this study is to overcome this
convergence problem by modifying the mechanism. Two approaches were chosen
for this purpose. The first is the use of momentum terms and the second is the
parallel tangent method. Two new algorithms named DISOPE-MOMENTUM and
DISOPE-PARTAN sprouted from these modifications and extensive simulations
were performed to observe their performances. To strengthen the findings,
theoretical analyses were done on each algorithm. These include optimality,
stability, convergence, and the rate of convergence analyses. Based on the results of
these simulations, we compared the number of iterations needed by each algorithm to
arrive at the optimal solution and the CPU time taken for each algorithm to execute
the search. From the theoretical analyses, comparisons were done on the speeds of
contraction of the algorithms. Both new algorithms managed to arrive at the
optimum in fewer numbers of iterations and in shorter CPU times than DISOPE
without compromising on the accuracy of the solutions. The new algorithms also
boast faster contractions. Both new algorithms performed better than DISOPE. This
study succeeded in overcoming the problem of slow convergence and with the
modifications, the new algorithms become more efficient in solving the optimal
control problems.

Key researchers:

Asc. Prof. Dr. Mohd Ismail Abd Aziz
Rohanin Ahmad

 Email: m_ismail@mel.fs.utm.my
 Tel. No: 07-5534231 / 019-7538204
 Vote No: 71910

 v

ABSTRAK

 Masalah kawalan optimum tak linear adalah masalah dunia nyata yang
berobjektifkan pemaksimuman hasil, atau peminimuman kos operasi fizikal, proses-
proses sosial atau ekonomi. Algoritma yang ingin digunakan untuk menyelesaikan
masalah-masalah ini harus berupaya memenuhi objektif tersebut, dan disebabkan
masa boleh ditafsir sebagai kos algoritma ini juga harus pantas. Sebuah algoritma
yang berupaya memenuhi objektif di atas ialah algoritma Pengoptimuman Sistem
Bersepadu Dinamik dan Penganggaran Parameter. Walau bagaimanapun, algoritma
ini mempunyai masalah penumpuan lamban yang diwarisi daripada mekanisme
pengemaskiniannya yang tergolong ke jenis penurunan gradien. Tujuan kajian ini
ialah mengatasi masalah penumpuan di atas dengan cara mengubahsuai mekanisme
tersebut. Dua pendekatan telah dipilih untuk tujuan ini. Yang pertama
menggunakan sebutan momentum dan yang kedua menggunakan kaedah tangen
selari. Dua algoritma baru yang dinamakan DISOPE-MOMENTUM dan DISOPE-
PARTAN terhasil daripada ubahsuaian ini dan simulasi secara ekstensif telah
dijalankan untuk meninjau prestasi masing-masing. Untuk memampankan hasil
penemuan, analisis secara teori telah dilakukan untuk setiap algoritma. Analisis-
analisis ini termasuk analisis keoptimuman, kestabilan, penumpuan dan analisis
kadar penumpuan. Berdasarkan hasil simulasi, kami bandingkan bilangan lelaran
yang diperlukan oleh setiap algoritma untuk mencapai penyelesaian optimum dan
juga masa CPU yang diambil oleh setiap algorithma untuk melaksanakan carian.
Daripada analisis secara teori, perbandingan telah dibuat terhadap kecekapan,
kerumitan dan kepantasan pengecutan algoritma. Kedua-dua algoritma baru ini
berupaya mencapai optimum masing-masing dengan bilangan lelaran dan masa CPU
kurang daripada DISOPE, tanpa menjejas kejituan penyelesaian. Pengecutan
algoritma-algoritma ini juga lebih pantas. Kedua-dua algoritma baru ini
melaksanakan tugas lebih baik daripada DISOPE. Kajian ini berjaya mengatasi
masalah penumpuan lamban dan dengan pengubahsuaian yang disyorkan, algoritma-
algoritma baru ini menjadi lebih cekap dalam menyelesaikan masalah kawalan
optimum.

 vi

TABLE OF CONTENTS

CHAPTER TITLE PAGE

 TITLE PAGE i

 DECLARATION ii

 ACKNOWLEDGEMENTS iii

 ABSTRACT iv

 ABSTRAK v

 TABLE OF CONTENTS vi

 LIST OF TABLES xi

 LIST OF FIGURES xii

1 INTRODUCTION 1

 1.0 The Continuous Optimal Control Problem 1

 1.1 Methods for Solving the Continuous Optimal

 Control Problem

2

 1.2 The Variational Approach to Optimal

 Control Law

3

 1.2.1 The Necessary Optimality Conditions 4

 1.2.2 Difficulties Facing the Nonlinear Optimal

 Control Problems

5

 1.3 LQR Problem as Model 6

 1.3.1 Solving the LQR Optimal Control Problem 7

 vii

 1.4 Model-Reality Differences 9

 1.4.1 DISOPE Algorithm 9

 1.4.2 Problems Faced by Gradient Descent

 Methods

10

 1.5 Statement of Problem 12

 1.6 Research Objectives 12

 1.7 Scope of Research 12

 1.8 Contributions of the Research 13

 1.8.1 Contributions to Algorithm Development 14

 1.8.2 Contribution to Theoretical Analysis 14

 1.8.3 Contribution to Software Implementation and

 Algorithm Testing

15

 1.8.4 Contribution to the Field of Gradient Descent

 Algorithm

15

 1.9 Outline of Thesis 16

 1.10 Summary and Conclusion 17

2 LITERATURE REVIEW 18

 2.1 Introduction 18

 2.2 Other Approaches in Solving Optimal Control

 Problems

19

 2.3 Background of DISOPE Algorithm 21

 2.4 Gradient Descent Algorithm 23

 2.5 Back Propagation Algorithm 27

 2.5.1 A Perceptron 27

 2.5.2 Multilayer Perceptron 29

 2.5.3 Representation of the Back Propagation

 Algorithm

30

 2.5.4 Approaches to Overcome the Slow

 Convergence

30

 2.6 Momentum Term 35

 2.7 Parallel Tangent 37

 2.8 Multipass Processes 40

 viii

 2.8.1 Link to 2-D Systems 41

 2.8.2 Abstract Model of Multipass Processes 42

 2.8.3 An Abstract Model of the Linear Multipass

 Process of Constant Pass Length in the

 Form of a Unit Memory Repetitive Process

44

 2.8.4 Properties of the Linear Unit Memory

 Repetitive Processes

44

 2.8.5 DISOPE as 2-D System 46

 2.9 Summary and Conclusion 47

3 DISOPE ALGORITHM 49

 3.1 Introduction 49

 3.2 Problem Formulation 49

 3.3 DISOPE Algorithm 55

 3.4 DISOPE with LQR as Model 55

 3.5 The Algorithm Mapping of DISOPE 58

 3.6 The Optimality Analysis 63

 3.6.1 A Unit Memory Repetitive Process

 Interpretation

64

 3.6.2 DISOPE as Linear Multipass Process 66

 3.6.3 The Optimal Condition of ROP and Its Linear

 Unit Memory Repetitive Process Form

69

 3.7 The Stability and Convergence Analyses of DISOPE 72

 3.7.1 The Stability Analysis 72

 3.7.2 The Convergence Analysis 74

 3.8 Numerical Examples 76

 3.9 Summary and Conclusion 85

4 FURTHER ANALYSES OF DISOPE 86

 4.1 Introduction 86

 4.2 Decomposition of DISOPE 87

 ix

 4.3 Map C as a Gradient Descent Algorithm 88

 4.3.1 Generating the Error Function 89

 4.4 DISOPE and the Basic Characteristics of the Gradient

 Descent Method

91

 4.4.1 Numerical Examples 92

 4.5 The Analysis of the Rate of Convergence 95

 4.5.1 Establishing the Existence and Uniqueness of

 y) in DISOPE

96

 4.5.2 Establishing the Convergence Rate 98

 4.6 Summary and Conclusion 101

5 DISOPE-MOMENTUM ALGORITHM 103

 5.1 Introduction 103

 5.2 Modification of Map C 104

 5.2.1 Similarities Between Map C and BP

 Algorithm

104

 5.2.2 The Inclusion of the Momentum Term 105

 5.3 The Effects of the Momentum Term on DISOPE 107

 5.3.1 Numerical Examples 108

 5.4 DISOPE-MOMENTUM Algorithm 115

 5.6 Summary and Conclusion 118

6 DISOPE-PARTAN ALGORITHM 119

 6.1 Introduction 119

 6.2 Modification of Map C 119

 6.2.1 The Gradient-PARTAN Method 120

 6.2.2 The Incorporation of PARTAN to Map C 122

 6.3 The Effects of Gradient-PARTAN 124

 6.3.1 Numerical Examples 125

 6.4 DISOPE-PARTAN Algorithm 132

 6.6 Summary and Conclusion 135

 x

9 CONCLUSION 136

 9.1 Introduction 136

 9.2 Summary of significant Findings 136

 9.3 Further Research 140

 REFERENCES 141

 xi

LIST OF TABLES

TABLE NO. TITLE PAGE

3.1 The result of the algorithm’s performance with different

values of the relaxation gains and convexification

factors

78

3.2 The algorithm’s performance for Example 3.2 81

3.3 The simulation results of Example 3.3 83

4.1 Results of simulation with different values of Q 93

4.2 Results of simulation with different values of R 94

5.1 Algorithm’s performance of Example 5.1 with the

addition of momentum terms

108

5.2 The comparison of the performance of DISOPE and

DISOPE-MOMENTUM foe Example 5.2

112

6.1 The algorithm’s performance of Example 6.1 with the

incorporation of PARTAN step

126

6.2 Comparisons of the final performance of DISOPE and

DISOPE-PARTAN for Example 6.2

129

 xii

LIST OF FIGURES

FIGURE NO. TITLE PAGE

2.1 The different terrains of the surface of a nonlinear

function

24

2.2 The oscillation phenomenon 25

2.3 The zigzagging phenomenon 25

2.4 The schematics of the problems faced by gradient

descent algorithms

27

2.5 A single layer perceptron 28

2.6 A simple three-layer perceptron 29

2.7 The locus of weights with the momentum terms 36

2.8 Locus for the search for a quadratic function 38

2.9 The points of tangency of the two parallel lines define

a line that parallels the ravine

39

2.10 The path taken by the gradient-PARTAN. 40

3.1 The flow chart of DISOPE algorithm 56

3.2 The final responses of DISOPE for Example 3.1 (vii) 79

3.3 The final responses of DISOPE for Example 3.2 (iv) 82

3.4 The final responses of DISOPE for Example 3.3 (iii) 84

4.1 Composite map of DISOPE 88

4.2 Comparisons of closeness between two different initial

solutions and the optimal solution (a) Result for Q =

2I2; (b) Result for Q = [22.40 4.480; 4.480 0.896]

93

5.1 The effects of the momentum terms on the search

direction

106

5.2 The comparison of the performance indices of

DISOPE and DISOPE-MOMENTUM, for Case (i) of

 xiii

Example 5.1 110

5.3 The comparison of the control variation norms of

DISOPE and DISOPE-MOMENTUM for Case (i) of

Example 5.1

111

5.4 The comparison of the performance indices of (a)

DISOPE and; (b) DISOPE-MOMENTUM, for Case

(i) of Example 5.2

113

5.5 The comparison of the control variation norms of (a)

DISOPE and (b) DISOPE-MOMENTUM, for Case (i)

of Example 5.2

114

5.6 The flow chart of DISOPE-MOMENTUM algorithm 117

6.1 The zigzagging phenomenon 121

6.2 The optimum is reachable along the line through p0

and p2

122

6.3 The vectors involved in the general gradient-PARTAN

search

123

6.4 The comparisons between the performance indices of

(a) DISOPE; (b) DISOPE-PARTAN

127

6.5 The comparisons between the control variation norms

of DISOPE and DISOPE-PARTAN of Example 6.1

128

6.6 The graph showing the final states x(t) of Case (iii)

satisfying the end-point condition of x1(2) = 0

130

6.7 The comparisons of the performance indices of (a)

DISOPE and (b) DISOPE-PARTAN of Case (iii)

131

6.8 Comparisons between the control norms of DISOPE

and DISOPE-PARTAN of Case (iii)

131

6.9 The flow chart of DISOPE-PARTAN algorithm 134

 xiv

LIST OF SYMBOLS AND ABBREVIATIONS

ia - The input of node i

A - A time-invariant state matrix for the system dynamics of

an LQR model

, , ,

, ,
mp mp mp

mp mp mp

A B C

D F J
⎫⎪
⎬
⎪⎭

 - Constant coefficient matrices of the multipass processes

1ib + - The initial conditions, disturbances, and control input

effects

B - A time-invariant control matrix for the system dynamics

of an LQR model

0B - As defined in Equation (3.76)

*A - As defined in Equation 3.22
*B - As defined in Equation 3.22

C - As defined in Equation 3.46

1C - As defined in Equation 8.33

NC - The learning rate

2n mC + - Bounded mappings

()id t - Interpass disturbance

D - A set of constraints

1D - As defined in Equation 3.79

1
MD - As defined in Equation 7.16

3D - As defined in Equation 8.32

()E w - Error function of a back propagation algorithm
() ()i
yE t - Error function of DISOPE

 xv

nE - The Euclidean space

0E - As defined in Equation 3.83

0E% - As defined in Equation 3.82

1 2,E E - Matrices representing the contributions from 1 2, r r

Eς - A Banach space

()f ⋅ - Plant dynamics of the model
*()f ⋅ - Plant dynamics of the real process

(), ()f n g n - Complexity functions, with n input size

()F λ - As defined in Equation 3.97

()PF λ - As defined in Equation 8.31

1 2(), ()g g⋅ ⋅ - Vectors representing the model reality differences

G - The gradient descent direction

()G t - A m n× Kalman gain matrix

h - Step size

1 2 3, ,h h h - Lipschitz constants

1 2 3, ,DM DM DMh h h - Lipschitz constants for DISOPE-MOMENTUM

h - Input size in time complexity analysis

()H ⋅ - The Hamiltonian

,i j - Indices

I - The identity matrix

J - The performance index of the LQR model

J
(

 - As defined in Equation 3.65
*J - The real cost functional or performance index

J ′ - The Lagrangian functional

eaJ - The performance index of the augmented EOP

EOPJ - The performance index of EOP

MOPJ - The performance index of MOP

MMOPJ - The performance index of MMOP

()K t - A time-varying n n× matrix

 xvi

yK - As defined in Equation 3.41

1 2,l l - Lines

()L ⋅ - Performance index of the model
*()L ⋅ - Real performance measure function

Lς - A bounded linear operator of Eς into itself

M - The momentum direction

(()), (())
(()), (())

o f n O f n
f n f n

⎫
⎬Θ Ω ⎭

 -

Sets of complexity functions

()p t - The costate vector

0 1, ,p p K - Search points

P - PARTAN step direction
* ()

0((), ,)i
fP y t t t - As defined in Equation 3.52

yP - A matrix of PARTAN parameters

Q - Symmetric state weighting matrix for the LQR model

()r Lς - Spectral radius

1 2, r r - Scalar modification factors

R - Symmetric control weighting matrix for the LQR model

,R Q - The augmented weighting matrices

,S V - Weights for the terminal conditions of the LQR model

Ŝ - An arbitrary set in the Euclidean space

jS - The sum of all weighted inputs from node i

,t τ - Time

0t - Initial time

,ft T - Terminal time

jt - A set of target outputs

()u t - The control vector
ou - Optimal control

ˆ ˆ ˆ(), (), ()u t x t p t - Variables used in the optimization step

 xvii

(), (), ()v t z t P t - Variables used in the updating step
*V - As defined in Equation 3.22

w - A vector of all weights between nodes and i j

yW - A matrix of momentum parameters

Wς - A linear subspace

()x t - The state vector
ox - Optimal state

0x - Initial state

jx - Actual output of a network

() ()iy t - The process output

y) - Limit point of the sequence of terms

()iY t - Pass profile i

,Y y∞ ∞ - The limit profile

(), ()t tα γ - Parameter estimates for the value differences between

reality and model

sβ - A search parameter

()
1
iΓ - As defined in Equation 3.23

()
2
iΓ - As defined in Equation 3.23

η - Step size parameter of the gradient descent algorithm

0(, ,)ft t tη - As defined in Equation 3.52

mη - Momentum Learning rate of the back propagation

θ - A predetermined threshold value

1 2 3, ,ϑ ϑ ϑ - Contraction coefficients

κ - A constant; [0,)κ ∈ ∞

(), (),
(), ()
t t
t t

λ β
μ ξ

⎫
⎬
⎭

 - Scalar multipliers

(), ()t tλ β - Augmented scalar multipliers

D - Number of instances in time complexity analysis

μ 0(, ,)ft t t - As defined in Equation 3.52

 xviii

,x pμ μ - As defined in Equation 3.50

, ,u x p℘ ℘ ℘ - PARTAN parameters

ς - Pass length

0(,)ft tσ - As defined in Equation 3.109

()φ ⋅ - Final weighting function – scalar valued

(,)tφ τ - As defined in Equation 3.33

21 0 2(,), (,)ft t tφ φ τ - As defined in Equation 3.36

11 0 1(,), (,)ft t tφ φ τ% % - As defined in Equation 3.37

21 0 21 0

2

(,), (,),

(,)
f f

f

t t t t

t

φ φ

φ τ

⎫⎪
⎬
⎪⎭

% %

%

-

As defined in Equation 3.38

Φ - Symmetric terminal weighting matrix for the LQR model

Φ
(

 - As defined in Equation 3.63
*Φ - Real terminal measure

χ - Lagrange multiplier

Ψ
(

 - As defined in Equation 3.64
*Ψ - Real terminal constraint vector
*Ψ - As defined in Equation 3.36
*Ψ% - As defined in Equation 3.37

, , ,u x pϖ ϖ ϖ ϖ - Momentum parameters

0(, , ,)ft t t τΩ - As defined in Equation 3.53

,f g∇ - Gradient of a function
()() ∞⋅ - Limit profiles

2
⋅ - The Euclidean norm used in the thesis

DISOPE - Dynamic Integrated Systems Optimization and

Parameter Estimation

DISOPE-

MOMENTUM

- DISOPE with momentum terms

DISOPE-PARTAN - DISOPE with PARTAN step

EOP - Expanded Optimal Control Problem

ISOPE - Integrated Systems Optimization and Parameter

 xix

Estimation

MMOP - Modified Model Based Optimal Control Problem

MOP - Model Based Optimal Control Problem

PARTAN - Parallel tangent

1

CHAPTER 1

INTRODUCTION

1.0 The Continuous Optimal Control Problem

Suppose that a plant is described by the time-varying dynamical equation
*((), (),)x f x t u t t=& (1.1)

where * : n m nf × × →¡ ¡ ¡ ¡ representing a set of equations describing the process

with () nx t ∈ ¡ as the state vector, () mu t ∈ ¡ as the control input, and t∈ ¡ as the

time. Let the functional

0

* *(()) ((), (),)ft

f t
J x t L x t u t t dtφ= + ∫ (1.2)

be the associated cost function or performance index, where 0[,]ft t is the time

interval. In Eq. (1.2) : nφ →¡ ¡ is a scalar valued function called the final

weighting function, which depends on the final state and final time. The weighting

function * : n mL × × →¡ ¡ ¡ ¡ is a continuous function, and it depends on the state

and input at intermediate times in 0[,]ft t . In both Eqs. (1.1) and (1.2), *()⋅ represents

the original problem formulation.

By assuming that the state of the system at initial time is given with value

0 0()x t x= , and with Eq. (1.1) as the only constraint considered on the values of the

control and state variables, the optimal control problem can be stated as follows.

Find the control input ()o mu t ∈ ¡ on the time interval 0[,]ft t that drives the plant

(1.1) along a trajectory ()o nx t ∈ ¡ such that the performance index given by Eq.

(1.2) is minimized. Mathematically, the problem can be written as follows.

 2

0

* *

()
min (()) ((), (),)ft

f tu t
J x t L x t u t t dtφ= + ∫ (1.3)

subject to
*((), (),)x f x t u t t=& (1.4)

0 0()x t x= (1.5)

 In order to emphasize time as the argument of the functions, they are referred

to as either the control trajectory, which means the time path of the control vector, or

the state trajectory, which means the time path of the state vector. If time does not

enter explicitly as an argument of *f , we say that the system is autonomous.

1.1 Methods for Solving the Continuous Optimal Control Problem

Two established methods for accomplishing the minimization are the method

of Dynamic Programming developed by Bellman (1957) and the variational

approach of Pontryagin (Pontryagin et al. 1962).

The method of dynamic programming can handle control and state

constraints (Becerra, 1994). However, when solving realistic problems, the dynamic

programming algorithms face problems referred to as the “curse of dimensionality”.

This curse causes the algorithms to exceed the memory capacity of computers when

the system has more than two or there state variables. Nevertheless, if the state space

is limited to a region close to a nominal optimum path, the Dynamic Programming

problem can often be well approximated by a linear-quadratic problem, that is a

problem with linear (time-varying) dynamics and a quadratic performance index

whose (time-varying) weighting matrices are the second derivatives of the states and

the controls (Bryson, 1996). This is the classical Accessory Minimum problem, the

basic problem for examining the second variation in the calculus of variation. The

Accessory Minimum problem can be formulated as a time-varying linear two-point

boundary-value problem.

 3

The variational approach of Pontryagin is called the minimum principle. It

generalizes the calculus of variations to include problems where optimization is not

achieved by calculus. It is an extension of Weierstrass’ necessary condition to cases

where the optimal functions are bounded. It follows directly from the general

continuous-time dynamic programming equations.

The minimum principle deals with one extremal at a time. In optimal control

terminology, its states that a minimizing path must satisfy the Euler-Lagrange

equations where the optimal controls maximize the Hamiltonian within their

bounded region at each point along the path (Hocking, 1991). This transforms the

calculus of variation problem to a nonlinear problem at each point along the path.

1.2. The Variational Approach to Optimal Control Law

The algorithms discussed in this research used the variational approach in

their course toward finding the solutions of the optimal control problems. Thus we

steer our discussion in the direction of this approach.

The optimal control problem defined in Eqs. (1.3), (1.4), and (1.5) in Sec.1.1

is a constrained minimization problem. The variational approach for solving this

problem is to eliminate the existence of constraints and turn the problem into an

unconstrained problem. Adjoining the constraints to the performance index using

Lagrange multipliers does this. Thus a new functional called the Lagrangian

functional is defined. This approach was introduced by Lagrange (Rao, 1984).

According to the Lagrange theory, the minimum of the original problem is achieved

by finding the minimum of the new unconstrained functional (Lewis and Syrmos,

1995).

Suppose that ()T np t ∈ ¡ is the multiplier for the system defined by Eq. (1.4).

Then, the new Lagrangian functional to be minimized can be defined as

0

((),)+ [((), (),) () (((), (),))]
T T

t
J x T T L x t u t t p t f x t u t t x dtφ′ = + −∫ & (1.6)

 4

where ()p t is usually referred to as the costate function. From Eq. (1.6), if we define

a function termed the Hamiltonian, which is

 ((), (), (),) ((), (),) () ((), (),)TH x t u t p t t L x t u t t p t f x t u t t= + , (1.7)

then Eq. (1.6) can be rewritten as

0

((),)+ [((), (), (),) ()]
T T

t
J x T T H x t u t p t t p t x dtφ′ = −∫ & (1.8)

The problem is now reduced to a problem of finding the minimum of a

functional represented by Eq. (1.8). From the calculus of variation, we know that the

minima of such functionals happened at points where the gradients have the values of

zero. The conditions where the gradients diminished are called the necessary

optimality conditions. Thus to find the solution of this problem, we have to clearly

define these conditions.

1.2.1 The Necessary Optimality Conditions

The necessary optimality conditions for solving Eq. (1.8) are derived by

setting all the gradients of the Hamiltonian with respect to , , and x u p , respectively,

to zero (Lewis and Syrmos, 1995). The criteria are listed below.

() 0 or ()x xH p t p t H∇ + = − = ∇& & (1.9)

0u H∇ = (1.10)

 () 0 or ()p pH x t x t H∇ − = = ∇& & (1.11)

Eqs. (1.9), (1.10), and (1.11) are also referred to as the costate equation, stationarity

condition, and the state equation respectively. Eqs. (1.9) and (1.10) are also called

Euler’s or Euler-Lagrange equations (Lewis and Syrmos, 1995; Bryson, 1996). The

solution of the optimal control problem defined by Eqs. (1.3), (1.4), and (1.5) is

arrived at by solving Eqs. (1.9), (1.10), and (1.11) together with the following

boundary conditions

0 0()x t x= (1.12)

and
 () (())

f
f x t t

p t x tφ
=

= ∇ (1.13)

 5

 Even though the manner for finding the solution of the continuous optimal

control problem is well outlined, the actual job of finding the solution is by no means

effortless. The variational approach to the necessary optimality conditions leads to a

nonlinear two-point boundary-value problem (Kirk, 1970) having boundary

conditions specified at two separate points in time (Jacob, 1974) given by Eqs. (1.12)

and (1.13).

The optimal control law depends on the solution of the nonlinear two-point

boundary-value problem, which in general, are difficult problems to solve (Kirk,

1970; Jacob, 1974; Bryson and Ho, 1975; Lewis and Syrmos, 1995) due to the high

degree of nonlinearity involved. Analytical solutions are close to impossible;

therefore, numerical solutions are usually sought for. Techniques available for

solving the nonlinear two-point boundary-value problem include the steepest

descent, variations of extremals, and quasilinearization (Kirk, 1970). All these

methods begin with the necessary optimality conditions obtained from the

application of the minimum principle of Pontryagin.

1.2.2 Difficulties Facing the Nonlinear Optimal Control Problems

Most optimal control problems are very nonlinear. Without a doubt, a ‘good’

model of the real dynamical process must have high degree of nonlinearity.

However, using a good model representation of the real problem does not translate

into ease of solution. Basically, there are at least three foreboding problems with

nonlinear optimal control problem as described above. The first one is due to the

variational approach itself, which ends up with a nonlinear two-point boundary-value

problem as the necessary optimality conditions. As mentioned earlier, these

problems are difficult to solve.

The second problem is associated with having a nonlinear function as the

objective function. The objective function has many local minima that are not the

global optimum. If the search used is local in nature, the global optimum might not

even be located. The third problem is due to the nonlinear set of constraints. The set

 6

of constraints might define a feasible region that is difficult to find (Shang, 1997).

Furthermore, even when the feasible region is located, if both the objective functions

and the set of constraints are not convex, the convergence to a global optimum is not

guaranteed (Stoer and Witzgall, 1970; Koo, 1977; Cesari, 1983; Bunday, 1984; Rao,

1984; Beale, 1988; Shang, 1997).

Hence, a class of methods tries to do away with the ‘good’ model and instead

use ‘easy-to-solve’ models to approximate the original problems. Here is where the

Linear-Quadratic-Regulator (LQR) problem comes in handy.

1.3 LQR Problem as Model

 To overcome the difficulties mentioned above, we resort to modeling the

original problem defined by Eqs. (1.3) - (1.5), which consisted of both nonlinear

system dynamics and performance index with ‘simpler’ functions. For this purpose,

we use the linear-quadratic regulator (LQR) problem. With LQR as model, the

system dynamics are represented as linear differential equations and the performance

index is a quadratic function in terms of the state and control variables. In LQR

problems, the resulting two-point boundary-value problem is linear and is relatively

easy to solve (Becerra, 1994), obtaining a linear optimal control law (Kirk, 1970). In

LQR problems it was found that it is possible to obtain the optimal law, by

numerically integrating a matrix differential equation of the Riccati type.

With the LQR as model, the optimal control problems are defined as follows:

0()

1 1min () () () () () ()
2 2

ftT T T
f f tu t

J x t x t x t Qx t u t Ru t dt⎡ ⎤= Φ + +⎣ ⎦∫ (1.14)

subject to
() ()x Ax t Bu t= +& (1.15)

0 0()x t x= (1.16)

with and QΦ are symmetric and positive semi-definite, and R symmetric and

positive definite weighting matrices having the appropriate dimensions. A and B are

 7

the time-invariant matrices of the system dynamics and control distribution

respectively. The Hamiltonian function defined in Eq. (1.7) becomes

() ()1 () () () () () () ()
2

T T TH x t Qx t u t Ru t p t Ax t Bu t= + + + (1.17)

with the state equation becoming
() ()x Ax t Bu t= +& (1.18)

and the costate equation
() () ()Tp t Qx t A p t− = +& (1.19)

The stationarity condition is now
0 () ()TRu t B p t= + (1.20)

Furthermore, by rearranging Eq. (1.20) we get the basic expression for the control

input as

 1() ()Tu t R B p t−= − (1.21)

The boundary conditions become

0 0()x t x= (1.22)

and

() (()) () ()
f

f x f ft t
p t x t t x tφ

=
= ∇ = Φ (1.23)

1.3.1 Solving the LQR Optimal Control Problem

 Kalman showed that the linear quadratic optimal control problem could be

solved numerically in an elegant, efficient manner with a “backward sweep” of a

matrix Ricatti equation (Bryson, 1996). Jacopo Francesco Ricatti (1676-1754) gave

the scalar form of his equation for solving linear second-order two-point boundary-

value problems (Bryson, 1996). With LQR as the model, the problem is specified by

Eqs. (1.18) and (1.19). To apply the method, we first assume that () and ()x t p t

satisfy a linear relationship in the form of

() () ()p t K t x t= (1.24)

for all 0[,]ft t t∈ , where ()K t is a time-varying n n× yet to be determined matrix

function. The following noniterative solution procedure, outlined by Becerra (1994),

 8

is to be followed to get the solution of the LQR optimal control problem using the

back-sweep method.

Procedure 1.1: Simple LQR solution

Step 1: Solve backward from 0to ft t the following Ricatti differential equation, with

terminal condition () ()f fK t t= Φ :

1() () () () ()T T TK t K t BR B K t A K t K t A Q−= − − +& (1.25)

Step 2: Compute the state ()x t , 0[,]ft t t∈ by integrating from the initial condition

0 0()x t x= the following equation:

()() () ()x t A BG t x t= −& (1.26)

 where 1() ()TG t R B K t−= is the Kalman gain.

Step 3: Compute the optimal control ()u t , 0[,]ft t t∈ from the state feedback control

law:

() () ()u t G t x t= − (1.27)

With LQR as model, the first of the problems listed in Section 1.2.5 above is,

without a doubt, solved. The beauty of using LQR as model is that the remaining

two problems are unwittingly solved as well. With a quadratic as the objective

function, the existence of many local minima is no longer a problem. A quadratic

function has only one local minimum. The constraints of LQR problems are linear

and thus the feasible region is well defined. One of the attractive properties of a

LQR problem is its convexity. The main importance of convexity comes from the

following proposition.

Proposition 1.1 (Beale, 1988)

If the region ¡ of the feasible region determined by the constraints of an

optimization problem is convex and the objective function ()f x is a convex function

in ¡ , then any local minimizer of ()f x in ¡ is also a global minimizer.

 See Beale (1988) or Bunday (1984) for the proof.

 9

With the LQR problem, its feasible region defined by a set of linear

constraints is convex (Beale, 1988). Since twice differentiable functions are convex

if their Hessian is positive semi-definite, its quadratic objective function is also

convex. Hence, the LQR problem satisfies Proposition 1.1. Thus, any solution

acquired by a search using it as a model is guaranteed to achieve the global optimum.

Clearly, using LQR as model overcame the problems of the nonlinear optimal

control problem in general. However, the usage of LQR has problems of its own.

The one glaring problem is the model-reality differences that surfaced when a very

nonlinear problem is modeled by ‘simple’ functions.

1.4 Model-Reality Differences

 Since LQR is a simplified model of the original optimal control problem, the

matter of model-reality differences cannot be ignored. An algorithm that uses this

approach would not be solving the original problem but rather solves the simplified

LQR problem. The solution to the LQR problem is hoped to approximate the real

solution or in other words to converge to the real solution. Thus, a good algorithm

has to take into account the model-reality differences to be successful. One such

algorithm is the Dynamic Integrated Systems Optimization and Parameter

Estimation (DISOPE) algorithm.

1.4.1 DISOPE Algorithm

DISOPE is an algorithm specifically aimed at solving dynamic nonlinear

optimal control problems. It was first developed by Roberts (1993) and further

improved by Becerra (1994). DISOPE takes into account the model-reality

differences in structure and parameters of the problems to be solved. The method is

iterative in nature. Repeated solutions of optimization and estimation of parameters

 10

within the model is used for calculating the optimum (Roberts, 1993). An important

property of the technique is that the iterations converge to the real optimum in spite

of the model-reality differences. An implementable algorithm based on LQR has

been designed and implemented in MATLAB by Roberts (1993). For the

discussions in this research, the model used will be the LQR model.

The algorithm integrates the information from the real problem and its

simplified model by introducing parameters such that the solution of the model

provides the control as a function of the current parameter estimates. These

estimates in turn are obtained by matching model and real states and performance at

the current computed control. In this way, the two problems of optimization and

parameter estimation interact. To properly integrate the two problems, different

notations for controls are introduced to separate the signals of the optimization

problem from the parameter estimation problem and application to reality. The same

is done for the states signals of the two problems. A set of additional constraints is

defined by matching the different signals from the two problems. The pair of

constraints signifies the interconnection between reality and model.

The algorithm uses the back sweep method to generate trial solutions. The

solutions are then updated using a mechanism that is based on the gradient descent

method. Left as is, the algorithm suffers from the same setbacks as the gradient

descent method; that is the slow convergence and the possibility of converging to

false minimum. These two problems are well known problems of the gradient

descent approach. The problems are so significant that a vast wealth of literature is

available on the manners tried and tested to overcome these problems. This research

proposed methods of improving DISOPE by modifying its updating mechanism so as

to make it resilient in the face of the problems created by the gradient descent part of

it.

1.4.2 Problems Faced by Gradient Descent Methods

DISOPE has an updating mechanism that is of the gradient descent type.

Gradient descent algorithms are common for having the problem of slow

 11

convergence and false optimum. One of the causes of slow convergence is

oscillation of the search algorithm. This usually happens when the iterative

computed solution of the algorithm nears an optimum be it local or global. In these

vicinities, the surface to be traversed formed ravines. The surfaces of the ravines

generate almost perpendicular gradients, making the trial solutions advance in small

steps. These oscillations retard the journey of the search to the optimum hence the

slow convergence.

For nonlinear problems, where the surface of the objective function contains

an abundance of local minima, the solution attained is not guaranteed to be the global

optimum. This could easily happen when the ravine in question contains a local

optimum. The search algorithm might get trapped without being able to get out and

find the global optimum. This case is referred to as convergence to a false optimum.

Having the descent method as part of it categorizes DISOPE as a local search

procedure. Being a local search algorithm, it does not have the mechanism to escape

local minimum once stuck in it.

The other problematic situation faced by the gradient descent methods is

when it encounters flat surfaces. Flat surfaces potentially hide both problems

mentioned above; slow convergence and false optimum. The problem arises when

the flat surface to be negotiated is large. Flat surfaces deliver very small gradients

for the search to rapidly move across the area contributing to slow convergence.

Occasionally, the gradient is too small such that the norm between two consecutive

terms is negligible that the tolerance set for the algorithm to stop is met. When this

happens, the solution of the algorithm is also a false optimum.

In short, there are three distinct problems recognized here. The first is the

problem of oscillation caused by ravines or flat basins on the surface of the objective

function. Second is the convergence to false optimum because the search gets

trapped in a local minimum. The third is the convergence to false minimum caused

by flat surfaces.

 12

Since DISOPE discussed in this research uses LQR problems as model, the

second problem listed here is no longer valid. Thus we are faced with the remaining

two problems. These two problems affect the convergence the algorithm, if it

converges at all. The physical manifestation of these problems is the slowness of

convergence.

1.5 Statement of Problem

DISOPE is a newly developed algorithm (Roberts, 1993; Becerra, 1994) and

as such, there are bound to be inherent weaknesses that need to be addressed. From

the discussion above, we have identified that a weakness of DISOPE is slow

convergence. The slow convergence has been identified to be the result of

oscillating search either in the areas of ravines or on flat basins with very small

gradients, which has a secondary problem of converging to false optima.

This research aims to improve DISOPE so as to overcome the problem of

slow convergence. The research also seeks to provide the relevant theoretical results

to support the findings.

1.6 Research Objectives

Specifically, this research addresses the problems of slow convergence of

DISOPE. This research goal is overcome this shortcoming and make DISOPE a

more attractive algorithm. To achieve the goal we have the following objectives as

guideline. The objectives of the research are

• To decompose DISOPE into two distinct maps with one of them being the

updating mechanism

• To establish an error function for the updating mechanism

• To establish that gradient descent algorithm is a component of DISOPE

 13

• To establish the convergence rate of DISOPE

• To develop new algorithms by modifying DISOPE according to the

chosen improvements

• To carry out simulations on chosen problems to see the effects the

modifications have on the convergence speed

• To compare the efficiency of the new algorithms with DISOPE

The products of this research would be new algorithms that can handle the

problem inherent to the gradient descent algorithm successfully.

1.7 Scope of Research

For this research, the modifications done to DISOPE are at its updating

mechanism. The modifications to the updating mechanism are primarily aimed at

improving the performance of the gradient descent algorithm. Alternative methods

such as replacing the gradient descent algorithm with other methods were never

considered.

On improving the performance of the gradient descent procedure, principally

the improvements done to the back propagation algorithm of the neural networks are

explored. Out of the numerous improvements documented, two simple and effective

modifications are chosen and tried with the updating mechanism of DISOPE. The

two are the addition of momentum terms and the use of parallel tangent method.

The time-complexity analyses done in this research are based on the fact that

the new algorithms are basically similar to DISOPE with differences only in the

updating mechanisms. The optimality, stability, and convergence analyses of the

new algorithms follow that of the established DISOPE closely. Primarily the aim of

these analyses is for comparison of the performance of the new algorithms with the

performance of DISOPE.

 14

1.8 Contributions of the Research

 The contributions of this research are primarily to the field of optimal control.

The contributions are appreciably in the realization of two new algorithms. The new

algorithms are equipped with supporting theoretical analyses to reinforce their

appeals. These algorithms are implemented using MATLAB and tested with

simulation examples. Further analyses of the original algorithm DISOPE are also

provided in the report as enhancements to its theoretical basis.

1.8.1 Contribution to Algorithm Development

 Two new algorithms have been developed based on the amendments of the

updating mechanism of DISOPE. They are named DISOPE-MOMENTUM and

DISOPE-PARTAN. Both of the algorithms maintained the core design of DISOPE.

However, the two new algorithms have improved convergence properties due to

modifications in the updating mechanisms. Both algorithms have been implemented

in software and tested with simulation examples. The two new algorithms proved to

be superior in convergence speed over DISOPE.

1.8.2 Contribution to Theoretical Analysis

We added three new theoretical analyses for DISOPE. The first is the

verification that DISOPE is a type of a gradient descent method. We used the

composite mapping theory to separate the updating mechanism from the rest of the

algorithm. The other two are the time-complexity and convergence rate analyses.

They are enhancements to DISOPE and act as additional bases for comparison over

the efficiency of the new algorithms.

 15

Optimality studies of DISOPE-MOMENTUM and DISOPE-PARTAN are

presented in this report. To have sound footing for the new algorithms, the stability

and convergence analyses are also offered. These analyses are based on the unit

memory repetitive process that falls naturally into the area of 2-D systems. Studies

on time-complexity analysis and the individual algorithms’ convergence rates have

also been derived. All these analyses are compared to same analyses of DISOPE to

gauge their efficiency. All these theoretical analyses are important measures of the

credibility and merit of the new algorithms. They provide confidence and

attractiveness to perspective users.

1.8.3 Contribution to Software Implementation and Algorithm Testing

The two new algorithms have implementations in software using MATLAB

as the tool for the programming language. Simulations of several examples with

differing levels of difficulties have been carried out with the software. These

simulations helped us distinguish and comprehend the effects of the modifications on

the original algorithm. They helped us come to a decision that the improvements

obtained are worthwhile of the new algorithms. These simulations also permit us to

test the new algorithms and make comparison of the results with the performance of

the original algorithm DISOPE.

1.8.4 Contribution to the Field of Gradient Descent Algorithm

The subject matter of the research is the gradient descent algorithm of the

updating mechanism of DISOPE. The tools used in the research are the momentum

terms and the PARTAN algorithm. Both tools improved the performance of the

gradient descent algorithm. The problems solved in the simulations also add variety

to the cache of problems suitable for the algorithm.

 16

1.9 Outline of Report

The purpose of this research is to establish modifications to DISOPE

algorithm that can overcome the problem of slow convergence. The improvements

suggested here can significantly reduce the number of iterations needed for

convergence. A reduction on the number of iterations means that the number of

oscillations is reduced, which in turn, increases the speed of the algorithm.

Chapter 2 gives literature reviews on published relevant works. We begin

with reviewing several approaches to solve optimal control problems. Then we

present the history of the original algorithm DISOPE. Next, we present the gradient

descent algorithm and problems associated with it. Our journey brings us to an

established area where the use of this algorithm is well documented, the back

propagation algorithm of the neural networks. This algorithm is based on the

gradient descent method. Then we review the documented methods done to the back

propagation algorithm in order to overcome the problems instigated by the gradient

descent part of the algorithm. Also in Chapter 2 we review the basic tools that are

used in the convergence and stability analysis of the two new algorithms. These are

the theory of multipass processes in the form of 2-D systems representations and

limit profiles.

Chapter 3 is a compilation of works done on DISOPE. It describes the

algorithm in details. An established convergence and stability analysis is reproduced

here. A few numerical examples with varying degrees of complexity are included in

this chapter. This chapter acts as a basis for comparison for subsequent chapters

when the modifications have been made.

Chapter 4 comprises of further analyses of DISOPE. It deals on the

complexity and convergence rate of DISOPE. Besides being a chapter reporting

new additional analyses on DISOPE, this chapter also acts as basis for comparison

for subsequent chapters.

 17

Chapter 5 reports the first modification done to the updating mechanism of

DISOPE. The updating mechanism is added terms of momentum from previous trial

solutions, to help overcome the oscillation phenomenon. Two examples were

simulated to see the effect the momentum has on the algorithm. The performance of

this new algorithm, called DISOPE-MOMENTUM, is then compared to the

performance of DISOPE by comparing results from the simulated examples to the

examples in Chapter 3.

Chapter 6 reports the second modification done to the updating mechanism.

In this chapter, the updating mechanism is altered to have two different updating

schemes for two consecutive iterations. The first scheme is the same updating

mechanisms of DISOPE retained. This scheme uses the gradient descent algorithm

as its updating mechanism. The second scheme uses the parallel tangent algorithm

for updating the trial solutions. This new algorithm is called DISOPE-PARTAN

algorithm. This chapter ends with two simulated numerical examples. The results of

which are again compared to the results of examples in Chapter 3.

Chapter 7 summarizes the work done in Chapters 2 to 8, compares the

performance of all the three algorithms, and draws a conclusion on the findings.

This chapter also provides suggestions for further research in this area.

1.10 Summary and Conclusion

DISOPE is a newly developed algorithm for solving nonlinear optimal

control problem with inherent weaknesses imbedded in it. The weakness has been

identified as the slow convergence of the algorithm when the search nears the

optimal solution. The goal of this research is to overcome the weakness and make

DISOPE more attractive to the end user.

18

CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

Literature reviews of the subject matters of this research are given in this

chapter. Some of the discussions in Chapter 1 are given elaboration here.

 First, we review several other approaches in solving nonlinear optimal control

problem. These are methods of quasilinearization (Sage and White, 1977), the

methods of Hassan and Singh (1976), Teo et al. (1981), Shwartz (1996) and Neuro-

Dynamic Programming by Bertsekas (2000).

Next, we discuss the history of the conception of DISOPE algorithm

beginning with ISOPE algorithm. Next, we discuss the gradient descent algorithm,

the basis for the updating mechanism of DISOPE. Here we review the problems

relating to the gradient descent algorithms and the problems they caused DISOPE.

Some proposed enhancements documented in the literature are related next.

 Then we specifically go to the back propagation algorithm of the neural

network that uses the gradient descent method as structure. Two improvements

found in the literature, namely the inclusion of the momentum and the parallel

tangent are looked at closely. These two are the chosen modifications intended for

the updating mechanism of DISOPE in a bid to improve its converging behavior.

19

 Next, we review the 2-D presentation of DISOPE in the form of the unit

memory repetitive process. This treatment is needed in the theoretical analysis of the

new modified algorithms. With the help of limit profiles, local stability of the new

algorithms would be established in later chapters. This chapter ends with a summary

of the discussions mentioned.

2.2 Other Approaches in Solving Optimal Control Problems

Before discussing the algorithm of concern in this research, we describe a

number of other iterative procedures available for solving nonlinear continuous

optimal control problems. The first approach is the continuous quasilinearization. It

is a technique whereby a nonlinear, multipoint, boundary value problem is

transformed into a more readily solvable linear, nonstationary boundary value

problem. This technique involves the study of a sequence of vectors, which can be

made to approximate the true solution of the nonlinear system (Sage and White,

1977).

The quasilinearization approach to the solution of non-linear dynamic

optimization problems is based on solving the non-linear two-point boundary value

problem iteratively as a series of linear two-point boundary value problem (Singh

and Titli, 1978). These methods are attractive for several reasons. First it is often

easier to guess nominal-state-variable histories than nominal-control-variables

histories. Second, these methods converge rapidly near the optimum solution

(Bryson and Ho, 1975).

One variation of quasilinearization involves choosing nominal functions for

()x t and ()tλ that satisfy as many of the boundary conditions as possible. The

nominal control vector ()u t is then determined by use of the optimality conditions.

The system equations and the influence equations are linearized about the nominal

and a succession of nonhomogenous, linear two-point boundary value problems are

20

solved to modify the solution until it satisfies the system and influence equations to

the desired accuracy.

A second method is the method of Hassan and Singh (1976). In their work

they developed a two level method for optimization of nonlinear dynamical systems

with a quadratic cost function. This approach was based on the possibility to use

equilibrium point of the system to expand the dynamic equations in a Taylor series

and then fix the second and higher order terms by predicting the states and controls,

which arise in these terms. This enables one to decompose the optimization problem

into independent ‘linear quadratic’ sub-problems for given states and controls to be

provided by a second level. On the second level a prediction principle type

algorithm can be used. The algorithm has the advantage that only linear quadratic

problems are solved at the first level and trivial updating is done at the second.

There are substantial computational savings compared to the global single level

solution, making the method suitable for solving low order nonlinear problems

(Singh and Titli, 1978).

Teo et al. (1981) considered a class of convex optimal control problems

involving a linear hereditary system with a bounded control region. The controls for

negative time were treated as a given function rather than as controls. The algorithm

was motivated by Barnes (Teo et al. 1981).

Schwartz (1996) developed methods that are based on solving a sequence of

discrete-time optimal control problems using explicit, fixed step-size Runge-Kutta

integration and finite-dimensional B-spline control parameterizations to discretize

the optimal control under consideration. This is a group of programs and utilities

named RIOTS as a software package. There are limitations to the type of problems

that can be solved by the methods; they cannot solve problems with inequality state

constraints that require a very high level of discretization. The methods also cannot

handle problems with highly unstable nonlinear dynamics and they do not allow for

delays in the systems dynamics.

21

Bertsekas (2000) developed a class of dynamic programming methods for

control called the Neuro-Dynamic Programming. It is a relatively new class of

methods that have the potential of dealing with problems that for a long time were

thought to be intractable due to either a large state space or the lack of accurate

model (Bertsekas, 2001). The algorithm combined ideas from the fields of neural

networks, artificial intelligence, cognitive science, simulation, and approximation

theory.

Neuro-Dynamic Programming is a class of reinforcement learning methods

that deals with the curse of dimensionality of Dynamic Programming by using neural

network-based approximations of the optimal cost-to-go function. The method has

the advantage that it does not require an explicit system model; it uses a simulator, as

a model substitute, in order to train the neural network architectures and to obtain sub

optimal policies (Bertsekas, 2000).

2.3 Background of DISOPE Algorithm

The algorithm DISOPE on focus in this research is an extension of an earlier

algorithm called Integrated System Optimization and Parameter Estimation (ISOPE).

The underlying principle governing this technique is the consideration of the model-

reality differences between real problems and their simplified models. It was

originally developed by P.D. Roberts (1979), and Roberts and Williams (1981) for

on-line steady state optimization of industrial processes implemented through

adjustment of regulatory controller set points. It has been proved to be successful in

solving many example problems (Roberts and William, 1981; Ellis and Roberts,

1981; Stevenson et al., 1985; Brdyś et al. 1987). Later, Brdyś and Roberts (1987)

derived sufficient conditions for convergence of this algorithm.

An essential feature of ISOPE is that the iterations converged to the correct

real optimum in spite of the existence of model-reality differences. In order to

produce a true optimum regardless of the differences, the interaction between

22

parameter estimation and model-based optimization is recognized by the algorithm.

To match the results of the real and the simplified problems, ISOPE uses Lagrangian

techniques to integrate the simplified optimization with parameter estimation. This

is achieved by means of Lagrange modifiers introduced into the model-based

optimization problem so that the interaction between system optimization and

parameter estimation is compensated at the end of the algorithm iterations (Roberts,

1995). This approach was inspired by Haimes and Wismer (1972).

 ISOPE was intended for the steady-state optimizing control. Naturally, it was

later extended to solve the dynamical optimal control problems. Roberts (1994)

extended ISOPE to dynamical problems and it has been termed DISOPE (dynamic

ISOPE). The philosophy behind the techniques remains very much the same. As it

was originally developed and published, DISOPE addressed continuous-time,

unconstrained, centralized and time invariant optimal control problems (Becerra,

1994). Becerra (1994) advanced and improved the existing knowledge on the

technique so as to make it attractive for its implementation in the process industry.

DISOPE was initially developed for continuous nonlinear optimal control

problems (Roberts, 1993) and then extended to discrete systems (Becerra and

Roberts, 1996) and to optimal tracking control problems (Becerra and Roberts,

1994). The technique has also been extended to cope with un-matched terminal

constraints (Roberts and Becerra, 1998). A range of applications of DISOPE

techniques has also been developed by Becerra, (1994).

The stability and convergence analyses of this algorithm have also been

offered by Roberts (1994a, 1994b, 1999, 2000b, 2000c, 2002). The algorithm is

considered as a 2-D system and the convergence and stability analyses are based on

the multipass process theory in the form of a unit memory repetitive process.

The concern of this research is in the convergence behavior of DISOPE

algorithm. This behavior is partly controlled by its updating mechanism. The

mechanism is an integral part of DISOPE, however, its importance has been largely

23

ignored up to now. This research weights heavily on this mechanism and the

modifications are tailored specifically for it.

As mentioned in Chapter 1, the updating mechanism of the algorithm is

recognized as the gradient descent method and as explained in the same chapter,

gradient descent algorithms come with two well-known setbacks; the slow

convergence of the algorithm caused by oscillations of the search and the

convergence to false optima (Pierre, 1969; Ochiai et al., 1994; Shang, 1997; Qiu et

al., 1992; Fukuoka et al., 1998; Qian, 1999). In the next section, we discuss the

gradient method and its maladies further.

2.4 Gradient Descent Algorithm

The method of gradient descent is one of the most fundamental procedures

for minimizing a differentiable function of several variables, f. Common to all

gradient search techniques is the use of the gradient
1 2

, ,...,
T

n

f f ff g
x x x

⎡ ⎤∂ ∂ ∂
∇ = = ⎢ ⎥∂ ∂ ∂⎣ ⎦

.

All gradient methods are governed, at least in part, by the following equation:

 1 | i

i i
x x

x x gη+
=

= − (2.1)

where g f= ∇ is the gradient of f in column-vector form and η is the step size

parameter to be estimated. Gradients methods differ in the way in which η is

selected at ix x= (Pierre, 1969).

In general, the gradient algorithm takes a point ˆi nx S E∈ ⊂ and computes a

new point 1 ˆi nx S E+ ∈ ⊂ where Ŝ represents an arbitrary set and E represents the

Euclidean space. The new point is defined by Eq. (2.1) where 0η > is taken for

minimization or 0η < for maximization problem. Further, point ix is the origin of

the line, and g determines the direction.

24

Problems faced by gradient descent methods have been outlined in Chapter 1.

They are the oscillations of the search and false optima. The two phenomena are

discussed in detail in what follows.

The surfaces of nonlinear objective functions are terrains with both hills and

valleys and flat basins as depicted in Fig. 2.1 (Shang, 1997). These terrains pose

challenges to any search algorithm because of the differing slopes they offered.

Steep slopes of tall hills made them difficult to overcome. Hence once a search get

stuck in a local minimum, it would be difficult for the search to get out of it and

continue to search for the global minimum. Large shallow basins on the other hand,

provide little information for search direction, and may take a long time for a search

algorithm to pass these regions if the step-size is inappropriately small (Shang,

1997).

Gradient descent methods are classified as local optimization methods

(Shang, 1997). They do not have the ability that guarantees the solutions found are

global optima. Thus without a doubt, the basic gradient methods are relatively

inefficient when ridges or ravines are salient (Pierre, 1969; Qiu et al., 1992; Ochiai et

al., 1994) where most optima reside, be it local or global.

Figure 2.1. The different terrains of the surface of a nonlinear function.

 Fig. 2.2 illustrates the locus of the search in the ravine region. As illustrated

in the figure, the direction of the gradient is almost perpendicular to the long axis of

the valley. At each iteration the locus jumps over the bottom of the ravine. The

25

search oscillates back and forth in the direction of the short axis, and only moves

very slowly along the long axis of the valley (Rumelhart et al., 1986a; Qian, 1999)

towards the optimal solution. These oscillations make travel time longer and

consequently, the slow convergence.

Figure 2.2: The oscillation phenomenon.

Because of this, gradient methods usually show great improvements in the

first few iterations but tend to advance slowly as the optimal solution is approached.

To further illustrate this phenomenon, consider an objective function with concentric

ellipsoidal contours (Ghorbani and Bayat, 2000). If the initial point for a gradient

search happens to be precisely on one of the axes of the systems of ellipses, the

gradient line will pass right through the optimum and the search will be over in one

descent. Otherwise, the search will follow a zigzag course from 0 1 to p p to 2p etc.

The following Fig. 2.3 illustrates the situation.

Figure 2.3: The zigzagging phenomenon.

Long axis of the valley Short axis of the valley

To the optimum

The oscillation

P1

P0

P5

P2

P3

P4

P*

26

Furthermore, gradient methods are slow to converge when the surface forms

a plane or basin with a gentle slope (Fig. 2.1). This results in too small a gradient to

move rapidly over the wide flat surface (Ochiai et al, 1994; Qiu et al, 1992). If one

such area is encountered, no significant decrease in the error between two

consecutive terms occurs for some period of time, hence the slow convergence.

This phenomenon might even be mistakenly interpreted as convergence if the

error is too insignificant that it is less than the tolerance specified for the algorithm to

terminate. If the algorithm terminates, the point of termination is a false optimum.

This phenomenon is called ‘premature saturation’ (Fukuoka et al, 1998). However,

if the algorithm does go on and the minimizer is still far away, the error will

eventually decrease again. In the end, the algorithm will slowly arrive at the true

optimum.

 Since gradient methods are local optimizers, the possibility that their

solutions are local optima is inevitable. Ravines on the surface in all probability

contain local minima, hence a local search procedure that enters such a region, will

be directed towards that minimum and stop when it reaches it, while it would be

desired that it continue towards a global minimum. This is another instant where the

gradient descent methods might be giving false optimum as solutions.

 In short, the gradient descent method has the problem of slow convergence

that might happen in the vicinities of ravines, ridges, and large flat areas of basins. A

secondary problem to these terrains is convergence to local or false optima. Fig. 2.4

summarizes these problems. The DISOPE algorithm being a search method of the

gradient descent type, is indisputably susceptible to the same problems. Our aim is

to propose methods that can overcome the difficulties.

 One of the most prolific algorithms that are based on the gradient descent

method is the back propagation algorithm of the neural networks. The area of

research that is aimed at improving the convergence speed of the back propagation is

enormous with numerous methods proposed to do just that. We take advantage of

27

this vast volume of knowledge to improve the convergence behavior of DISOPE

based on the improvements done to the back propagation algorithm.

Figure 2.4: The schematics of the problems faced by gradient descent algorithms.

2.5 Back Propagation Algorithm

The back propagation algorithm of Rumelhart and McClelland (1986b) is an

iterative gradient descent algorithm designed to train multi-layer feed forward

networks of sigmoid nodes by minimizing the mean square error between the actual

output of the network and the desired output.

Before discussing the back propagation algorithm in detail, some basics of

the neural networks are in order. We begin with the description of a perceptron.

2.5.1 A Perceptron

A perceptron is a connected network. The basic perceptron is composed of

an input layer and an output layer of nodes as in Fig. 2.5. Each input node is

Terrains Ravines Flat Surfaces

Problem
Faced

Oscillation Trapped in
Local Minima

Small Grad.
Direction

Premature
Saturation

Physical
Manifestation

Slow convergence False Optima

28

connected to every output node and vice versa, but there is no connection between

nodes in the same layer. Assigned to each connection is a weight. When the first

layer sends a signal to the second layer the associated weights are applied on the

inputs. The receiving nodes then sum up the incoming values. If the sum exceeds a

predetermined threshold, the receiving nodes will fire output signals.

Figure 2.5: A single layer perceptron.

The input of a node i is represented by ia . The input of a node j, jS , is the

sum of all the weighted inputs from node i. The output of a node j is determined by

the following rule.

0

If then 1

If then 0

n

j i ij
i

j j

j j

S a

S x

S x

θ

θ

=

⎫
= ⎪

⎪⎪> = ⎬
⎪≤ = ⎪
⎪⎭

∑ w

 (2.2)

where w is a vector representing all the weights between nodes i and j, n is the

number of nodes in the input layer, and θ is a predetermined threshold value.

The weights can be adjusted so that the network produces a desired output

given a set of inputs. The adjusting of weights to produce a particular output is

called the training of the network. It is a mechanism that allows the network to learn.

The training is accomplished by comparing the actual output jx of the network with a

Input, ia Input layer, i Output layer, j Output, x j Target output, t j

Weighted connections,
ij

w

29

set of target outputs jt . If there is a difference between the two, the weights are

adjusted to produce a set of outputs closer to the target values. New weights are

determined by adding an error correction value to the old weights. The amount of

correction is determined by a multiple of the difference between the actual and the

target outputs. The multiplier is a constant called a learning rate. The calculation of

the new weights can be summed up as follows.

(new) (old) ()ij ij N j j iC t x a= + −w w (2.3)

where NC is the learning rate. The training procedure is repeated until the

performance no longer improves, theoretically when j jt x= .

2.5.2 Multilayer Perceptron

A multilayer perceptron network is a net with one or more layers of nodes

between the input and the output units. These extra layers are called the hidden

layers. The outputs of one layer are fed-forward as inputs to the next layer. Fig. 2.6

illustrates the architecture of a simple three-layer perceptron. The multilayer

perceptron can solve more complicated problems compared to the single layer

perceptron although training may be difficult. The multilayer perceptrons are

typically trained using a supervised training algorithm known as the back

propagation algorithm.

Figure 2.6: A simple three-layer perceptron.

Inputs Outputs

Input layer Hidden layer Output layer

30

2.5.3 Representation of the Back Propagation Algorithm

As mentioned earlier, the back propagation algorithm is a gradient descent

method aimed at minimizing the total squared error of the output computed by the

net. The error function is taken to be the least squares error function below.

∑
=

−=
p

j
jj xtE

1

2)(
2
1)(w (2.4)

where p is the number of nodes in the output layer. While in training, the weights in

each iteration are changed according to the following rule (Rumelhart and

McClelland, 1986).

ij m
ij

Eη ∂
Δ = −

∂
w

w
 (2.5)

From (2.3) and (2.5) the back propagation algorithm is defined as

(1) ()ij ij m
ij

En n η ∂
+ = −

∂
w w

w
 (2.6)

where mη is a small positive number known as the learning rate and n is the iteration

index.

The standard back propagation algorithm inherits the problems of the

gradient descent methods. It shows very slow convergence (Moreira and Fiesler,

1995; Fukuoka et al., 1998) and has the tendency to converge to a false local

minimum (Fukuoka et al., 1998). Over the years, many acceleration techniques have

been developed to speed up the convergence of this algorithm. In the next section,

we review some of the better-known approaches that have been documented.

2.5.4 Approaches to Overcome the Slow Convergence

The most popular learning acceleration approach is the inclusion of the

momentum term introduced by Rumelhart and McClelland (1986b). With this

approach, the weight changes in a direction that is a combination of the current

gradient and the previous gradient. In order to use momentum, weights from

31

previous training patterns must be saved. Convergence is faster when a momentum

term is added to the weight update formula with appropriate learning rate.

There are methods that are able to generate noninterfering directions and can

be used to overcome the difficulties of oscillations, by deflecting the gradient.

Rather than moving along ()f x−∇ , for example, one can move along ()H f x− ∇ or

along ()f x v−∇ + , where H and v are appropriate matrix and vector respectively

(Ghorbani and Bhavsar, 1993). The method of Newton uses the first one and

deflects the gradient descent direction by premultiplying it by the inverse of the

Hessian matrix. However, the calculation of Hessian matrix is a complex, error-

prone and an expensive task.

 Amongst the methods with the aim of improving the learning capability are

from the field of optimal filtering, the extended Kalman algorithm (Singhal &Wu,

1989). From the field of numerical analysis, the second order and line-search

(Becker & le Cun, 1988), the conjugate gradient (Kramer & Sangiovanni-Vincentelli,

1988), and quasi-Newton (Watrous, (1987) methods. Conjugate gradient techniques

are known to be the most effective minimization methods that use only the first

derivative information (Polak, 1997). They basically compute the new search

direction by using the gradient direction and the previous search direction. Their

advantage over the basic gradient descent algorithm is a faster convergence rate near

an optimum point (Ghorbani and Bhavsar, 1993). However the conjugate method

requires more storage of intermediate results than the momentum method. It is also

less robust than the momentum method when the error surface is relatively flat

(Qian, 1999).

In some cases it is more advantageous to accumulate the weight correction

terms for several patterns and make a single weight adjustments equal to the average

of the weight correction terms, for each weight rather than updating the weights after

each pattern is presented. This procedure is called batch updating has a smoothing

effect on the correction terms. In some cases, however, this smoothing may increase

the chances of convergence to a local minimum.

32

Adaptive learning rate is one class of techniques that was found to be

successful in overcoming the difficulties. Basically, these methods improve the

speed of training by changing the learning rate during training. The amount of

weight update can be allowed to adapt to the shape of the error surface at each

particular situation. This approach eliminates the trial and error search pattern for

the best values of the learning rate parameters.

Some adjustable learning rate algorithms are designed for specific problems,

such as classification problems in which there are significantly fewer training

patterns from some classes than from others. If the traditional approach, duplication

or creating noisy copies of the training patterns from the underrepresented classes, is

not practical, the learning rate may be increased when training patterns from the

underrepresented classes are presented. (DeRouin et al., 1991; Moreira and Fiesler,

1995).

Another type of adjustable learning rate is based on the determination of the

maximum safe step size at each stage of training (Weir, 1991). It provides protection

against the overshoot of the minimum error that can occur in other form of back

propagation. This algorithm however requires additional computations of gradients

that are not calculated in standard back propagation.

Another class of adjustable learning rate algorithm involves risk taking.

Algorithm of this type have been developed by many researcher, among them Cater

(1987), Fahlman (1988), and Silva and Almeida (1990). Heuristic optimization

techniques perform a search in the weight space as an alternative to the back

propagation. The method of delta-bar-delta (Jacobs, 1988), and the quickprop

(Fahlman, 1988) are examples of this kind of algorithm.

 Other techniques include the global learning rate adaptation with different

variations, where proper values for learning rates and momentum factors are chosen

to optimize the algorithm (Fausett, 1994). Local learning rates adaptations on the

other hand are techniques wherein independent learning rates are used for every

33

connection and optimal learning rates for every weight is found. One variation is to

set up schedule to change the step length as the network is learning (Jacobs, 1988).

Yu and Chen (1997) suggested back-propagation learning by using

simultaneously the optimized learning rate and the momentum factor. Qiu et al.

(1992), suggested accelerating the training of back propagation networks by using

adaptive selection of momentum values. The authors used an optimization technique

based on the parallel tangents methods to compute the values of the momentum

parameter.

Mohd (1996) proposed the use of interval arithmetic together with the

methods of Moore, Hansen or Alefeld to determine the optimal value of the learning

rate. Once the optimal learning rate is found it is then applied to the gradient search

to find the solution of the optimization problem.

Van Ooyen and Nienhuis (1992) proposed a new error function to be used

instead of the usual least squares error function. They proposed a function in the

form of the squares of the differences between the actual and target values, summed

over the output units and all cases.

 Kamarthi and Pittner (1999) proposed a universal acceleration technique for

the back propagation algorithm based on extrapolation of each individual

interconnection weight. The procedure is activated a few times in between iterations

of the conventional back propagation. It minimally alters the computational structure

of the back propagation algorithm.

Among these multitudes of learning algorithms, back propagation with

momentum acceleration remains one of the most popular learning paradigms, mainly

because of its faster convergence than the back propagation method in a variety of

problem and because of its computational simplicity. The incorporation of

momentum in the back propagation algorithm has been extensively studied,

especially from an experimental point of view (Fahlman, 1988; Tesauro and

34

Janssens, 1988; Jacobs, 1988; Tollenaere, 1990). Sato (1991) and Hagiwara and

Sato (1995) provided some theoretical backgrounds. Perantonis and Karras (1995)

establish a link between the use of momentum in multilayer feedforward neural

networks learning and constrained optimization learning techniques.

The momentum also reduces the likelihood that the net will find weights that

are a local, but not global, minimum (Fausett, 1994). When using momentum, the

net is proceeding not in the direction of the gradient but in the direction of a

combination of the current gradient and the previous direction of weight correction.

Qian (1999) established that the momentum method is stable in the continuous time

case.

Another technique that is known for its simplicity is the parallel tangent

(PARTAN) method. It is another technique reported to be able to overcome the

difficulties of oscillation. It uses deflecting gradient technique and may be

considered as a special case of the conjugate gradient method (Ghorbani and

Bhavsar, 1993). It comprises of two phases namely climbing through gradient and

accelerating through parallel tangent. PARTAN overcomes the inefficiency of

zigzagging in the conventional back-propagation learning algorithm by deflecting the

gradient through acceleration phase. Regardless of the degree of the complexity of

the problem used, the PARTAN back propagation algorithm shows at least two times

faster convergence to the solution than the conventional back propagation alone

(Ghorbani and Bayat, 2000). The gradient PARTAN algorithm is also a global error

adaptation technique (Ghorbani and Bayat, 2000); hence besides overcoming the

oscillation problem, it is also capable of overcoming the problem of convergence to

local minima.

 The list of techniques mentioned above is by no means exhaustive. From all

the techniques mention above, we settled on the techniques of momentum and

PARTAN for the updating mechanism of DISOPE. There are two reasons for

choosing these techniques. One is the techniques need no new information; they use

the readily available information from DISOPE. The other is based on the

35

effectiveness and simplicity of the methods. In the following two sections we

detailed the methods.

2.6 Momentum Term

The standard back propagation algorithm has been known to show very slow

rate of convergence (Moreira and Fiesler, 1995). Furthermore, the shape of

multidimensional error function for the majority of the applications usually presents

irregularities. As mentioned these irregularities could be in the forms of convergence

to local minimum and false minimum. It was discovered, however, that the

appropriate manipulation of the learning rate during the training process could lead

to very good results.

Over the years, many new acceleration techniques have been developed to

speed up the convergence in this algorithm (Kamarthi and Pittner, 1999; Ochiai et al,

1994; Solomon and van Hemmen, 1996). The most popular of these strategies is to

include a momentum term in the weight-updating phase (Baldi, 1995). A momentum

term added to the original back propagation has been widely used because of its

simplicity and effectiveness (Hagiwara, 1995). This fact has been taken into

consideration in improving the updating procedure of DISOPE.

The inclusion of the momentum term transforms Eq. (2.6) into the following:

(1) () (() (1))m
ij ij ij ij

ij

En n n nη ϖ∂
+ = − + − −

∂
w w w w

w
 (2.7)

where ϖ is the momentum parameter. That is the modification of the weight vector

at the current time step depends on both the current gradient and the weight change

of the previous step (Qian, 1999). The rationale for using the momentum term is that

it helps average out the oscillation along the short axis (Rumelhart et al., 1986a).

The values of ϖ are constrained to be in the range of (0,1] (Fausett, 1994). It is

desirable to use small learning rates to avoid major disruptions of the direction of

36

learning. Fig. 2.7 below explains the effect of the momentum term on the ravine

phenomenon explained in Section 2.4.

Figure 2.7: The locus of weights with the momentum terms.

 Fig. 2.7 shows the locus of weights in the ravine region with the addition of

the momentum term (Rohanin et. al, 2002; Rohanin and Mohd_Ismail, 2003d). G

stands for the gradient descent direction and M stands for the deflection caused by

the momentum term. The solid zigzagging line is the combined effect of both G and

M. The momentum term works at reducing the oscillation when the weights jump

over the bottom of the ravine. Note that after the weight crosses the ravine, the

momentum vector corrected the steepest descent vector by deflecting it further down

the line. As a result, the direction of the amassed vector is in the downward position.

The deflection by the momentum could also remedy the problem caused by

plateaus. The inclusion of the momentum could increase the stride size made by the

algorithm hence the error between two consecutive steps is made bigger and the time

taken to traverse such area is reduced. Hence the momentum is not only capable of

increasing the speed of convergence dramatically (Qian, 1999; Qiu et al, 1992), but it

also is capable of avoiding false minima and reducing the likelihood that the

procedure will find solutions that are local, not global, minimum (Fausett, 1994).

Low High

G

G

G
G

M
M

M

M
M

G G

Direction of traverse

37

2.7 Parallel Tangent

Pierre (1969) reported that in 1951, Forsythe and Motzkin advanced a

procedure, called acceleration-step search, for expediting the rate of convergence of

the best-step version of the steepest ascent for a function of two variables { }1 2,x x x= .

Surprisingly, not only using the acceleration-step search reduces the number of

required iterations in general, but also the gradient need not be computed at the start

of each search. If 1 2(,)f x x is a quadratic function with a well-defined minimum, the

procedure requires the use of three searches to locate the optimum exactly; thus, the

procedure is quadratic convergent.

One version of the method is as follows. Starting at an initial point 0x p= ,

the gradient 0()g p is evaluated, and a search for a minimum is conducted in the

negative direction of the gradient. At the winning point 1p , the gradient 1()g p is

evaluated and a second search is conducted, as before. The winner of this second

search is designated 2p . At this stage of the process, 2()g p is not computed, rather,

a search is conducted along the straight line which connects the initial point 0p and

the point 2p . This acceleration-step search is conducted along the line

2 0(1)s sx p pβ β= + − where β is the search parameter. If 1 2(,)f x x is quadratic, this

third search results in the optimal value 1 2(,)f x x as illustrated in Fig. 2.8. In the

case where 1 2(,)f x x is not quadratic, the acceleration-step search requires use of

additional iterations.

In the n-dimensional case, the acceleration step discussed above is known as

the methods of parallel tangent (PARTAN). The generation of search generated by

the procedure is “conjugate directions” with which the minimum of a quadratic can

be located in a finite number of iterations (Pierre, 1969).

The name PARTAN has no significance as far as the mechanics of the search

procedure are concerned; however, the name has an interesting geometrical origin,

38

which is shown in the two-dimensional case of Fig. 2.8. The line labeled 0l is

tangent to an equimagnitude contour of ()f x at the original search point 0p ; the line

labeled 2l is tangent to an equimagnitude contour at the search point 2p ; and the

line labeled 1l is perpendicular to both 0l and 2l ; thus, lines 0l and 2l are parallel

tangents. Note that the acceleration step from 0p through 2p to 3p is taken through

the two points 0p and 2p at which the two parallel lines 0l and 2l are tangent to

equimagnitude contours. This feature is common to all PARTAN methods.

Figure 2.8. Locus of the search for a quadratic function.

The strong point common to all PARTAN methods, is that the acceleration

step from 0p through 2p to 3p is taken through the two points 0p and 2p at which

the two parallel lines 0l and 2l are tangent to the equimagnitude contours. This

feature enables us to traverse swiftly along straight and narrow ravines (ridges). To

see this consider any two lines in the 1 2x x plane which are parallel and which

intersect a straight ravine of 1 2(,)f x x (Fig. 2.9). Observed that the point of tangency

defines a line, which parallels the ravine. Hence, by searching along the parallel

ravine-line, we effectively follow the ridge (Pierre, 1969). For curved ravines,

PARTAN search is not quite so efficient, but it invariably much better than gradient

search alone (Pierre, 1969).

2l

p0

p3

p1
p2

1l

0l

39

The general procedure for PARTAN search is as follow:

1. Starting at the initial point 0p , search in the direction defined by

0()f p∇ until extremal point 1p is found;

2. Search for the extremal point 2p which lies along the line defined

by 1p and 1()f p∇ ;

3. Search for the extremal point 3p which corresponds to the optimum

of ()2 2 0sf p p pβ+ −⎡ ⎤⎣ ⎦ with respect to sβ ;

4. Alternate between gradient search and acceleration steps.

Figure 2.9. The points of tangency of the two parallel lines define a line that

parallels the ravine.

The above procedure is called the gradient-PARTAN search. The gradient

descent searches are used to find 1 2 4 6, , , ,...p p p p and acceleration steps are used to

locate 3 5 7 9, , , ,...p p p p . With PARTAN, the acceleration steps are conducted

through the following pairs of points:

0 2(,)p p , 1 4(,)p p , 3 6(,)p p , … , 2 3 2(,)k kp p− , … .

The locus of the gradient-PARTAN search would look as depicted in Fig. 2.10

below. In this figure G stands for the gradient direction and P stands for the

acceleration by the PARTAN step. If ()f x is quadratic with a well-defined

Parallel lines

• •

• •
Gradient step

Acceleration steps

40

optimum, the exact optimal point is located after 2n-1 searches, except for round off

error.

Figure 2.10: The path taken by the gradient-PARTAN.

Although conjugate gradient methods and second-order minimization

methods converge faster than gradient-PARTAN method, the simplicity and ravine

following properties of gradient-PARTAN make it attractive. The -PARTAN

technique combines many desirable properties of the simple gradient method. It has

many forms and gradient PARTAN is one form, which amounts to a

multidimensional extension of the accelerated gradient method (Ghorbani and Bayat,

2000). This technique represents a distinct improvement over the method of steepest

descent. It is an alternative method of improvement to that of the momentum term in

the back propagation algorithm.

Two new algorithms are proposed in this research.

2.8 Multipass Processes

The term ‘multipass process’ is one which is used to describe a class of

systems that possess two distinct properties (Edwards and Owens, 1982):

(i) Repetitive operation and

(ii) Interaction between the state-and/or-output functions generated during

successive cycles of operation.

G

G

G G

G

A

A

A

A

p0
p5 p4

p3

p2

p6
p7

p8

p1

41

Each individual cycle is termed ‘pass’ and through the repetition of these

passes as time proceeds we get the ‘multipass process’ term.

 The modeling aspect of the process originates from the work of Edwards in

the late 60’s and early 70’s from his work on the longwall coal-cutting machine

(Edwards and Owens, 1982). The common feature is shown to be the dependence of

present-pass behavior on the behavior of the process produced on one or more

previous passes. The property is referred to as the interpass interaction. The

variables generated in the course of pass i of the process, not at only particular points

but along the entire length of the process, affect the outputs of process i +1.

A multipass process shares a number of characteristics in common with

conventional linear dynamic processes (Edwards and Owens, 1982). Thus, a general

model for a linear multipass process would be:

() () () ()

() () () ()

i i i i
mp mp mp

i i i i
mp mp mp

d x t A x t B d t C u t
dt
y t D x t F d t J u t

⎧ ⎫= + +⎪ ⎪
⎨ ⎬
⎪ ⎪= + +⎩ ⎭

 (2.8)

where , , , , , and mp mp mp mp mp mpA B C D F J are constant coefficient matrices and 0 t ς≤ ≤ ,

is the pass length. In Eq. (2.8), the vector ()iy t is the general representation of the

process output, ()ix t is the state vector and ()iu t is the control vector. A vector

()id t is required to denote the interpass disturbance variables in general since more

than a single variable may produce the interaction. It is necessary to use two

coordinates to specify a variable in a repetitive process. These two coordinates are

the pass number and the position along this pass. Hence in Eq. (2.8) i denotes the

pass number and t measures the distance along each pass from its starting point.

2.8.1 Link to 2-D Systems

Repetitive processes have strong structural links with two dimensional, or 2-

D, systems (Edwards and Owens, 1982). These systems propagate information in

two separate directions that can be considered as the two distinct dimensions. From

42

this standpoint, multipass processes fall naturally into the area of the 2-D systems

with i , being one dimension and t , the other.

 This link is useful in the sense that the 2-D systems theory can be used to

analyze the local stability and convergence behavior of multipass processes. Roberts

(1994a) used linear 2-D system theory techniques to analyze local stability and

convergence behavior of DISOPE. The 2-D analysis is based on the theory of unit

memory repetitive processes developed principally by Edwards and Owens (1982).

2.8.2 Abstract Model of Multipass Processes

Multipass processes have a number of common features that distinguish them

from the more familiar dynamic processes. These are (Edwards and Owens, 1982):

(i) A number of passes through a known set of dynamics

(ii) Each pass is characterized by a pass length 0iς > and a pass profile

()iy t defined on 0 it ς≤ ≤ . The pass profile need not be a scalar

quantity.

(iii) An initial pass profile 0 ()y t defined on 00 t ς≤ ≤ , where 0ς is the

initial pass length. The function 0y plays the role of an initial

condition for the process.

(iv) Each pass will be subject to its own boundary conditions, disturbance

inputs and control inputs.

(v) The process has a unit memory property, i.e. the dynamics of pass i

depends only upon the independent inputs to that pass and the pass

profile on pass i –1.

To obtain an abstract setting for the consideration of multipass stability

theory we can regard the pass profile ()iy t on pass i as a point in a suitably chosen

function space. More precisely, the pass profile iy is regarded as a point in a Banach

space iEς , i.e.

 , 0i iy E iς∈ ≥ (2.9)

43

A general abstract model of multipass systems dynamics then has the structure of a

recursion relation

 1 1(), 0i i iy f y i+ += ≥ (2.10)

where if is an abstract mapping of iEς into 1iEς
+ . Eq. (2.10) is in the form of a unit

memory repetitive process.

The unit memory property assumed in the above discussion is not as

restrictive as might initially appear to be. It can be extended to describe multipass

systems with any finite length memory property (Edwards and Owen, 1982) where

the dynamics of pass i depends only upon the independent inputs to that pass and the

pass profiles on pass 1, 2,...,i i i M− − − . Formally
1 1 1 1(, ,...,), 0i i i i i My f y y y i+ + − + −= ≥ (2.11)

2.8.3 An Abstract Model of the Linear Multipass Process of Constant Pass

Length in the Form of a Unit Memory Repetitive Process

An analysis of the general abstract model given above is out of the scope of

this research. However, in order to gain insight into the multipass processes and

coincidental with the analysis being done in this research, the discussion is restricted

to the processes having linearity properties and a constant pass length. The

following definition from Edwards and Owens (1982) is of a general nature and

describes many processes of physical interest.

Definition 2.1

 A linear unit memory repetitive process (, ,)S E W Lς ς ς of constant pass length

0ς > consists of a Banach space Eς , a linear subspace Wς and a bounded linear

operator Lς of Eς into itself. The systems dynamics are described by linear

recursion relations of the form

 1 1, 0i i iy L y b iς
+ += + ≥ (2.12)

44

where iy Eς∈ is the pass profile of pass i and 1 , 0ib W iς
+ ∈ ≥ . The term iL yς

represents the contribution from the ith pass to the i+1th pass profile and 1ib +

represents the initial conditions, disturbances and control input effects.

To say that Lς is linear implies that

1 1 2 2 1 1 2 2()L x x L x L xς ς ςλ λ λ λ+ = + (2.13)

for all 1 2,x x Eς∈ and scalars 1 2,λ λ . If Lς is bounded then its norm

1
sup

y

L y
L

y
ς ς

ς ς
ς≤

< +∞@

where
ς
⋅ denotes both the norm on Eς and the induced operator norm.

 A particular example is the following unit memory linear repetitive process

without disturbances and control inputs.

1

() () (); (0)

() () (); [0,]

i i i i i
o o

i i i

d X t A X t B Y t X d
dt
Y t CX t D Y t t T

⎫= + = ⎪
⎬
⎪= + ∈ ⎭

 (2.14)

where the pass length Tς = ; the pass profile is ();i iY Y t 1, , and o oA B C D are

constant matrices of appropriate dimensions, and id is a vector of initial conditions

which can change from pass to pass.

2.8.4 Properties of the Linear Unit Memory Repetitive Processes

Two important properties of linear repetitive processes are stability and the

limit profile (Rogers and Owens, 1992). In the following discussion, the definitions

of asymptotically stable and limit profile are given as in Edwards and Owens (1982).

Two related theorems are stated without proof for use in later chapters.

45

Definition 2.2 - Asymptotically Stable

 A linear multi-pass process (, ,)S E W Lς ς ς of constant pass length 0ς > is

said to be asymptotically stable if there exists a real scalar 0δ > , such that, given

any initial profile 0y and any strongly convergent (i.e. convergent in norm)

disturbance sequence { }
1

i

i
b

≥
, the sequence { }

1

i

i
y

≥
 generated by the perturbed

process

()1 1, 0i i iy L y b iς γ+ += + + ≥ (2.15)

where γ is the model perturbation, converges strongly to a ‘limit profile’ y Eς
∞ ∈

whenever
ς

γ δ≤ .

A sufficient and necessary condition for asymptotic stability is provided by

the following theorem: (see Edwards and Owen, (1982) for the proof).

Theorem 2.1

The linear repetitive process defined by Eq. (2.12) of constant path length

0ς > is asymptotically stable if and only if the spectral radius () 1.r Lς <

 Application of this theorem to the unit memory linear repetitive process

described by Eq. (2.14), for the particular case where the initial condition id is

independent of iY , provides the interesting result, that asymptotic stability then is

achieved if and only if all eigenvalues of the matrix 1D lie in the open unit circle in

the complex plane (Rogers and Owens, 1992). However, this simple result does not

apply when id is dependent on iY when it will be found that asymptotic stability

also depends upon the matrices , , and .o oA B C

Definition 2.3 - Limit Profile

 If the linear multi-pass process of Eq. (2.12) of constant pass length 0ς > is

asymptotically stable and { }
1

i

i
b

≥
is a disturbance sequence that converges strongly to

a disturbance b∞ then the strong limit

46

 lim i

i
y y∞

→∞
@ (2.16)

of the pass profiles is termed the limit profile corresponding to the disturbance

sequence { }1 2 3, , ,...b b b .

Theorem 2.2

 If the linear multi-pass process (, ,)S E W Lς ς ς is asymptotically stable and

{ }
1

i

i
b

≥
 is a disturbance sequence converging strongly to a disturbance b∞ , then the

limit profile corresponding to this disturbance sequence is the unique solution of the

linear equation

 y L y bς
∞ ∞ ∞= + (2.17)

Proof (see Edwards and Owens (1982)).

 The limit profile y∞ is the final converged solution of the unit memory

repetitive process, assuming stability and uniqueness. That is

lim
i

y y∞ ∞

→∞
= (2.18)

If we assume that the disturbance sequence { }
1

i

i
b

≥
 converges strongly to a

disturbance b∞ then the corresponding limit profile of the process described by Eq.

(2.12) is given by
1()y I L bς

∞ − ∞= − (2.19)

For the example of Eq. (2.14), the limit profile is described by

()()
()

1
1

1
1

() (); (0)

() ()

o o
d X t A B I D C X t X d
dt
Y t I D CX t

−∞ ∞ ∞ ∞

−∞ ∞

⎫= + − = ⎪
⎬
⎪= − ⎭

 (2.20)

where it is assumed that the initial condition converges strongly to d ∞ .

2.8.5 DISOPE as 2-D System

Iterative algorithms naturally fall into the area of 2D systems (Fornasini and

Marchesini, 1978; Roesser, 1975) where one dimension is the time horizon of the

47

dynamic system under investigation and the other is the progress of the iterations.

Roberts (1994) used linear 2-D system theory techniques to analyze local stability

and convergence behavior of DISOPE. The 2-D analysis is based on the theory of

unit memory repetitive processes developed principally by Edwards and Owens

(1982).

Roberts (1994) stated that the nonlinear DISOPE algorithm can be formulated

as a nonlinear unit memory repetitive process. In order to gain insight into local

convergence properties of the technique, his initial work investigated the special case

of linear real and model-based problem with quadratic performance indices. Using

this theory, local convergence behavior of DISOPE has been analyzed and associated

stability theorems have been obtained and studied (Roberts, 2000b).

An important observation from the analyses is that, the resulting 2-D system

contains initial conditions whose values depend upon the output solution of the

previous iteration. This results in a difficult complex eigenvalue type problem

(Roberts, 2000b). The difficulties arise from the use of fixed time horizon. Based on

the analyses and results of DISOPE, the two new algorithms will be analyzed

accordingly. In the next section, some definitions and theorems for comparing

efficiencies of algorithms are presented. Efficiencies are best described by

complexity analysis.

2.9 Summary and Conclusion

In this chapter, we reviewed the literature on related topics touched by the

research. These reviews present the underlying theme encompassing the whole

research. All the topics reviewed here will later be used in the chapters that follow.

The discussions on ISOPE and DISOPE algorithms are the basis upon which

the report stand on. The reviews on the gradient descent algorithms and the

problems related to them are the motivating factors of the research. The numerous

documented modifications on the gradient descent algorithms are reported as well.

48

The literature reviews are then tailored to the tools used in the back propagation

algorithms of the neural networks in overcoming the gradient descent problems.

The major contribution of this research is the development and

implementation of two new algorithms. The theoretical analyses of these new

algorithms are achieved through the use of the concepts of 2-D presentation of the

algorithms in the form of a unit memory repetitive processes and the limit profile.

The preliminary discussions on these topics are also presented in this chapter. In the

following chapter we proceed with the discussion of DISOPE in detail. The chapter

is a compilation of work done by Roberts (1979,1993, 1994a, 1994b, 1999, 2000b,

2000c, and 2002) and Becerra (1994) on DISOPE.

49

CHAPTER 3

DISOPE AS AN ALGORITHM FOR SOLUTION OF NONLINEAR

OPTIMAL CONTROL

3.1 Introduction

This chapter is a compilation of works done by Roberts (1993, 2000b, 2000c,

2001, 2002) and Becerra (1994). It describes DISOPE algorithm in detail and forms

a basis for the work in subsequent chapters. The chapter starts with the formulation

of problems and goes on to describe the algorithm. Next, we present the algorithm

mapping of DISOPE. Roberts (2000b, 2000c, 2002) used 2-D systems theory

(Edwards and Owens, 1982) in the form of unit memory repetitive process to analyze

the optimality, stability, and convergence behavior of the algorithm. All the analyses

are presented here. The purpose of this chapter is to be a reference point for

comparing with results from two new algorithms in Chapters 5 and 6. Three

simulation examples with varying degrees of nonlinearity are included in this

chapter.

3.2 Problem Formulation

DISOPE is a technique for solving nonlinear optimal control problems

subject to model-reality differences (Roberts, 1993). In the continuous version of the

method, it strives to find the solution of the following Real Optimal Control Problem

(ROP):

50

50

{ }
0

* *

()

*
0 0

*
,1

min (()) ((), (),)

subject to
 () ((), (),); ()

 (()) 0

ft

f tu t

f q

J x t L x t u t t dt

x t f x t u t t x t x

x t

∗ ⎫= Φ + ⎪
⎪⎪
⎬
⎪= =
⎪

Ψ = ⎪⎭

∫

&
 (3.1)

with terminal conditions and constraints. ROP is defined over the fixed time horizon

0[,]ft t t∈ , where () mu t ∈ ¡ and () nx t ∈ ¡ are the continuous control and state

vectors respectively, * : nΦ →¡ ¡ is the real terminal measure, dependent on the

final state and time. * : n mL × × →¡ ¡ ¡ ¡ is the real performance measure function,

dependent on the state and input at intermediate times 0[,]ft t . * : n m nf × × →¡ ¡ ¡ ¡

represents the real nonlinear dynamical system, and * : n qΨ →¡ ¡ is the real

terminal constraint vector.

However, since a good representation of reality does not always translate into

ease of solution, DISOPE does not work directly on ROP. The technique modeled

the reality with a manageable equivalent problem, called the Model Based Optimal

Control Problem (MOP).

[]{ }
0

*

()

0 0

*
,1

min (()) ((), (), ())

subject to
 () ((), (), ()); ()

 (()) 0

ft

MOP f tu t

f q

J x t L x t u t t dt

x t f x t u t t x t x

x t

γ

α

⎫= Φ + ⎪
⎪⎪
⎬
⎪= =
⎪

Ψ = ⎪⎭

∫

&
 (3.2)

In an attempt of not totally forsaking reality, the formulation of MOP includes

parameter estimates () tγ ∈ ¡ and () rtα ∈ ¡ . These two estimates take account of

the value differences between reality and model. In Eq. (3.2) : n mL × × →¡ ¡ ¡ ¡

and : n m r nf × × →¡ ¡ ¡ ¡ are respectively, the performance index and the plant

dynamics of the model. Both are approximates of the real performance index *L and

the plant dynamics *f .

MOP is then expanded into another optimal control problem, which is

equivalent to ROP called the Expanded Optimal Control Problem (EOP). The role of

EOP is to tie both ROP and MOP together. Including the equality expressions of

51

51

state functions and performance indices from both ROP and MOP as constraints does

this. EOP is defined as follows:

[{
0

*

()

2 2
1 2

0 0

*
,1

min (()) ((), (), ())

1 1ˆ ˆ () () () ()]
2 2

subject to
 () ((), (), ()); ()

 (()) 0

ft

EOP f tu t

f q

J x t L x t u t t

r u t u t r x t x t dt

x t f x t u t t x t x

x t

γ

α

⎫= Φ + ⎪
⎪
⎫⎪+ − + − ⎬⎪⎭
⎪
⎬
⎪= = ⎪
⎪Ψ =
⎪
⎪
⎭

∫

&
 (3.3)

with the new additional constraints defined as

*

*

ˆ ˆ ˆ ˆ((), (), ()) ((), (),)
ˆ ˆ ˆ ˆ((), (), ()) ((), (),)

ˆ () ()
ˆ () ()

f x t u t t f x t u t t
L x t u t t L x t u t t

u t u t
x t x t

α

γ

⎫=
⎪

= ⎪
⎬

= ⎪
⎪= ⎭

 (3.4)

In Eqs. (3.3) and (3.4), ˆ ˆ() and ()m nu t x t∈ ∈¡ ¡ are introduced as the state and control

variables used in the optimization step. This is to distinguish them from the variables

used in the parameter estimation step. ˆ() ()u t u t− and ˆ() ()x t x t− are

convexification terms introduced in the performance index to aid convergence.

1 2 and r r are given scalar convexification factors, which are adjustable to provide a

facility for regulating convergence (Roberts, 2002). EOP is used as basis for solving

ROP. All the necessary optimality conditions needed for solving ROP are derived

from it.

 In the present and subsequent chapters, the norm that we will be using is the

Euclidean norm ()
1

p p
ip

x x= ∑ . The default value would be the same as those

used by MATLAB which is 2p = , corresponding to the Euclidean length.

Following the tradition of the variational approach to solving constrained

optimization problems, the constraints in Eqs. (3.3) and (3.4) are adjoined to the

performance index with Lagrange multipliers to produce an augmented problem. To

52

52

reduce the likelihood of confusion, the time index t has been dropped from the

following formulation of the augmented performance index, where the subscript ea

stands for ‘augmented EOP’.

[
0

*

()

*

2 2*
1 2

min (()) (, ,) ((, ,))

ˆ ˆ ˆ ˆ ˆ ˆ() () ((, ,) (, ,))
1 1ˆ ˆ ˆ ˆ ˆ ˆ((, ,) (, ,))]
2 2

ft T
ea f tu t

T T T

T

J x t L x u p f x u x

u u x x f x u t f x u

L x u t L x u r u u r x x dt

γ α

λ β μ α

ξ γ

= Φ + + −

+ − + − + −

+ − + − + −

∫ &

 (3.5)

where () np t ∈ ¡ is the costate vector and () mtλ ∈ ¡ , () ntβ ∈ ¡ , () mtμ ∈ ¡ , and

()tξ ∈ ¡ are the multipliers. From Eq. (3.5) we define a Hamiltonian H as:

 (, , , ,) (, ,) (, ,)T T TH x u p L x u p f x u u xγ α γ α λ β= + − − (3.6)

with which the performance index of Eq. (3.5) becomes

0

*

()

* *

2 21 1
1 22 2

ˆ ˆmin (())

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ((, ,) (, ,)) ((, ,) (, ,))

ˆ ˆ

ft T T T
ea f tu t

T T

J x t H p x u x

f x u t f x u L x u t L x u

r u u r x x dt

λ β

μ α ξ γ

⎡= Φ + − + +⎣

+ − + −

⎤+ − + − ⎦

∫ &

 (3.7)

 With reference to the Lagrange theory, the minimum of EOP is achieved by

finding the minimum of the unconstrained eaJ . This happened when the first

variation of eaJ is set to zero, that is 0eaJδ = . With 0 0, , and ft t x fixed, the first

variation of eaJ is as follows:

() (){
0

*
1 2

* *
ˆ ˆ ˆ ˆ 1

* *
ˆ ˆ ˆ ˆ

ˆ ˆ

 []

ˆ ˆ [() ()]

 [() ()

f

f

t T TT
ea x u xt t t

T T
p

T T T
u u u u

T T
x x x x

J x H r u u u H r x x x

p x H x p

f f L L r u u u

f f L L

δ δ δ δ

δ δ

λ μ ξ δ

β μ

=
= ∇ Φ + ∇ + − + ∇ + −

− + ∇ −

+ + − + ∇ −∇ − −

+ + − + ∇ −∇

∫
& &

}
2 ˆ ˆ]

 [] []

T

T T T T

r x x x

H f H L dtα α γ γ

ξ δ

μ δα ξ δγ

− −

+ ∇ − + ∇ −∇

 (3.8)

To eliminate the variation in x&, the expression Tp xδ− &in Eq. (3.8) is integrated by

parts (Lewis and Syrmos, 1995) producing the following expression for the first

variation of eaJ .

53

53

(){
()

0 0

*
1

2

* *
ˆ ˆ ˆ ˆ 1

* *
ˆ ˆ ˆ ˆ 2

ˆ[]

ˆ []

ˆ ˆ [() ()]

ˆ ˆ [() ()]

 [

f

f

t TT T
ea x ut t t t t

T T
x p

T T T
u u u u

T T T
x x x x

J p x p x H r u u u

H r x x p x H x p

f f L L r u u u

f f L L r x x x

H fα α

δ δ δ δ

δ δ

λ μ ξ δ

β μ ξ δ

= =
= ∇ Φ − + + ∇ + −

+ ∇ + − + + ∇ −

+ + − + ∇ −∇ − −

+ + − + ∇ −∇ − −

+ ∇ −

∫
& &

}] []T T T TH L dtγ γμ δα ξ δγ+ ∇ −∇

 (3.9)

To get the necessary optimality conditions for the optimization, the

coefficients of the independent increments of , , and u x p in Eq. (3.9) are set to zero.

These conditions are

1

2

ˆ(() ()) 0
ˆ () (() ()) 0

 () 0

u

x

p

H r u t u t
H p t r x t x t

H x t

⎫∇ + − =
⎪∇ + + − = ⎬
⎪∇ − = ⎭

&
&

 (3.10)

Also, from Eq. (3.9), the expression for the Lagrangian multipliers

 and λ β are obtained by setting to zero the coefficients of the increments of

ˆ ˆ and u x respectively, while taking the values of the other two multipliers and μ ξ to

be ˆ and 1pμ ξ= = (Becerra, 1994) and from Eq. (3.4), ˆ ˆ0 and 0u u x x− = − = . The

expressions are

()

()

*
*

ˆ ˆ

*
*

ˆ ˆ

ˆ() (.) (.) () (.) (.)
ˆ ˆ

ˆ() (.) (.) () (.) (.)
ˆ ˆ

T

u u

T

x x

f ft p t L L
u u

f ft p t L L
x x

λ

β

⎫⎡ ⎤∂ ∂
= − + ∇ −∇ ⎪⎢ ⎥∂ ∂ ⎪⎣ ⎦

⎬
⎡ ⎤ ⎪∂ ∂

= − + ∇ −∇⎢ ⎥ ⎪∂ ∂⎣ ⎦ ⎭

 (3.11)

From the constants at the beginning of the expression of Eq. (3.9), we get the

terminal condition for EOP as

 *() (())
f

f x t t
p t x t

=
= ∇ Φ (3.12)

Thus, the solution of the optimal control problem EOP defined by Eqs. (3.3)

and (3.4) is arrived at by solving Eqs. (3.10) together with the boundary conditions

0 0()x t x= and *() (())
f

f x t t
p t x t

=
= ∇ Φ , and optimality conditions

54

54

*

*

ˆ ˆ ˆ ˆ((), (), ()) ((), (),) 0
ˆ ˆ ˆ ˆ((), (), ()) ((), (),) 0

f x t u t t f x t u t t
L x t u t t L x t u t t

α

γ

⎫− = ⎪
⎬

− = ⎪⎭
 (3.13)

and

ˆ() ()
ˆ() ()
ˆ() ()

u t u t
x t x t
p t p t

= ⎫
⎪= ⎬
⎪= ⎭

 (3.14)

The pair of equations in Eq. (3.13) defines the parameter estimation problem and the

ones in Eq. (3.14) define the interconnections between the parameter estimation

problem and the optimization problem. Since EOP is equivalent to ROP, the solution

of ROP is also gained.

 Looking back at the Hamiltonian in Eq. (3.6), the necessary optimality

conditions in Eq. (3.10), and border conditions 0 0()x t x= and

*() (())
f

f x t t
p t x t

=
= ∇ Φ , we can easily see that an optimal control problem defined as

{
}

0

*

()

2 2 21 1 1
1 2 32 2 2

0 0
*

,1

min (()) ((), (), ()) () ()

ˆ ˆ ˆ () () () () () () () ()]

subject to
 () ((), (), ()); ()

 (()) 0

ft T
MMOP f tu t

T

f q

J x t L x t u t t t u t

t x t r u t u t r x t x t r p t p t dt

x t f x t u t t x t x

x t

γ λ

β

α

⎫⎡= Φ + −⎣ ⎪
⎪

− + − + − + − ⎪
⎪⎪
⎬
⎪= = ⎪
⎪Ψ =
⎪
⎭

∫

&

⎪

 (3.15)

also satisfies them. This problem is simpler than EOP above. Thus, instead of using

EOP as the model to be solved, we will use this problem called the Modified Model

Based Problem (MMOP) as the model used in finding the solution of ROP. If with

given values of ˆ ˆ ˆ(), () and ()u t x t p t we compute the functions of (), tλ (), (), t tα γ and

()tβ using Eqs. (3.11) and (3.13), and if the solutions obtained satisfy conditions in

Eq. (3.14), then that solution is also the solution to ROP (Becerra, 1994). Notice, in

Eq. (3.15), we add another convexification term 2ˆ() ()p t p t− in order to aid the

convexification of the costate. To satisfy the optimality conditions of (3.10), we can

give the value of zero to 3r since in problems involving Lagrange multipliers, the

values of the multipliers are not essential in solving the problems.

55

55

3.3 DISOPE Algorithm

The previous reasoning leads to the following algorithm with MMOP as

model.

Algorithm 3.1

Data 0 0, , , , , ff L x t tϕ and means for calculating *f and *L .

Step 0 Compute or choose a nominal solution 0 0 0(), (), and ().u t x t p t Set
0 0ˆ0, () ()i u t u t= = , 0 0ˆ() ()x t x t= , 0 0ˆ() (),p t p t= 0[,]ft t t∈ .

Step 1 Compute the parameters () ()(), ()i it tα γ using (3.13). This is called the

parameter estimation step.

Step 2 Compute the multipliers () ()() and ()i it tλ β from Eq. (3.11).

Step 3 With specified () ()(), (),i it tα γ () ()i tλ , and () ()i tβ solve MMOP to obtain
()ˆ (),iu t ()ˆ ()ix t , and ()ˆ ()ip t . This is called the system optimization step.

Step 4 This step is the updating mechanism, testing the convergence and updates the

estimates for the solution of ROP.
(1) () () ()

(1) () () ()

(1) () () ()

ˆ() () (() ())
ˆ() () (() ())
ˆ() () (() ())

i i i i
u

i i i i
x

i i i i
p

u t u t k u t u t

x t x t k x t x t

p t p t k p t p t

+

+

+

⎫= + −
⎪

= + − ⎬
⎪= + − ⎭

 (3.16)

where , , (0,1]u x pk k k ∈ are scalar gains. If (1) ()() ()i iu t u t ε+ − ≤ , ε a given

tolerance, stop, else set i = i + 1 and continue from step 1.

Figure 3.1 is the schematic representation of DISOPE in the form of a flow

chart.

3.4 DISOPE With LQR as Model

 For the purpose of this research, only LQR problems will be considered as

56

56

model whilst DISOPE is used as the search algorithm for finding the optimal solution

of the optimal control problems presented. Consider MMOP as defined in Eq. (3.15)

, which is equivalent to ROP as defined in Eq. (3.1). For the benefit of subsequent

sections, MMOP will be formulated as an LQR model at the ith iteration in the

following fashion.

Figure 3.1: The flow chart of DISOPE algorithm.

Step 1

Start
Step 0

 0 0 0, ,u x p

() (),i iα γ

Stop

Y

N (1) ()

 Is

() ()i iu t u t ε+ − ≤
Set i = i +1
() () (), ,i i iu x p

Step 2

Step 3

Step 4

() (),i iλ β

() () ()ˆ ˆ ˆ, ,i i iu x p

(1) (1) (1), ,i i iu x p+ + +

57

57

()
0

()
1()

() ()

2 2() ()
1 2

1 1min () () () (() () () ())
2 2

 () () () ()

1 1 () () () ()
2 2

 subj

ftT i T T T
f f f tu t

i T i T

i i

J x t Sx t x t x t Qx t u t Ru t

t u t t x t

r u t u t r x t x t dt

λ β

⎧ ⎧= + Γ + +⎨ ⎨
⎩⎩

− −

⎫⎫+ − + − ⎬ ⎬
⎭ ⎭

∫

()
0 0

()
3 ,1

ect to: () () () (); ()

 () 0

i

i
f q

x t Ax t Bu t t x t x

Vx t b

α

γ

⎫
⎪
⎪
⎪
⎪
⎪
⎬
⎪
⎪= + + = ⎪
⎪+ + =
⎪
⎭

&

 (3.17)

The solution of MMOP is obtained by solving the appropriate optimality conditions

(Roberts, 2002), which provide estimates of the optimal control, state, and costate

signals as:

()() 1 () () ()

1

() () () ()

() () () () ()
2

ˆ ˆ() () () ()

ˆ ˆ ˆ() () () ()

ˆ ˆ ˆ() () () () ()

i T i i i

d i i i i
dt

d i i i i iT
dt

u t R B p t t ru t

x t Ax t Bu t t

p t Qx t A p t t r x t

λ

α

β

− ⎫= − + +
⎪⎪= + + ⎬
⎪

=− − + + ⎪⎭

 (3.18)

where 1 mR R r I= + , 2 nQ R r I= + and ()ˆ ()i np t ∈ ¡ is the vector of costate variables.

The corresponding mixed boundary conditions are:

()
0 0

() () () ()
1 2

() ()
3 ,1

ˆ ()

ˆ ˆ() ()

ˆ () 0

i

Ti i i i
f

i i
f q

x t x

p t Sx T V

Vx t b

χ

γ

⎫=
⎪⎪⎡ ⎤= + Γ + +Γ ⎬⎣ ⎦
⎪

+ + = ⎪⎭

 (3.19)

In Eqs. (3.17), (3.18), and (3.19), n nS ×∈ ¡ and 0n nQ ×∈ ≥¡ are symmetric

and positive semidefinite matrices. 0m mR ×∈ ≥¡ is symmetric positive definite.

,n nA ×∈ ¡ ,n mB ×∈ ¡ ,q nV ×∈ ¡ ,qb∈ ¡ χ is a Lagrange multiplier. ().̂ represents

the current solution and ()(). i represents the variable value at iteration i. The model

parameters () ,ntα ∈ ¡ and 3 ,qγ ∈ ¡ together with modifiers () ,mtλ ∈ ¡ () ,ntβ ∈ ¡

1 ,nΓ ∈ ¡ and 2 ,q n×Γ ∈ ¡ are calculated using the relationships:

() * () () () ()

() * () ()
3

() ((), ()) () ()
(()) ()

i i i i i

i i i
f f

t f x t u t Ax t Bu t
x t Vx t b

α
γ

⎫= − − ⎪
⎬

= Ψ − − ⎪⎭
 (3.20)

and

58

58

*
() () * ()

*
() () * ()

() * () ()
1

* ()
()
2

()() () () ()

()() () () ()

(()) ()

(())

T
i i i

u

T
i i i

x

i i i
x f f

i
fi

ft B p t L Ru t
u

ft A p t L Qx t
x

x t Sx t

x t
V

x

λ

β

⎫⎡ ⎤∂ ⋅ ⎡ ⎤= − − − ∇ ⋅ − ⎪⎢ ⎥ ⎣ ⎦∂ ⎪⎣ ⎦
⎪

⎡ ⎤∂ ⋅ ⎪⎡ ⎤ ⎪= − − − ∇ ⋅ −⎢ ⎥ ⎣ ⎦ ⎬∂⎣ ⎦
⎪

Γ = ∇ Φ − ⎪
⎪

∂Ψ ⎪Γ = − ⎪∂ ⎭

 (3.21)

In addition to using scalars convexification factors 1 2and ,r r convergence

and stability is also regulated by use of the relaxation scheme given by Eq. (3.16)

(Roberts, 2002).

3.5 The Algorithm Mapping of DISOPE

 To gain an insight into the inner process of DISOPE; we developed the

following algorithm mapping based on Roberts (1994a, 1994b, 2000a, 2000b, 2002).

Here DISOPE is characterized as a non linear mapping that defines a recursive

relationship for the control () (),iu t state () (),ix t and costate () ()ip t in terms of their

values at the previous iteration. The mapping shows how the algorithm solution

develops from iteration to iteration and will be the basis for subsequent 2-D

interpretation, optimality, stability, and convergence analyses. For the purpose of

simplification, we define the following notations for use in the analyses.

* *
* *

* * * *

* ()
* * * ()

((), ()) ((), ())(, ,) , (, ,)

(, ,) ((), ()), (, ,) ((), ())

(())
(()) (()), (())

u u x x
i

fi
x f x f f

f x t u t f x t u tB x u t A x u t
u x

L x u t L x t u t L x u t L x t u t

x t
x t x t V x t

x

⎫∂ ∂
= = ⎪∂ ∂ ⎪⎪= ∇ = ∇ ⎬

⎪∂Ψ ⎪Φ =∇ Φ =
⎪∂ ⎭

 (3.22)

With these notations, the transition from iteration i to iteration i+1 given by

Eqs. (3.16), (3.18)-(3.21), can be expressed as

59

59

() * () () () () * () ()

() * () () () () * () ()

() () * ()
1

() * ()
2

() * ()

() (, ,) () () (, ,)

() (, ,) () () (, ,)

() (())

(())

() (,

i i i i i i i
u

i i i i i i i
x

i i i
f x f

i i
f

i i

t B B x u t p t Ru t L x u t

t A A x u t p t Qx t L x u t

Sx t x t

V V x t

t f x u

λ

β

α

⎡ ⎤= − + −⎣ ⎦
⎡ ⎤= − + −⎣ ⎦
⎡ ⎤Γ = − −Φ⎣ ⎦
⎡ ⎤Γ = − −⎣ ⎦
= () () ()

() * () ()
3

,) () ()
(()) ()

i i i

i i i
f f

t Ax t Bu t
x t Vx t bγ

⎫
⎪
⎪
⎪
⎪⎪
⎬
⎪
⎪
⎪− −
⎪

= Ψ − − ⎪⎭

 (3.23)

() 1 () ()

() () 1 () () 1 ()

() () () ()

ˆ ˆ() (() ()

ˆ ˆ ˆ() () () () ()

ˆ ˆ ˆ() () () ()

i T i i

i i T i i i

i i T i i

u t R B p t t
d x t Ax t BR B p t t BR t
dt
d p t Qx t A p t t
dt

λ

α λ

β

−

− −

⎫
⎪= − +
⎪
⎪= − + + ⎬
⎪
⎪= − − + ⎪⎭

 (3.24)

() () () () ()

1 2

() ()
3 ,1

ˆ ˆ() ()

ˆ () 0

i i i i i
f f

i i
f q

p t Sx t V

Vx t b

χ

γ

⎫⎡ ⎤= +Γ + +Γ ⎪⎣ ⎦
⎬

+ + = ⎪⎭
 (3.25)

where () () ()
1() () ()i i it t ru tλ λ= + and () () ()

2() () ()i i it t r x tβ β= + . The updating
mechanism given by Eq. (3.16) stays as is which is

(1) () () ()

(1) () () ()

(1) () () ()

ˆ() () (() ())
ˆ() () (() ())
ˆ() () (() ())

i i i i
u

i i i i
x

i i i i
p

u t u t k u t u t

x t x t k x t x t

p t p t k p t p t

+

+

+

⎫= + −
⎪

= + − ⎬
⎪= + − ⎭

 (3.26)

Similar to the general expressions in Section 2.2, Eq. (3.23) represents the

computation of modifiers and parameters, Eq. (3.24) represents the solution of the

MMOP subject to terminal conditions defined by Eq. (3.25), and Eq. (3.26)

represents the update of control, state, and costate estimates.

 With the use of Eq. (3.23), Eq. (3.24), can be simplified into

()()

() ()
1 1() ()

ˆ ()ˆ () () (())ˆ () ˆ ()

d ii
i idt

d i i
dt

x tx t H E y t g y tp t p t

⎡ ⎤ ⎡ ⎤
= + +⎢ ⎥ ⎢ ⎥

⎣ ⎦⎣ ⎦
 (3.27)

where

 () () () ()() () () ()
Ti i T i T i Ty t u t x t p t⎡ ⎤= ⎣ ⎦ (3.28)

and

60

60

1 ()1
1 () 11

1 1 ()
, 2 21

(())
, , (())

(())

iT
n n i

iT
n m n n

r BR O O g y tA BR B
H E g y t

O r I O g y tQ A

−− ⎫⎡ ⎤ ⎡ ⎤⎡ ⎤− ⎪= = =⎢ ⎥ ⎬⎢ ⎥⎢ ⎥− − ⎢ ⎥ ⎪⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎭
 (3.29)

with

()

()

() 1 * () () () () * () ()
11

() () () ()

() * () () () () * () ()
12

ˆ(()) (, ,) () () (, ,)

 (, ,) () ()

ˆ(()) (, ,) () () (, ,)

Ti i i i i i i
u

i i i i

Ti i i i i i i
x

g y t BR B B x u t p t Ru t L x u t

f x u t Ax t Bu t

g y t A A x u t p t Qx t L x u t

− ⎫⎡ ⎤= − + −⎣ ⎦ ⎪
⎪+ − − ⎬
⎪

⎡ ⎤= − + −⎣ ⎦ ⎭
⎪

 (3.30)

In Eq. (3.29), the Hamiltonian matrix H is a transition matrix; E1 represents

contributions from 1 2 1 and , and ()r r g ⋅ represents the model reality differences. The

terminal conditions become:

() () ()
() ()

() * () * () () () ()

* () () ()
,1

ˆ ˆ() () () () ()

ˆ() () ()

Ti i i i i i
f x f f f f

i i i
f f f q

p t x t V x t S x t x t

x t V x t x t O

χ ⎫⎡ ⎤= Φ + + − ⎪⎣ ⎦ ⎬
⎪Ψ + − = ⎭

 (3.31)

The solution of Eq. (3.27) becomes

 ()
0

()
0 () ()

0 1 1()()
0

ˆ ()
(,) (,) () ()

ˆ ()ˆ ()

i t i i
ii t

xx t
t t t E y g y d

p tp t
φ φ τ τ τ τ

⎡ ⎤ ⎡ ⎤ ⎡ ⎤= + +⎢ ⎥ ⎢ ⎥ ⎣ ⎦⎣ ⎦⎣ ⎦
∫ (3.32)

where

 ()(,) H tt e τφ τ −= (3.33)

By writing

 1 11 12

2 21 22

(,) (,) (,)
(,)

(,) (,) (,)
t t t

t
t t t

φ τ φ τ φ τ
φ τ

φ τ φ τ φ τ
⎡ ⎤ ⎡ ⎤

= =⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

 (3.34)

and substituting it into Eq. (3.31), the elimination of ()iχ , produces

() () (){
() () }

0

1() * ()
22 0 21 0 0

()
2 1

ˆ () , , ()

 , () ()

f

i i
f f f

t i
ft

p t t t t t x y t

t E y g y d

φ φ

φ τ τ τ τ

−
= − +Ψ

⎡ ⎤+ +⎣ ⎦∫

%

 (3.35)

where

61

61

() () () () ()
() () () () ()
() ()

() () ()

1* () ()
21 0 21 0 11 0

1* () ()
2 2 1

* () () * ()

1* () () * ()

, , () () ,

, , () () ,

() () ()

 () () ()

Ti i
f f f f f

Ti i
f f f f f

i i i
f f x f

Ti i i
f f f

t t t t V x t x t V t t

t t V x t x t V t

y t Sx t x t

V x t x t x t

φ φ φ

φ τ φ τ φ τ

−

−

−

⎫⎡ ⎤= + ⎣ ⎦ ⎪

⎡ ⎤= + ⎣ ⎦ ⎬
Ψ = −Φ

⎡ ⎤+ Ψ⎣ ⎦

∑
∑

∑

% %

% %

%

⎪
⎪

⎪
⎪
⎪
⎭

 (3.36)

() () () () ()
() () () () ()
() ()

() () ()()
() ()

1

11 0 11 0 12 0 22 0 21 0

1

1 1 12 0 22 0 2

* () * ()

1() * () ()
12 0 22 0

()
12 0

, , , , ,

, , , , ,

() ()

 () , , () ()

() ,

f f f f f

f f f f f

i i
f f

i i i
f f f x f f

i
f f

t t t t t t t t t t

t t t t t t t

x t x t

Vx t V t t t t x t Sx t

x t V t t

φ φ φ φ φ

φ τ φ τ φ φ φ τ

φ φ

φ

−

−

−

= −

= −

Ψ = Ψ

− + Φ −

=

% % %

% % %

%

%

() ()1 * ()
22 0, ()

Ti
f ft t V x tφ

−

⎫
⎪
⎪
⎪
⎪⎪
⎬
⎪
⎪
⎪
⎪⎡ ⎤ ⎪⎣ ⎦ ⎭∑ %

 (3.37)

and

() () ()
() () ()
() () ()

22 0 22 0 12 0

21 0 21 0 1 0

2 2 1

, , ,

, , ,

, , ,

f f f

f f f

f f f

t t t t S t t

t t t t S t t

t t S t

φ φ φ

φ φ φ

φ τ φ τ φ τ

⎫= −
⎪⎪= − ⎬
⎪

= − ⎪⎭

%

%

%
 (3.38)

Furthermore, using Eq. (3.23) the optimal control estimates in Eq. (3.24),

can be written as

() 1 () 1 () 1 * () () ()
1

1 () * () ()

ˆ ˆ() () () (, ,) ()

 () (, ,)

Ti T i i i i i

i i i
u

u t R B p t r R u t R B B x u t p t

R Ru t L x u t

− − −

−

⎡ ⎤= − + + −⎣ ⎦
⎡ ⎤+ −⎣ ⎦

 (3.39)

The updating mechanism represented by Eq. (3.26) can be written as

()

(1) () () ()

()

ˆ ()
ˆ() () () ()
ˆ ()

i

i i i i
y y

i

u t
y t y t K x t K y t

p t

+

⎡ ⎤
⎢ ⎥= + −⎢ ⎥
⎢ ⎥⎣ ⎦

 (3.40)

where

, ,

,

,

u m m n m n

y n m x n n

n m n p n

k I O O
K O k I O

O O k I

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

 (3.41)

62

62

Let

 () () () ()ˆ ˆ ˆ ˆ() [() () ()]i i T i T i T Ty t u t x t p t= (3.42)

then (3.40) can be written as

 (1) () () ()ˆ() () () ()i i i i
yy t y t K y t y t+ ⎡ ⎤= + −⎣ ⎦ (3.43)

which can be expressed as

 (1) () ()
2ˆ() () ()i i i

y n m yy t K y t I K y t+
+⎡ ⎤= + −⎣ ⎦ (3.44)

The combination of Eqs. (3.39) and (3.44) produces

 ()
()

(1) () () ()
2 2 2()

ˆ
() () () ()

ˆ

i
i i i i

n m yi

x
y t C I K y t E y t g y t

p
+

+

⎡ ⎤
⎡ ⎤= + − + +⎢ ⎥ ⎣ ⎦

⎣ ⎦
 (3.45)

where
1 1

, 1 , ,

2 ,

,

, ,

T
m n u u m n m n

x n n n m n n

n p n n m n n

O k R B r k R O O
C k I O E O O O

O k I O O O

− −⎡ ⎤ ⎡ ⎤−
⎢ ⎥ ⎢ ⎥= =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 (3.46)

 ()
()()

21

()
2 ,2

,2

()

()

i

i
n n m

n n m

g y t

g y t O
O

+

+

⎡ ⎤
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 (3.47)

with

() { }() 1 * () () () () * () ()
21 () (, ,) () () (, ,)

Ti i i i i i i
u ug y t k R B B x u t p t Ru t L x u t− ⎡ ⎤ ⎡ ⎤= − + −⎣ ⎦ ⎣ ⎦ (3.48)

We note that here 2E provides a contribution from the convexification coefficient

1 2 and ()r g ⋅ represents model-reality differences.

 From Eqs. (3.32) and (3.35) we obtain

()
() ()

() (){
0

0

()
0 () ()

0 1 1()
0

112 0 () ()
22 0 2 1 1

22 0

, ,ˆ ()
(,) () ()

ˆ () , ,

(,)
 , (,) () ()

(,)

f

i tx f i i
i t

p f

t i i
f ft

t t tx t
x t E y g y d

p t t t t

t t
t t t E y g y d

t t

μ
φ τ τ τ τ

μ

φ
φ φ τ τ τ τ

φ
−

⎡ ⎤⎡ ⎤ ⎡ ⎤⎢ ⎥= + +⎢ ⎥ ⎣ ⎦⎢ ⎥⎣ ⎦ ⎣ ⎦
⎡ ⎤ ⎡ ⎤− +⎢ ⎥ ⎣ ⎦⎣ ⎦

∫

∫%

()}* () ()i
fy t+Ψ

 (3.49)

where

()
()

1
0 11 0 12 0 22 0 21 0

1
0 21 0 22 0 22 0 21 0

, , (,) (,) (,) (,)

, , (,) (,) (,) (,)

x f f f

p f f f

t t t t t t t t t t t

t t t t t t t t t t t

μ φ φ φ φ

μ φ φ φ φ

−

−

⎫= − ⎪
⎬

= − ⎪⎭

%

%
 (3.50)

63

63

Substituting Eq. (3.49) into Eq. (3.45) then gives

()
() () () ()

()()

0

0

(1) () ()
2 2 0 1

() ()
0 0 2 0 1

* ()
0

() () , , , ()

 , , () , , , ()

 , ,

f

f

ti i i
n m y ft

ti i
f ft

i
f

y t E I K y t C t t t E y d

C t t t x g y t C t t t g y d

CP y t t t

τ τ τ

μ τ τ τ

+
+⎡ ⎤= + − + Ω⎣ ⎦

+ + + Ω

+

∫

∫ (3.51)

Eq. (3.51) is what we are looking for, the definition of a recursive
relationship for (1) ()iy t+ in terms of () ()iy t where

()

()
()

() ()

() () ()

10 12 0
0 0 22 0

22 00

* () * ()
0 0

, , (,)
, , , , , ,

(,), ,

(), , , , ()

x f

f f f

p f

i i
f f f

t t t t t
t t t t t t t t

t tt t t

P y t t t t t t y t

μ φ
μ η φ

φμ

η

−
⎡ ⎤ ⎡ ⎤⎢ ⎥= = ⎢ ⎥⎢ ⎥ ⎣ ⎦⎣ ⎦

= − Ψ

%
 (3.52)

and

()

()
0 2 0

0

0 2

(,) , , (,),
(, , ,)

, , (,),

f f

f

f f f

t t t t t t t
t t t

t t t t t t

φ τ η φ τ τ
τ

η φ τ τ

⎧ − ≤ ≤⎪Ω = ⎨
− ≤ ≤⎪⎩

 (3.53)

The mapping in Eq. (3.51) can be decomposed into

 (1) (1) (1)() () ()i i iy t y t y t+ + += + (% (3.54)

where

0

(1) () ()
2 0 1 0 0() () (, , ,) () (, ,)fti i i

y f ft
y t E I K y t C t t t E y d C t t t xτ τ τ μ+ ⎡ ⎤= + − + Ω +⎣ ⎦ ∫% (3.55)

is a linear term, and

()()
0

(1) () () * ()
2 0 1 0() (()) (, , ,) ((), ,)fti i i i

f ft
y t g y t C t t t g y d CP y t t tτ τ τ+ = + Ω +∫
((3.56)

represents a non-linear contribution.

3.6 The Optimality Analysis

 To do this analysis, the algorithm mapping given by Eq. (3.45) is interpreted

as a unit memory repetitive process. A limit profile is taken of the unit memory

repetitive process represented by a non-linear differential form. An optimality

64

64

theorem is proven based on the limit profile.

3.6.1 A Unit Memory Repetitive Process Interpretation

 A unit memory repetitive process can clearly represent the algorithm

mapping defined by Eq. (3.51). As described in Chapter 2, it falls naturally into the

area of 2-D systems where the pass profile () ()iY t is

() () () ()() () () ()
Ti i T i T i TY t u t x t p t⎡ ⎤= ⎣ ⎦ consisting of the control, state and co-state

signal estimates at each iteration. The pass length ς is the time horizon 0ft t− , and

the boundary conditions are ()
0 and ()i

fx y t . Here the Banach space

2 0(,)n m fE C t tς += of bounded mappings of the interval 0 ft t t≤ ≤ into the vector

space 2n m+¡ with norm

0

(1)
2

sup ()
f

i
n m

t t t
Y Y t+

+
≤ ≤

= (3.57)

where
2n m+
⋅ is any convenient norm in 2n m+¡ . This link to 2-D systems are crucial

since as mentioned in Subsection 2.8.1, the 2-D systems theory can be used to

analyze the local stability and convergence behavior of the multipass process.

By looking at Eqs. (3.51), (3.55), and (3.56) we can see that the algorithm

mapping can be written in the form:

 ()(1) (1) () (1) ()
1 2 , 0i i i i iY Y Y iφ φ+ + += + ≥ (3.58)

with

() ()
() () () () ()

0

0

(1) () () ()
1 2 2 0 1 0 0

(1) () () () * ()
2 2 0 1 0 0

() , , , () , ,

() , , , () (), ,

f

f

ti i i i
n m y f ft

ti i i i i
f ft

Y E I K Y t C t t t E Y d C t t t x

Y g Y t C t t t g Y d CP Y t t t x

φ τ τ τ μ

φ τ τ τ

+
+

+

⎫⎡ ⎤= + − + Ω +⎣ ⎦ ⎪
⎬
⎪= + Ω +
⎭

∫

∫
 (3.59)

where (1) ()
1

i iYφ + consists of linear terms and ()(1) ()
2

i iYφ + is a nonlinear contribution.

65

65

 The unit memory repetitive process representation of the algorithm can also

be written in a non-linear differential form by defining

() () ()ˆ ˆ() () ()
Ti i T i TX t x t p t⎡ ⎤= ⎣ ⎦ . Then Eqs. (3.27) and (3.45) provide

()

()

() () () ()
1 1

(1) () () ()
2 2 2

() () () ()

() () () ()

i i i i

i i i i
n m y

d X t HX t E Y t g Y t
dt
Y t CX t E I K Y t g Y t+

+

⎫= + + ⎪
⎬
⎪⎡ ⎤= + + − +⎣ ⎦ ⎭

 (3.60)

where the initial condition () () ()
0 0 0ˆ ˆ() () ()

Ti i T i TX t x t p t⎡ ⎤= ⎣ ⎦
()

0 0ˆ ()
TT i Tx p t⎡ ⎤= ⎣ ⎦

()
0ˆwith ()ip t given by

{

() }
0

() 1 * ()
0 22 0 21 0 0

() ()
2 0 1 1

ˆ () (,) (,) (())

 (,) () ()f

i i
f f f

t i i
ft

p t t t t t x Y t

t t E Y g Y d

φ φ

φ τ τ τ

−= − +Ψ

⎡ ⎤+ +⎣ ⎦∫

%
 (3.61)

This is an output dependent initial condition and can be written in the form of

 () () ()
0

() () ()
0 0 0() , () ()fti i i

f f t
X t t t x Y t J Y dτ τ= Φ +Ψ + ∫

(((
 (3.62)

where

 () () ()10
22 0 21 0

,
, ,

n

f
f f

I
t t

t t t tφ φ
−

⎡ ⎤
⎢ ⎥Φ =
−⎢ ⎥⎣ ⎦

(
% (3.63)

 () () ()
()

1 * ()
22 0

()
, ()

ni
f i

f f

O
Y t

t t Y tφ
−

⎡ ⎤
⎢ ⎥Ψ =
− Ψ⎢ ⎥⎣ ⎦

(
% (3.64)

and

 () ()
()

1 () ()
22 0 2 0 1 1

()
(,) (,) () ()

ni
i i

f f

O
J Y

t t t t E Y g Y
τ

φ φ τ τ−

⎡ ⎤
= ⎢ ⎥

⎡ ⎤− +⎢ ⎥⎣ ⎦⎣ ⎦

(
% (3.65)

where * ()(())i
fY tΨ is defined in Eq. (3.36). Note that the initial condition is a

nonlinear function of the output () ()iY t . Note also that the non-linear contribution to

(3.60) and the initial condition of (3.62) are completely contained in the components

() () ()() () * ()
1 2() , () and ()i i i

fg Y t g Y t Y tΨ .

66

66

3.6.2 DISOPE as a Linear Multipass Process

Linear multipass processes have properties that are desirable to our analyses.

Thus we proceed with transforming the nonlinear process described above into a

linear process with the help of LQR model. The original non-linear optimal control

problem ROP may be considered as linear with a quadratic performance index and a

linear terminal constraint when LQR is used as model. Thus in Eq. (3.1) we let

()

1* *
2

1* * *
2

* * *

* * *

(()) () ()

((), ()) () () () ()

((), ()) () ()
(()) ()

f f f

T T

f f

x t x t S x t

L x t u t x t Q x t u t R u t

f x t u t A x t B u t
x t V x t b

⎧ ⎫Φ =
⎪ ⎪

= +⎪ ⎪⎪ ⎪
⎨ ⎬

= +⎪ ⎪
⎪ ⎪Ψ = +⎪ ⎪⎩ ⎭

 (3.66)

Without loss of generality, we will consider a zero initial condition 0x , and in

Eq. (3.15) and (3.66) *
,1 ,1and .q qb O b O= =

 The expressions () ()() ()
1 2() and ()i ig Y t g Y t , which represent the non-linear

contribution to Eq. (3.60) can be transformed into linear expressions as follows.

Using Eq. (3.22), (3.29), (3.30), (3.47), and (3.48), together with (3.66), ()()
1 ()ig Y t

given by Eq. (3.29) as

 ()
()
()

()
11()

1 ()
21

()
()

()

i

i

i

g y t
g Y t

g y t

⎡ ⎤
⎢ ⎥=
⎢ ⎥
⎣ ⎦

 (3.67)

where

() ()

() ()

() 1 * () () () () * () ()
11

() () () ()

() * () () () () * () ()
21

ˆ() [(, ,)] () () (, ,)

 (, ,) () ()

ˆ() [(, ,)] () () (, ,)

i i i T i i i i
u

i i i i

i i i T i i i i
u

g y t BR B B x u t p t Ru t L x u t

f x u t Ax t Bu t

g y t A A x u t p t Qx t L x u t

− ⎫= − + −
⎪⎪+ − − ⎬
⎪= − + − ⎪⎭

 (3.68)

becomes

() ()

() ()

() 1 * () () * ()
11

* () * () () ()

() * () () * ()
21

ˆ() [] () () ()

 () () () ()

ˆ() [] () () ()

i T i i i

i i i i

i T i i i

g y t BR B B p t Ru t R u t

A x t B u t Ax t Bu t

g y t A A p t Qx t Q x t

− ⎫= − + −
⎪⎪+ + − − ⎬
⎪= − + − ⎪⎭

 (3.69)

In other words, Eq. (3.67) is transformed into

67

67

()
()() ()

() ()

* 1 * * 1 *

() ()
1

* *
,

() ()
() ()

T

i i
T

n m

B B BR R R A A BR B B
g Y t y t

O Q Q A A

− −⎡ ⎤− + − − −
⎢ ⎥=
⎢ ⎥− −⎢ ⎥⎣ ⎦

 (3.70)

which is a linear expression.

 For the expression of ()()
2 ()ig Y t , which from Eq. (3.47) is

()()

21

()
2 ,2

,2

()

(())

i

i
n n m

n n m

g Y t

g Y t O
O

+

+

⎡ ⎤
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 (3.71)

with ()()
21 ()ig Y t as

() { }() 1 * () () () () * () ()
21 () (, ,) () () (, ,)

Ti i i i i i i
u ug Y t k R B B x u t p t Ru t L x u t− ⎡ ⎤ ⎡ ⎤= − + −⎣ ⎦ ⎣ ⎦ (3.72)

the expression becomes

 () (){ }1 * () () * ()
21 () () ()

T i i i
ug k R B B p t Ru t R u t−= − + − (3.73)

Hence with (3.73), ()()
2 ()ig Y t can be rewritten as a linear expression of

() ()1 * 1 *

,

() ()
2 ,

,

(()) ()

T

u m n u

i i
n m n n

n m n n

k R R R O k R B B

g Y t O O O Y t
O O O

− −⎡ ⎤− −
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

 (3.74)

Consequently, Eq. (3.60) can be written in the linear unit memory repetitive

process form

() () ()

0

(1) () ()
1

() () ()

() () ()

i i id
dt

i i i

X t HX t B Y t

Y t CX t D Y t+

⎫= + ⎪
⎬

= + ⎪⎭
 (3.75)

where from (3.60) ()() () ()
0 1 1() () ()i i iB Y t E Y t g Y t= + or alternatively,

() () ()
() ()

1 * 1 * * 1 *
1

0
* *

, 2

T

T

n m n

r BR B B BR R R A A BR B B
B

O r I Q Q A A

− − −⎡ ⎤+ − + − − −
⎢ ⎥= ⎢ ⎥+ − −⎢ ⎥⎣ ⎦

 (3.76)

This simplifies into

() ()

() ()

* 1 * * 1 *

0 * *
,

()T

T

n m

B BR R A A BR B B
B

O Q Q A A

− −⎡ ⎤− − −
⎢ ⎥=
⎢ ⎥− −⎣ ⎦

 (3.77)

68

68

And ()() () ()
1 2 2 2() () ()i i i

n m yD Y t E I K Y t g Y t+⎡ ⎤= + − +⎣ ⎦ is now given by

() ()1 1 * 1 *

1 ,

1 ,

,

T

u m u m u m n u

n m n x n n

n m n n p n

r k R I k I k R R R O k R B B

D O I k I O
O O I k I

− − −⎡ ⎤+ − + − −
⎢ ⎥
⎢ ⎥= −
⎢ ⎥

−⎢ ⎥
⎣ ⎦

 (3.78)

which simplifies into

1 * 1 *
,

1 ,

,

()
(1)

(1)

T
m u m n u

n m x n n

n m n p n

I k R R O k R B B
D O k I O

O O k I

− −⎡ ⎤− −
⎢ ⎥= −⎢ ⎥
⎢ ⎥−⎣ ⎦

 (3.79)

H and C are as defined in (3.29) and (3.46) respectively.

 Using (3.64) and (3.65), together with (3.36), the initial condition, Eq.

(3.62) can be written as

0

() () ()
0 0 0() () (, ,) ()fti i i

f ft
X t E Y t J t t Y dτ τ τ= + ∫% (3.80)

where

 ,2
10

22 0 2 0

(, ,)
(,) (,)

n n m
f

f f

O
J t t

t t t B
τ

φ φ τ
+

−

⎡ ⎤
= ⎢ ⎥−⎣ ⎦

% (3.81)

and

 ,2
10

22 0 0(,)
n n m

f

O
E

t t Eφ
+

−

⎡ ⎤
= ⎢ ⎥−⎣ ⎦

%
% (3.82)

where

 ()()* * 1
0 , 0 0(,) (,)T

n m f f nE O S S V t t V t t O−⎡ ⎤= − − +⎣ ⎦∑ (3.83)

with

 1 *
0 12 0 22 0(,) (,) (,) T

f f ft t V t t t t Vφ φ −=∑ % (3.84)

 ()* 1 *
0 12 0 22 0(,) (,) (,)f f fV t t V V V t t t t S Sφ φ −= − + −% (3.85)

Eq. (3.75) is a linear unit memory repetitive process with output dependent initial

condition given by Eq. (3.80).

69

69

3.6.3 The Optimality Conditions of ROP and Its Linear Unit Memory

Repetitive Process Form

In Subsection 3.6.2, we transformed the nonlinear unit memory repetitive

process form of ROP into a linear form. It is crucial that we ensure the linear form

satisfy all the necessary optimality conditions of ROP before we proceed. We

achieve this by using the property of limit profile of the linear unit memory repetitive

process. In the following analysis, we assumed the existence of the limit point of

the sequence of terms generated by DISOPE for the limit profile to be valid.

From Subsection 2.8.4, we note that two important properties of linear

repetitive processes are stability and the limit profile. By assuming that Theorem 2.1

is satisfied, that is the linear repetitive process defined by Eq. (3.75) is

asymptotically stable, Definition 2.3 give the limit profile as

 () ()lim i

i
Y Y∞

→∞
= (3.86)

and by Theorem 2.2, the limit profile is the unique solution to Eq. (3.75). In this

particular situation, for a stable system, the limit profile is ()
2 ,1nX O∞ = and

()
2 ,1 0, ,n m fY O t t t∞

+ ⎡ ⎤= ∈ ⎣ ⎦ and Eq. (3.66) represents a local linear-quadratic

perturbation analysis of Eq. (3.1) about this zero point.

Application to (3.60) shows that () ()() and ()X t Y t∞ ∞ satisfy the relationships:

 ()() () () ()
1 1() () () ()d

dt X t HX t E Y t g Y t∞ ∞ ∞ ∞= + + (3.87)

 ()() () ()
2 2() () () 0yCX t E K Y t g Y t∞ ∞ ∞⎡ ⎤+ − + =⎣ ⎦ (3.88)

with Eq. (3.87) being the differential equation portion of the limit profile and Eq.

(3.88) is the algebraic portion. This set of two equations is called the limit profile of

the linear unit memory repetitive process representation of DISOPE. The initial

conditions previously given by (3.62) is now defined as

 () () ()
0

() () ()
0 0 0() , () ()ft

f f t
X t t t x Y t J Y dτ τ∞ ∞ ∞= Φ +Ψ + ∫

(((
 (3.89)

70

70

The boundary conditions on Eqs. (3.87) and (3.88) can be written in the

alternative two-point form as follows

()
() ()

()
0

() * () * () () () ()

* () () ()
2 ,1

(0)

ˆ ˆ() (()) (()) () ()

ˆ() () ()

T

f x f f f f

f f f n m

X x

p t x t V x t S x t x t

x t V x t x t O

χ

∞

∞ ∞ ∞ ∞ ∞ ∞

∞ ∞ ∞
+

⎫=
⎪⎪⎡ ⎤= Φ + + − ⎬⎣ ⎦
⎪

Ψ + − = ⎪⎭

 (3.90)

 The following theorem on optimality (Roberts, 2002) verifies that the limit

profile of the linear unit memory repetitive process representation of DISOPE

satisfies all the necessary optimality conditions of ROP.

Theorem 3.1 – Optimality

 Let Eq. (3.75) be the linear unit memory repetitive process representation of

DISOPE algorithm. If it is asymptotically stable then its limit profile given by Eqs.

(3.87) and (3.88) satisfy the necessary optimality conditions of the nonlinear optimal

control problem ROP defined by Eq. (3.1).

Proof

 Using the notation of Eq. (3.22), the optimal solution (), (), ()o o ou t x t p t , of

ROP, with Lagrange multiplier oχ , satisfies the necessary optimal conditions (Lewis

and Syrmos, 1995) as

* *

*

* *

(, ,) () (, ,)

() (, ,)

() (, ,) () (, ,)

o o T o o o
u m

d o o o
dt

d o o o T o o o
xdt

B x u t p t L x u t O

x t f x u t

p t A z v t p t L x u t

⎫+ =
⎪⎪= ⎬
⎪

= − − ⎪⎭

 (3.91)

with boundary conditions

 () ()
()

()
0 0

() * () * () ()

* ()
,1

()

() () ()

()

T

f x f f

f q

x t x

p t x t V x t

x t O

χ

∞

∞ ∞ ∞ ∞

∞

⎫=
⎪⎪⎡ ⎤= Φ + ⎬⎣ ⎦
⎪

Ψ = ⎪⎭

 (3.92)

We first analyze the algebraic portion of the limit profile that is Eq. (3.88).

From the limit profile point of view, with () () ()ˆ ˆ() () ()
TT TX t x t p t∞ ∞ ∞⎡ ⎤= ⎣ ⎦ ,

71

71

() () () ()() () () ()
TT T TY t u t x t p t∞ ∞ ∞ ∞⎡ ⎤= ⎣ ⎦ and Eqs. (3.35) and (3.40) it is can be

shown that as ,i →∞ () ()ˆ() ()T Tx t x t∞ ∞= , and () ()ˆ() ()T Tp t p t∞ ∞= . Furthermore,

 * () () () * () ()
,1(, ,) () (, ,)T

u mB x u t p t L x u t O∞ ∞ ∞ ∞ ∞+ = . (3.93)

Hence the first part of Eq. (3.91) is satisfied.

To see if the next two equations in (3.91) are also satisfied, we analyze the

differential equation portion of the limit profile in Eq. (3.87). Using the form of Eq.

(3.27) together with Eqs. (3.29) and the notations of (3.22) we get

() * () ()

() * () () () * () ()

() (, ,)

() (, ,) () (, ,)

d
dt
d T

xdt

x t f x u t

p t A z v t p t L x u t

∞ ∞ ∞

∞ ∞ ∞ ∞ ∞ ∞

⎫= ⎪
⎬

= − − ⎪⎭
. (3.94)

From Eqs. (3.93) and (3.94) we see that the optimality conditions of Eq. (3.91) are

satisfied.

Finally, the limit profile boundary conditions defined by Eq. (3.90) can be

written as

 () ()
()

()
0

() * () * () ()

* ()
,1

(0)

() () ()

()

T

f x f f

f q

x x

p t x t V x t

x t O

χ

∞

∞ ∞ ∞ ∞

∞

⎧ ⎫=
⎪ ⎪⎪ ⎪⎡ ⎤= Φ +⎨ ⎬⎣ ⎦
⎪ ⎪
Ψ =⎪ ⎪⎩ ⎭

. (3.95)

Thus by comparing Eq. (3.95) with Eq. (3.92), we conclude that the limit profile

solution () () ()(), (), ()u t x t p t∞ ∞ ∞ with Lagrange multiplier ()χ ∞ , satisfies all the

necessary optimality conditions of ROP.

 Thus with this theorem the algorithm is guaranteed to be able to search and

arrived at the optimal solution of the optimal control problem.

72

72

3.7 Stability and Convergence Analyses of DISOPE

 Stability is a property of the numerical scheme that has nothing to do with the

scheme’s approximation power. It characterizes the robustness of the scheme with

respect to small perturbations. Stability yields convergence of the numerical solution

to the true solution (Gautschi, 1997).

As mentioned earlier, 2-D systems theory can be used to analyze the stability

of multipass processes (Rogers and Owen, 1992). Definition 2.2 and Theorem 2.1

are the specific properties of asymptotic stability in multipass processes. In the next

subsection we will use this theory to analyze this property of DISOPE.

3.7.1 Stability Analysis

The linear unit memory repetitive process defined by Eq. (3.75) with output

dependent initial condition given by Eq. (3.80) is assumed to be asymptotically

stable in the analysis of Section 3.6 above. For linear constant coefficient systems,

stability depends only on the locations of the roots of the closed-loop characteristic

equation (Brogan, 1991). In this subsection, we give a theorem (Roberts, 2002) that

asserts the stability according to Theorem 2.1 in Chapter 2.

Theorem 3.2 –Stability (Asymptotic)

Let Eq. (3.75) be the linear unit memory repetitive process representation of

DISOPE algorithm. If Eq. (3.80) is its output dependent initial condition then its

sufficient and necessary condition for asymptotic stability is that all solutions for λ

in the relationship:

(){ }

(){ }
0

2 0 0 0

0 0

() exp () ()

 (, ,) () exp () 0f

n f

t

ft

I E F H B F t t

J t t F H B F d

λ λ

τ λ λ τ τ

− + −

− + =∫

%
 (3.96)

lie in the unit circle in the complex plane, where

73

73

 [] 1
2 1() n mF I D Cλ λ −

+= − (3.97)

Proof

 Roberts (2000) proved the theorem and the proof is restated here for

convenience.

 In bounded linear operator form, we can define:

 0
0 0 0 0

1

() () (); () () (, ,) ()

() () ()

ft

f ft
x t Hx t B y t x t E y t J t t y d

y t Cx t D y t

τ τ τ

λ

⎫= + = + ⎪
⎬
⎪= + ⎭

∫%&
 (3.98)

Then

1

2 1

1
0 2 1 0

() [] ()

() [[]] () [()] ()
n m

n m

y t I D Cx t

x t H B I D C x t H B F x t

λ

λ λ

−
+

−
+

⎫= − ⎪
⎬

= + − = + ⎪⎭&
 (3.99)

giving

()

()
0

0

() exp (()) (0)

() ()exp (()) (0)

x t H B F t x

y t F H B F t x

λ

λ λ

= + ⎫⎪
⎬

= + ⎪⎭
 (3.100)

Hence from (3.80) and (3.100)

()

()
0

0 0 0

0 0

() exp (()) (0)

 (, ,) () exp (()) (0)f

f

t

ft

x E F H B F t x

J t t F H B F d x

λ λ

τ λ λ τ τ

= +

+ +∫

%
 (3.101)

That is by rearranging,

()(

())
0

2 0 0

0 0

() exp (())

 (, ,) () exp (()) (0) 0f

n f

t

ft

I E F H B F t

J t t F H B F d x

λ λ

τ λ λ τ τ

− +

− + =∫

%
 (3.102)

Thus the spectral values of λ are given by

()
()

0

2 0 0

0 0

() exp (())
0

 (, ,) () exp (())f

n f

t

ft

I E F H B F t

J t t F H B F d

λ λ

τ λ λ τ τ

− +
=

− +∫

%
 (3.103)

Hence, by Theorem 2.1, asymptotic stability occurs if and only if the solutions of

λ in Eq. (3.103) lie in the unit circle in the complex plane.

 Thus the algorithm of DISOPE in the form of a linear unit memory repetitive

74

74

process is asymptotically stable whenever the condition in Theorem 3.2 is satisfied.

Stability is a powerful concept; it implies almost immediately convergence.

With the property of stability at hand, the convergence of the algorithm follows. In

the next subsection we give the convergence analysis of the algorithm.

3.7.2 Convergence Analysis

The convergence behavior of DISOPE may be investigated from the

nonlinear unit memory representation of the algorithm (Roberts, 2002). Before

going any further, we first state the following definition of contraction mapping for

use later in the convergence theorem.

Definition 3.1 – Contraction Mapping

 Consider the fixed-point iteration
(1) ()(), 0,1, 2,i iy y iϕ+ = =% L . (3.104)

We say that : m n n m n nϕ × × → × ×% ¡ ¡ ¡ ¡ ¡ ¡ is a contraction map (or contractive)

on a set m n n⊆ × ×¡ ¡ ¡D if there exist a constant θ with 0 1θ< < such that, in

some appropriate vector norm

 * *() ()y y y yϕ ϕ θ− ≤ −% % for all *,y y ∈D (3.105)

 Next we state the theorem stating the contraction mapping principle, in which

the existence of a limit point and hence convergence of an algorithm is implied.

Theorem 3.3 – Contraction Mapping Principle

 Let m n n⊆ × ×¡ ¡ ¡D be a complete subset of m n n× ×¡ ¡ ¡ . If

: m n n m n nϕ × × → × ×% ¡ ¡ ¡ ¡ ¡ ¡ is contractive in the sense of (3.105) and maps

 into D D , then the iteration in (3.104) is well defined and converges to a unique

limit point y∈) D , such that ()lim i

i
y y

→∞
=) .

75

75

Proof (See Gautschi (1997))

 Based on Definition 3.1 and Theorem 3.3, we use Eq. (3.51) to investigate the

convergence behavior of DISOPE. From Eq. (3.51), successive terms are used to

determine a contraction condition in the form of

 (1) () () (1)
1() () () ()i i i iy t y t y t y tθ+ −− ≤ − (3.106)

such that (3.105) is satisfied, where

0() sup () , , fW
t

y t y t t t t⎡ ⎤= ∈ ⎣ ⎦ (3.107)

with

 ()1/

1 2 2() () () () , [1,]
WW W W

n mW
y t y t y t y t W+= + + ∈ ∞L (3.108)

together with the following Lipschitz continuity assumptions

() ()

() (1) () (1)
1 1 1

() (1) () (1)
2 2 2

* () * (1) () (1)
0 0 3

(()) (()) () ()

(()) (()) () ()

(), , (), , () ()

i i i i

i i i i

i i i i
f f

g y t g y t h y t y t

g y t g y t h y t y t

P y t t t P y t t t h y t y t

− −

− −

− −

⎫− ≤ −
⎪
⎪− ≤ − ⎬
⎪

− ≤ − ⎪⎭

 (3.109)

where 1 2 3, and h h h are the Lipschitz constants. The convergence conditions are

then given by the following theorem.

Theorem 3.4 – Convergence

 A sufficient condition for the algorithm mapping represented by Eq. (3.51) to

exhibit asymptotic convergence according to (3.106) for every iteration 1i > is

given by the expression

 () ()()1 2 2 2 3 1 1 0 , 1n m y fE I K h h E h t t Cθ σ+= + − + + + + ≤ (3.110)

where

 () ()
00

0 0
[,]

, sup , , ,f

f

t

f ftt t t
t t t t t dσ τ τ

∈
= Ω∫ (3.111)

Proof

 Taking the norm of two successive iterations from Eq. (3.51) and taking the

norm produces

76

76

()

()
() ()

0

0

(1) () () (1)
2 2

() (1) () (1)
1 0 2 2

() (1)
0 1 1

* () * (1)
0 0

() () () ()

, , , () () (()) (())

, , , (()) (())

(), , (), ,

f

f

i i i i
n m y

t i i i i
ft

t i i
ft

i i
f f

y t y t E I K y t y t

C E t t t y y d g y t g y t

C t t t g y g y d

C P y t t t P y t t t

τ τ τ τ

τ τ τ τ

+ −
+

− −

−

−

− ≤ + − −

+ Ω − + −

+ Ω −

+ −

∫

∫
 (3.112)

By assuming Lipschitz continuity as defined by Eq. (3.109) we obtain

()
() ()

0

(1) () () (1)
2 2 2 3

() (1)
1 1 0

() () () ()

() () , , ,f

i i i i
n m y

ti i
ft

y t y t E I K h h C y t y t

E h C y t y t t t t dτ τ

+ −
+

−

− ≤ + − + + −

+ + − Ω∫
 (3.113)

By using (3.111) then gives the contraction equation

(
() ()())

(1) ()
2 2 2

() (1)
3 1 1 0

() ()

, () ()

i i
n m y

i i
f

y t y t E I K h

h E h t t C y t y tσ

+
+

−

− ≤ + − +

+ + + −
 (3.114)

and, hence, the iterations will contract asymptotically according to (3.106) if (3.110)

holds.

 It is important to note that Theorem 3.4 provides a sufficient condition only.

It is not necessary to satisfy the inequality given by (3.110) for the algorithm to

converge. However, the iterations are guaranteed to contract if the condition is

satisfied (Roberts, 2002).

 Hence with Theorems 3.2 and 3.4 the stability and convergence of DISOPE

are established. In the next section we present three numerical examples solved

using DISOPE algorithm. All the simulations in this chapter and subsequent

chapters were done on a Mobile Intel Pentium 4-M computer with a 2.00 GHz CPU

and 192 MB of RAM. MATLAB 6.0 was used as the programming language.

3.8 Numerical Examples

 The unique feature of DISOPE is its integration of parameters from both the

real problem and its model before arriving at the optimal solution. In view of this,

77

77

DISOPE converges in just one iteration whenever no model-reality difference is

introduced. When the real problems are modeled as LQR problem, it is customary to

use the appropriate identity matrices for Q and R; the weights for the performance

index, although other choices of Q and R are also acceptable.

 DISOPE requires an initial solution to start the iterations. A recommended

one is the solution of the relaxed MMOP with the continuous parameter estimate

() 0tα = and the given scalar convexification factors 1 2 0r r= = . It is based on the

steady state solution of the LQR problem. It solves the algebraic Riccati equation

instead of the differential Riccati equation for continuous optimization problem. The

initial solution is also called a nominal solution. With this nominal solution,

DISOPE uses repeated solutions of optimization and estimation of parameters within

the model for calculating the optimum.

The relaxation gains , , and v z pk k k and the convexification factors 1 2 and r r

are provided to regulate stability and convergence. In the initial application of the

algorithm to a given problem, the relaxation gains , , and v z pk k k would be set to

unity and 1 2 and r r would both be set to zero. These parameters would only be

adjusted if convergence difficulties arise (Roberts, 1993).

The following examples are chosen to demonstrate the outcome of DISOPE

with different choices of input to the weights and parameters mentioned above.

These examples have different levels of difficulties and nonlinearities. These results

will later be used as bases for comparisons for the two new algorithms in Chapters 5

and 6.

Example 3.1- Continuous Stirred Tank

 Consider the continuous stirred tank reactor problem taken from Kirk (1970).

The real optimization problem (ROP) is as follows:

0.78 2 2 2

1 20()
min * (0.1)
u x

J x x u dt= + +∫

subject to

78

78

 1
1 1 2 1

1

25(0.25) (0.5)exp (1)(0.25)
2

xx x x u x
x

⎛ ⎞
= − + + + − + +⎜ ⎟+⎝ ⎠

&

 1
1 2 2

1

250.5 (0.5)exp
2

xx x x
x

⎛ ⎞
= − − + ⎜ ⎟+⎝ ⎠

&

 (0) [0.05 0]Tx =

The modified model (MOP) used in DISOPE algorithm is:

0.78

0()
()min ()T T

u x
tJ x Qx u Ru dtγ= + +∫

subject to

4.25 1 0.25

() () ()
6.25 2 0

x x t u t tα
−⎡ ⎤ ⎡ ⎤

= + +⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦
&

 (0) [0.05 0]Tx =

where 2()x t ∈ ¡ , ()u t ∈ ¡ , ()tγ ∈ ¡ , and 2()tα ∈ ¡ . In this example, 22Q I= and

0.2R = . The numerical integration step used was h = 0.01 and a tolerance of 0.01

was specified for convergence. The results of this simulation are given in Table 3.1.

Table 3.1 showcases the performance of the algorithm with different values chosen

for the relaxation gains , , and v z pk k k and the convexification factors 1 2 and r r .

Table 3.1: The results of the algorithm’s performance with different values of the

relaxation gains and convexification factors.

case 1r 2r vk zk = pk No. of

iterations

*J CPU

Time (s)

i 0 0 1 1 10 0.028 1.832

ii 0 0 0.3 1 9 0.028 1.683

iii 0.5 0 1 1 9 0.028 1.733

iv 1 0 1 1 12 0.028 2.173

v 1 0 0.8 1 13 0.028 2.444

vi 0 0 0.8 1 9 0.028 1.762

vii 0.1 0 0.8 1 5 0.028 0.991

79

79

Figure 3.2 below illustrates the final responses of DISOPE for case (vii).

Figs. 3.2(a), (b), and (c) graph the trajectories of the optimal control, the states, and

the performance index, respectively.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

t

u(
t)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

-0.1

-0.05

0

0.05

0.1

x(
t)

t

x1

x2

 (a) (b)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0.0265

0.027

0.0275

0.028

0.0285

0.029

0.0295

0.03

0.0305

iteration number

pe
rfo

rm
an

ce
 in

de
x

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

-5

-4

-3

-2

-1

0

1

2

3

4

5

t

gr
ad

(H
u)

 (c) (d)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
-5

-4

-3

-2

-1

0

1

2

3

4

5

t

gr
ad

(H
x)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

-5

-4

-3

-2

-1

0

1

2

3

4

5

t

gr
ad

(H
p)

 (e) (f)

Figure 3.2: The final responses of DISOPE for Example 3.1(vii).

•

•
• • •

•

80

80

The remaining three figures, Figs. 3.2(d), (e), and (f), illustrate the optimality

conditions with respect to control ()u t , the states ()x t , and the costates ()p t . It can

be seen from the last three figures that the solution satisfies all three of the optimality

conditions given by Eq. (3.10).

Example 3.2 - The third order nonlinear system

Consider the third order nonlinear system problem taken from Becerra

(1994). The real optimization problem (ROP) is as follows:
2 4 2 2 2 6

1 2 3 1 20
min * ()
()

J x x x u u dt
u x

= + + + +∫

subject to

1 1 1 2 1x x x x u= − + +&

3
2 1 2 32x x x x= − +&

3 3 2 23 sin()x x x u= − + +&

T
1(0) [1.2 0.0 1.0] ; (2) 0x x= =

The modified model (MOP) used in the DISOPE algorithm follows:
2 2 2 2 2 2

1 2 3 1 20
min ()
()

J x x x u u dt
u x

= + + + +∫

subject to

1 0 0 1 0
1 2 3 () 0 0 () ()
0 1 3 0 1

x x t u t tα
−⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= − + +⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦

&

T
1(0) [1.2 0.0 1.0] ; (2) 0x x= =

The values for Q and R are taken to be 2I3 and 2I2 respectively. The numerical

integration step used was h = 0.04 and a tolerance of 0.01 was specified for

convergence. The results of this simulation are given in Table 3.2 below.

81

81

Table 3.2 The algorithm’s performance for Example 3.2.

case 1r 2r uk xk pk No. of

iterations

J* CPU

Time (s)

i 0 1 1 0.3 1 12 0.663 2.794

ii 0 1 1 0.4 1 10 0.660 2.344

iii 0 1 1 0.5 1 8 0.659 1.973

iv 0 1 1 0.7 1 8 0.656 1.912

v. 0 1 1 0.8 1 9 0.656 2.244

Figure 3.3 below demonstrates the final responses of Example 3.2 in case

(iv). Figs. 3.3(a), (b), and (c) graph the trajectories of the optimal control, the states,

and the performance index, respectively. Fig. 3.3 (b) indicates that the solution

satisfies the terminal condition of 1(2) 0x = . The remaining three figures, Figs.

3.3(d), (e), and (f), illustrate the optimality conditions with respect to control ()u t ,

the states ()x t , and the costates ()p t . It can be seen from the last three figures that

the solution satisfies all three of the optimality conditions given by Eq. (3.10). In

this example specifically, which has higher degree of nonlinearity than the first

example, these observations are crucial. This is so because some of the solutions

found in the simulations have the tendency of not satisfying either the terminal

condition or the optimality conditions. These are examples of instances of false

optima.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-2

-1.5

-1

-0.5

0

0.5

1

t

u(
t) u1

u2

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

x(
t)

t

x1

x3

x2

 (a) (b)

82

82

0 1 2 3 4 5 6 7 8
0.6

0.65

0.7

0.75

0.8

0.85

iteration number

pe
rfo

rm
an

ce
 in

de
x

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

t

gr
ad

(H
u)

 (c) (d)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

t

gr
ad

(H
p)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

t

gr
ad

(H
x)

 (e) (f)

Figure 3.3: The final responses of DISOPE for Example 3.2(iv).

Example 3.3 -Robotic

Consider a fourth order non-linear system representing a horizontal planar

revolute/prismatic two degrees of freedom robot manipulator originally from Craig

(1989) and modeled in the state-space form by Roberts (1993). ROP is defined as:

0

4 2 4 2 4 2 41
1 2 3 4 1 22()

min [0.1]
tu t

x x x x u u dt+ + + + +∫

subject to

1 2 1 1

1 2 4 3
2 2 2

3

3 4 3 3
2

4 3 2 2 4 4

; (0) 2, (4) 0
4 (0.5) ; (0) 0, (4) 0

1 2(0.5)
; (0) 1, (4) 0

(0.5) 0.5 ; (0) 0, (4) 0

x x x x
u x x xx x x

x
x x x x

x x x u x x

= = =
− +

= = =
+ +

= = =

= + + = =

&

&

&

&

where 1()x t and 2 ()x t are the angular position and velocity of link 1, 3()x t and 4 ()x t

•

•

•

• • • • • •

83

83

are the angular position and velocity of the prismatic link 2. 1()u t and 2 ()u t are the

driving torque and force of the two links.

MOP is taken as a linear quadratic model representing small perturbations

about the equilibrium point at the origin:

4

1
2 0()

min ()][T T

u t
x Qx u Ru t dtγ+ +∫

subject to
 ()x Ax Bu tα= + +&

 (0) [2 0 1 0] , (4) [0 0 0 0]T Tx x= =

with

0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

A =

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 and

0 0
1 0
0 0
0 0.5

B =

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

where 4()x t ∈ ¡ , 2()u t ∈ ¡ , ()tγ ∈ ¡ , and 4()tα ∈ ¡ . In this example the value of the

weighting matrix Q is kept constant at

0.015 0 0 0
0 0.01 0 0
0 0 0.001 0
0 0 0 0

Q

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥⎣ ⎦

and 2R I=

The numerical integration step used was h = 0.05 and a tolerance of 0.01 was

specified for convergence. The simulation results are tabulated in the following

table.

Table 3.3: The simulation results of Example 3.3.

case r1 2r vk = zk kp No. of iterations

J* CPU

Time (s)

i 1 0 0.30 1 179 6.462 138.459

ii 1 0 0.35 1 698 6.462 558.253

iii 1 0 0.20 1 87 6.452 66.255

iv 1 0 0.25 1 91 6.460 67.577

84

84

Figure 3.4 below shows the graphs of the final responses of Example 3.3(iii).

Figs. 3.4(a), (b), and (c) graph the trajectories of the optimal control, the states, and

the performance index, respectively. The remaining three figures, Fig. 3.4(d), (e),

and (f), illustrate the optimality conditions with respect to control ()u t , the states

()x t , and the costates ()p t . It can be seen from the last three figures that the

solution satisfies all three of the optimality conditions given by Eq. (3.10).

0 0.5 1 1.5 2 2.5 3 3.5 4
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

t

u(
t)

u1

u2

0 0.5 1 1.5 2 2.5 3 3.5 4

-1

-0.5

0

0.5

1

1.5

2

x(
t)

t

x1

x2

x3

x4

 (a) (b)

0 10 20 30 40 50 60 70 80 90
4.8

5

5.2

5.4

5.6

5.8

6

6.2

6.4

6.6

iteration number

pe
rfo

rm
an

ce
 in

de
x

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

t

gr
ad

(H
u)

 (c) (d)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

t

gr
ad

(H
p)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

t

gr
ad

(H
x)

(e) (f)

Figure 3.4: The final responses of DISOPE for Example 3.3(iii).

85

85

3.9 Summary and Conclusion

 A detailed analysis of DISOPE has been presented in this chapter. It begins

with the formulation of problem where the real problem ROP is transformed into a

simpler problem MOP. MOP is formulated such that the ‘reality’ of ROP is

represented by appropriate parameters. ROP and MOP are then tied together by

another problem; the EOP. From EOP the necessary optimality conditions of the

problem to be solved are derived. Another problem, MMOP that satisfies the same

optimality conditions is formed. Both EOP and MMOP are equivalent to ROP, thus

the solution of either of them is also the solution of ROP. MMOP is a simpler

problem compared to EOP. Hence it is MMOP that is used by the algorithm when

finding the optimal solution of ROP. DISOPE uses the back sweep method of

Bryson and Ho (1975) to find the trial solutions of MMOP. This is done in the

System Optimization step of the algorithm. The trial solutions are then updated by

the updating mechanism and then tested for convergence. If the conditions for

convergence are met, the algorithm will stop, otherwise the algorithm will iterate

another trial solution. The process would go on until the time when the convergence

conditions are met.

DISOPE that is analyzed here uses the LQR problem as model. Using this

model, an algorithm mapping to trace the transition of the search from iteration i to

iteration i + 1 was developed. Using this mapping, the analyses of optimality,

stability and convergence of the algorithm were established. These analyses were

based on the 2-D systems theory in the form of unit memory repetitive processes

which used the concept of limit profiles to analyzed the algorithm’s local

convergence and stability. Also included is the analysis of the global convergence

behavior of the algorithm for regions far from the limit profiles. Because the purpose

of the chapter is to become a platform for comparing results from subsequent

chapters, numerical examples with differing levels of complexity have also been

included at the end of the chapter showing the responses of the algorithm at different

situations. To complete the theoretical analysis of DISOPE, in the following chapter,

among other things, discussions on convergence rate of DISOPE will be presented.

86

CHAPTER 4

FURTHER ANALYSES OF DISOPE ALGORITHM MAPPING

AND ITS CONVERGENCE

4.1 Introduction

 This chapter presents further theoretical analyses of DISOPE concerning its

justification as a gradient descent algorithm and convergence rate.

We begin this chapter with a decomposition of DISOPE. The algorithm is

decomposed into two distinct maps, Map B and Map C. This is done in order to

highlight the updating mechanism, a form of a gradient descent algorithm, where the

major part of the work done in the research takes place. The analysis goes on to

show that the algorithm has the basic characteristics of a gradient descent method.

Numerical simulation examples are presented to illustrate the property.

 Next, an analysis on the rate of convergence for DISOPE is presented. The

analysis begins with the establishment of a limit point to the sequences generated by

the iterative procedure. Lastly, a complexity analysis of DISOPE is included here for

the purpose of comparing the algorithm’s efficiency with the two modified

algorithms that will be introduced in Chapters 5 and 6.

87

4.2 Decomposition of DISOPE

DISOPE algorithm is made up of a four-step process that is repeated several

times until a predetermined terminating criterion is met. Figure 3.1 suggests that the

algorithm could be thought of as comprising of several possible individual maps

indicated by each step in the figure. Upon close inspection, we concur that Steps 1 to

3 are doing basically the job of a calculator, producing outputs to be evaluated by

Step 4. Step 4 on the other hand is doing the vital job of determining whether the

solutions produced by the accumulative actions of Steps 1 to 3 should be accepted or

rejected. If they were accepted then the search terminates, otherwise, the whole

process would be repeated. Thus it is imperative that in the following analysis,

DISOPE is decomposed into two distinct maps, with Steps 1 to 3 lumped together as

one map and Step 4 is the other. Definition 4.1 that follows explicates the intention.

Definition 4.1

Let DISOPE algorithm be decomposed into two distinct maps; Map B and

Map C. Map B is Steps 1 to 3 of Algorithm 3.1 and Map C is Step 4 of the

algorithm given by Eq. (3.16). We say A BC= is a composite map for DISOPE.

Definition 4.2 that follows defines composite mapping and Figure 4.1 gives

the illustrations.

Definition 4.2

Let ˆ, , m n nY Y Z ∈ × ×¡ ¡ ¡ be nonempty closed sets with

() () () ()() [() () ()] ,i i T i T i T TY t u t x t p t= () () () ()ˆ ˆ ˆ ˆ() [() () ()] ,i i T i T i T TY t u t x t p t= and

() (1) (1) (1)() [() () ()]i i T i T i T TZ t u t x t p t− − −= . Let ˆ ˆ: and :B Z Y C Y Y→ → be point-

to-set maps. The composite map A CB= is defined as the point-to-set map

:A Z Y→ with { }ˆ ˆ() () : ()A z C y y B z= ∪ ∈ .

88

Figure 4.1: Composite map of DISOPE.

By viewing the algorithm as the composite Map CB (Rohanin and

Mohd_Ismail, 2002), where B is known to be convergent and C corresponds to the

set of intermediate steps of the complex algorithm, the overall convergence of such a

scheme would be established (Bazaraa and Sherali, 1993).

Roberts (1993) and Becerra (1994) conjectured that DISOPE is a gradient

descent algorithm. We intent to justify that the inference is valid since the discussion

in this research revolves around this idea. From the algorithm decomposition of this

section, clearly Map C is the part of DISOPE worthy of analysis to prove this

conjecture. In the next section we carry out this justification.

4.3 Map C As a Gradient Descent Algorithm

Map C, defined by Eq. (3.16) could be written as

(1) () () ()

(1) () () ()

(1) () () ()

ˆ() () (() ())
ˆ() () (() ())

ˆ() () (() ())

i i i i
u

i i i i
x

i i i i
p

u t u t k u t u t

x t x t k x t x t

p t p t k p t p t

+

+

+

⎫= − −
⎪

= − − ⎬
⎪= − − ⎭

 (4.1)

By letting

 () () ()() () () ()
Ti T i T i Ty t u t x t p t⎡ ⎤= ⎣ ⎦ (4.2)

Eq. (4.1) can be written in the form of

Z Ŷ Y

B C

A

89

 (1) () () ()ˆ() () () ()i i i i
yy t y t K y t y t+ ⎡ ⎤= − −⎣ ⎦ (4.3)

with yK given by Eq. (3.41). Looking at Eq. (2.1), we identify that Eq. (4.3) is in a

form of a gradient-like method, with yK being the step size parameter to be estimated

and the term () ()ˆ() ()i iy t y t⎡ ⎤−⎣ ⎦ as the gradient of some function ()i
yE t .

We can confirmed that Map C would be some form of a gradient descent

method if we could deliver a function ()i
yE t associated with the optimal control

problem such that its gradient is () ()ˆ() ()i iy t y t⎡ ⎤−⎣ ⎦ . In the following analysis we

present such a function hence forth to be referred to as the error function.

4.3.1 Generating the Error Function

The formulation of MMOP in Eq. (3.15), contains an expression of terms

called the convexification factors as follows

 2 2 21 1 1
1 2 32 2 2ˆ ˆ ˆ() () () () () ()r u t u t r x t x t r p t p t− + − + − (4.4)

These terms were put there, to augment the performance index in order to aid with

the convergence. By looking at the optimality condition given by Eq. (3.14), we see

that these factors work by matching the signals from reality and the parameter

estimation problem.

The condition given by Eq. (3.14) is re-expressed here as

 () ()ˆ() ()i iy t y t= (4.5)

Since DISOPE solves the optimal control problem numerically, Condition (4.5) is

satisfied instead as
() ()ˆ() () 0i iy t y t− → (4.6)

Expression (4.6) implies that DISOPE strives to eliminate the discrepancies between
() ()iy t and ()ˆ ()iy t . If we consider () ()ˆ() ()i iy t y t− to be an error, the expression for

the convexification factors can then be viewed as a function of errors. In other words

90

the convexification factors work by driving each normed term in the expression to

zero.

From the discussion above, if we take a similar expression for the error

function () ()i
yE t such that its gradient is the vector () ()ˆ() ()i iy t y t⎡ ⎤−⎣ ⎦ , then we

succeeded in showing that Map C is a gradient descent method. In what follows we

proposed the error function.

Proposition 4.1

Let DISOPE algorithm be partitioned into two distinct maps as in Definition

4.1 with the assumption that Map B converges. Consider the function
() ()i m n n
yE t ∈ × ×¡ ¡ ¡ defined as

() () () () ()1
2 ˆ ˆ() () () () ()

Ti i i i i
yE t y t y t y t y t⎡ ⎤ ⎡ ⎤= − −⎣ ⎦ ⎣ ⎦ (4.7)

If the vector () ()ˆ() ()i iy t y t⎡ ⎤−⎣ ⎦ is its gradient then () ()i
yE t is an error function for Map

C such that Map C is justified as a gradient descent method.

Proof

 It is obvious from Eq. (4.7) that the gradient of () ()i
yE t is given by

()

() ()
()

()
ˆ() ()

()

i
y i i
i

E t
y t y t

y t
⎡ ⎤∂

= −⎢ ⎥
∂⎢ ⎥⎣ ⎦

 (4.8)

Substituting Eq. (4.8) into Eq. (4.3) gives us
()

(1) ()
()

()
() ()

()

i
yi i

y i

E t
y t y t K

y t
+

⎡ ⎤∂
= − ⎢ ⎥

∂⎢ ⎥⎣ ⎦
 (4.9)

Comparing Eq. (4.9) with Eq. (2.1), we see that this is a form of a gradient descent

method where

()

()

()
()

i
y
i

E t
y t

⎡ ⎤∂
⎢ ⎥
∂⎢ ⎥⎣ ⎦

 (4.10)

is the gradient of some function to be minimized by the method. Since Eq. (4.9) is

another form of Map C , then Map C is vindicated as a gradient descent method

with () ()i
yE t as its error function. This completes the proof.

91

With Map C established as a gradient method. DISOPE in turn is a gradient

descent algorithm. The conjecture is thus justified.

 As a gradient descent algorithm, the basic characteristics inherent to all

gradient descent methods are without a doubt intrinsic to DISOPE. The following

section analyzes these properties.

4.4 DISOPE and the Basic Characteristics of the Gradient Descent Method

 As mentioned in Section 1.5, one of the attractive features of this algorithm is

the integration of parameters from both the real problem and its model. In view of

this, DISOPE converges in just one iteration whenever no model-reality differences

is introduced. The absence of model-reality differences is synonymous to having the

gradient discussed in Section 4.3 as zero. In general, a zero gradient translates into

the point of optimality in an optimization. If a gradient descent method were used in

finding the optimal solution, this would mean that the initial guess is precisely the

optimum. When this is the case, the gradient descent method would converge in just

one iteration. Hence this is one characteristic of DISOPE that is in accord with the

gradient descent method.

 The other characteristic that is well known with the gradient descent method is

the distance of the initial guesses to the optimal solution influences its speed of

convergence. The closer the initial guess the faster the convergence.

 DISOPE requires an initial solution signified by Step 0 in Algorithm 3.1 to

start its iterations. A recommended one is the solution of the relaxed MMOP with

() 0,tα = 1 2 0r r= = . Since DISOPE is composed of Maps B and C, with Map B

supplying the input for Map C, the initial solution is for Map B. However, the initial

solution of B affects its output and hence the input for Map C. Thus it is imperative

that a good initial solution to Map B would translate into a good input to Map C.

92

 In our discussion of DISOPE, the real problems are always modeled as linear

quadratic regulators as in Eq. (3.17). In gearing up to furnish an initial solution to

Map B, Q and R; weights for the performance index, play a big hand in generating

the solution. It is customary to use the identity matrices for Q and R. It is noticed

however that other choices of Q and R have different effects on the speed of

convergence of the algorithm. In fact the right choice of weights can tremendously

cut down on the number of iterations as shown in the numerical examples below.

 In the simulation below, examples using DISOPE are evaluated with different

initial guesses. The distances between the initial guesses and the optimal solutions

are then gauged and the numbers of iterations are then compared based on the

distance recorded.

4.4.1 Numerical Examples

 Each of the two examples below is simulated with two different initial

solutions by giving different values to the weighting matrices of the performance

index.

Example 4.1

Consider the problem discussed in Example 3.1. Two different initial solutions

are used in the simulations of this problem. The first uses the value of the weighting

matrix Q = 2I2. The second initial solution uses the value of
22.40 4.480

.
4.480 0.896

Q
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

In both cases the value of R is kept constant at R = 0.2. During the iterations of

DISOPE, no tuning was done to the values of the parameters r1 and, r2 and kv, kz and

kp, that is, r1 and, r2 are set to zero and kv, kz and kp are set to one. The integration

step taken is h = 0.01, and the tolerance considered for the convergence is tol = 0.01.

The 2-norms between the initial solutions and the optimal solution are calculated to

gauge the ‘closeness’ of the initial guess to the converged solution. The results of the

93

simulations are summarized in Table 4.1 below. Figures 4.2 (a) and (b) below show

the related results.

Table 4.1: Results of simulations with different values of Q.

 No. of iter.
init optx x− Values of

J

22Q I= 10 0.198 0.028

22.40 4.480
4.480 0.896

Q
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

4 0.033 0.028

0 0.2 0.4 0.6 0.8
-0.15

-0.1

-0.05

0

0.05

0.1

x(
t)

t

optimal x1

optimal x2

initial x1

initial x2

0 0.2 0.4 0.6 0.8

-0.1

-0.05

0

0.05

0.1

x(
t)

t

initial x1

optimal x1

initial x2

optimal x2

 (a) (b)

Figure 4.2: Comparisons of closeness between two different initial solutions and the

optimal solution (a) Result for Q = 2I2; (b) Result for Q = [22.40 4.480; 4.480 0.896].

 It can be clearly seen from the results in Table 4.1 and Figures 4.2 (a) and (b)

that a closer initial solution would translate into faster convergence for the algorithm.

With an appropriate value of Q the number of iterations were reduced to more than

half the original number recorded.

Example 4.2

 We reconsider the problem from Example 3.3 here. In this example the value

of the weighting matrix Q is kept constant at

94

0.015 0 0 0
0 0.01 0 0
0 0 0.001 0
0 0 0 0

Q

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥⎣ ⎦

.

The weighting matrix R on the other hand is given two different values; 2R I= and R

= 1.5I2. The numerical integration step used was h = 0.05 and a tolerance of 0.01 was

specified for convergence.

With the choices of Q and 2R I= together with 1 1r = , 2 0r = , 0.25,v zk k= = and

1pk = DISOPE converged in 91 iterations. To see the effect of the different initial

solutions on the convergence speed of the algorithm, we simulated next R = 1.5I2.

The result is a faster convergence. In fact with this value of R, we did not have to

resort to using the convexification terms to aid with convergence. We were able to

keep the values of 1 2 and r r at zero. The algorithm converged in 77 iterations. The 2-

norms between the two initial solutions and the optimal solution are calculated and

summarized in Table 4.2 below.

Table 4.2: Results of simulations with different values of R.

 No. of

iter.
init optx x− Value of

J

2R I= 91 4.674 6.379

21.5R I= 77 3.743 6.379

The two examples above showed that the choice of weights and hence the

initial solution influence the speed of convergence. The closer the initial guess the

faster the convergence (Rohanin and Mohd_Ismail, 2003d). Clearly, the second

characteristic of the gradient descent method mentioned above is also inherent in

DISOPE (Rohanin and Mohd_Ismail, 2003b, 2003c). These results verify both the

stability and convergence analyses carried out for DISOPE in Chapter 3. In Theorem

3.2 for stability, both and Q R are present in the 0and H B matrices located in the

95

characteristic equation that needed to be solved for the spectral values of λ in Eq.

(3.96). Further more, in the sufficient condition for convergence given by Theorem

3.4, and Q R are present in the Lipschitz continuity assumptions in ()
1(())ig y t and

()
2 (())ig y t . Hence the variations of values for Q and R influence the convergence

behavior of the algorithm.

4.5 Analysis on the Rate of Convergence

In this section we analyze the rate of convergence of DISOPE. The analysis

presented here is based on the assumption that the problems to be solved by this

algorithm are modeled as LQR problems. We begin with the basic definitions and

theorems necessary for determining the rate of convergence.

Definition 4.3 (Polak, 1997)

 Let Y be a real normed space.

(a) A sequence { }()

0
()i

i
y t

∞

=
 inY is said to converge to a point y) , indicated by

() (), as , if lim 0i i

i
y y i y y

→∞
→ →∞ − =)) . The point y) is called the limit point of

{ }()

0
()i

i
y t

∞

=
.

(b) A point y) is said to be an accumulation point of a sequence { }()i

i
y

∈¥
in Y , if

there exists an infinite subset K ⊂ ¥ such that for the subsequence { }()i

i K
y

∈

 ()lim 0,i

i
i K

y y
→∞
∈

− =) (4.11)

denoted by ()i Ky y→) as i →∞ or ()lim i
K y y=) .

(c) A sequence { }()

0
()i

i
y t

∞

=
 in Y is said to be Cauchy if for any 0δ > there exists

an iδ such that, if and i i j iδ δ≥ ≥ , then () () .i jy y δ− <

96

It can be shown that any sequence that converges is Cauchy and that, if a

Cauchy sequence has accumulation points, it must converge.

Theorem 4.2 (Polak, 1997)

 Let { }
0

i

i
y

∞

=
 be a sequence in m n n× ×¡ . If there exists a (0,1)c∈ and 0i ∈¥

such that

 (1) () () (1)
0 1, i i i iy y c y y i i+ −
+− ≤ − ∀ ≥ (4.12)

then there exist a ny∈) ¡ such that () , as ,iy y i→ →∞) at least R-linearly.

Proof

 For 0,1,2,...,i = let (1) ()i i
ie y y+ −@ . Then by induction, it follows from

(4.12) that for all 0i i≥ , 0

0

i i
i ie e c −≤ , and hence, since (0,1),c∈ that 0,ie → as

,i →∞ R-linearly. Therefore, for any 0j k i> ≥ , we find that

() () ()

00

0

0

() () () (1) (1) (2) (1) ()...

1

j k j j j j k k

j k
ik ij

i i i
i k i k j k i

y y y y y y y y

e
e e e c c

c

− − − +

− ∞ ∞
−

= = = −

⎧ ⎫− = − + − + + −
⎪ ⎪⎪ ⎪
⎨ ⎬⎛ ⎞

≤ ≤ ≤ =⎪ ⎪⎜ ⎟−⎪ ⎪⎝ ⎠⎩ ⎭
∑ ∑ ∑

 (4.13)

That is, () () 0j ky y− → for ,j k> as ,k →∞ uniformly in j. Hence the sequence

{ }()

0

i

i
y

∞

=
 is Cauchy, and therefore, it must converge to a point .y)

 Before specifically dealing with the analysis to determine the convergence

rate, we have to first establish that the sequence of trial solutions produced by

DISOPE has a limit point. In the following analysis y) signifies the limit point.

4.5.1 Establishing the Existence and Uniqueness of y) in DISOPE

To discuss the convergence rate, it is important that we first establish the

existence and uniqueness of the limit point of the sequence generated by the repeated

applications of the algorithm. In this subsection we supply the theorems that prove

97

just that. With the existence and uniqueness of the limit point, we can then go on to

analyze the rate of convergence.

Theorem 4.3 - Existence

 Let { }()

0
()i

i
y t

∞

=
 be the sequence of terms generated by the repeated

applications of the algorithm DISOPE. If the successive terms contract according to
(1) () () (1)() () () () , 0,1,2,...,i i i iy t y t y t y t i+ −− ≤ − =

then there exists a limit point y) , such that ()lim ()i

i
y t y

→∞
=) .

Proof

From Theorem 3.4 we have
 (1) () () (1)

1() () () () , 0,1,2,...,i i i iy t y t y t y t iϑ+ −− ≤ − = (4.14)

where

 () ()()()1 2 2 2 3 1 1 0 ,n m y fE I K h h E h t t Cϑ σ+= + − + + + + (4.15)

with

 1 1ϑ ≤ (4.16)

From the Lipschitz continuity assumptions of Eq. (3.109), all three of the Lipschitz

constants 1 2 3, , and h h h take on the positive values implying 1 (0,1]ϑ ∈ . From

Definition 3.3, this means that DISOPE is contractive. Hence, from either Theorem

3.3 or Theorem 4.2, there exists a limit point y) , for { }()

0
()i

i
y t

∞

=
 such that

()lim ()i

i
y t y

→∞
=) .

 Our next corollary is a logical consequence of Theorem 4.3. It proves the

property of uniqueness to the converged final solution of the sequence of terms

generated by DISOPE.

98

Corollary 4.1 - Uniqueness

 Let { }()

0
()i

i
y t

∞

=
 be the sequence in Theorem 4.3. If the limit point y) exists,

then it is unique.

Proof

 A sequence of real numbers can converge to at most one limit (Kirkwood,

1989; Bartle and Sherbert, 1992).

 With Theorem 4.3 and Corollary 4.1, we have proven the existence and

uniqueness of the limit point to the sequence of terms generated by repeated

applications of the algorithm DISOPE. Our next concern is to establish the

convergence rate of the algorithm. In the next subsection we direct our attention to

the convergence rate of DISOPE.

4.5.2 Establishing the Convergence Rate

We have thus far proved that a unique limit point existed for the sequence

generated by DISOPE. In this subsection, we proceed to establish the convergence

rate for the algorithm.

Corollary 4.2

 The sequence { }()

0
()i

i
y t

∞

=
 in DISOPE converges at least R-linearly.

Proof

Theorem 4.3 states that y) exists, meaning there exist some 1 (0,1)ϑ ∈ and

i∈¥ such that (1) () () (1)
1() () () ()i i i iy t y t y t y tϑ+ −− ≤ − . Therefore, from Theorem

4.2 { }()

0
()i m n n

i
y t

∞

=
∈ × ×¡ ¡ ¡ converges at least R-linearly.

99

Corollary 4.2 proved that at the very least, the sequence of DISOPE

converges R-linearly. However, in our analysis, we found that DISOPE could be

proven to have at least a quadratic convergence rate. We begin with the following

definition of a quotient rate, with 1r > .

Definition 4.4 (Polak, 1997)

We say that a sequence { }()

0
()i

i
y t

∞

=
 in n¡ converges to a point y) at least with

quotient rate (Q-rate) 1r > if there exist a [0,)κ ∈ ∞ and an 0i ∈¥ such that for all

0i i≥

(1)

()

i

ri

y y

y y
κ

+ −
≤

−

)

) (4.17)

 With Definition 4.4 in mind, we proceed to state the following theorem,

which established the quadratic convergence of DISOPE.

Theorem 4.4

 Let { }()

0
()i

i
y t

∞

=
 of DISOPE be a sequence in m n n× ×¡ ¡ ¡ . If y) is a limit

point of { }()

0
()i

i
y t

∞

=
, then { }()

0
()i

i
y t

∞

=
 converges to y) at least with Q-rate, 2r = .

Proof

Given the following error function

 () () () () ()1
2 ˆ ˆ(()) () () () ()

Ti i i i iE y t y t y t y t y t⎡ ⎤ ⎡ ⎤= − −⎣ ⎦ ⎣ ⎦ (4.18)

we have proven in Section 4.3 that it is an error function for Map C such that Map C

minimizes it in searching for the optimal solution of the optimal control problem

when using DISOPE as the search method. Let us reproduce Map C here.

()
(1) () ()() () (())i
i i i

y y
y t y t K E y t+ ′= − (4.19)

Map C is an iteration function that updates the trial solution at each iteration.

100

Let y) be a simple root of equation ()
()(()) 0i
i

y
E y t′ = ; i.e. () () 0iy

E y′ =) , subtract

y) from both sides of Eq. (4.19) to produce

 ()
(1) () ()() () (())i
i i i

y y
y yt y t y K E y t+ = − ′− −)) (4.20)

Taking the norm of both sides of Eq. (4.20) we have

 () ()
(1) () ()() () (())i
i i i

y y
y y Kt y t y E y t+ = − ′− −)) (4.21)

which becomes the following inequality

 ()
(1) () ()() () (())i
i i i

y y
y yt y t y K E y t+ ≤ ′− − +)) (4.22)

Rewrite (4.22) as the following and include a term of () () 0iy

E y′ =)

()() ()

()

(1) ()
()

() ()
1

(

()
() ()

())
i i

i
y y yi i

i

y E y
y y

y

K E t
t y t y

t y
+

′−
≤ +

⎛ ⎞′
⎜ ⎟− − ⎜ ⎟−⎜ ⎟
⎝ ⎠

)
))

) (4.23)

Using the notation of Gautschi (1997) for Newton’s form of interpolation polynomial

Inequality (4.23) becomes

 ()(1) ()() () 1 [,]i i i
yy t y y t y K y y E+ ′− ≤ − +))) (4.24)

where
() ()

()

()
()

()

(()) ()
[,]

()
i i

i

i
y yi

iy

E y t E y
y y E

y t y

′ ′−
′ =

−

)
)

) . Multiply the right hand side of

Inequality (4.24) with the term
()

()

()
()

i

i

y t y
y t y

−
−

)
) to get

()

()
(1) () ()

()

1 [,]
() () (())

(())
i

i
y yi i i

iy y y
y

K y y E
t y t y t y

t y
+

′+
− ≤ − −

−

)
)))

) . (4.25)

From (4.25) we get

()

()
2(1) ()

()

1 [,]
() ()

(())
i

i
y yi i

iy y
y

K y y E
t y t y

t y
+

′+
− ≤ −

−

)
))

) (4.26)

which simplifies into

()

()(1)

2 ()()

1 [,]()
(())()

i
ii

y y
ii

y

yy

K y y Et y
t yt y

+ ′+−
≤

−−

))
)) . (4.27)

Taking the limit on both sides of the inequality, we have

()

()
()(1)

2 ()()

1 [,]()lim lim
(())()

i
ii

y y
ii ii

y
yy

K y y Et y
t yt y

+

→∞ →∞

′+−
≤

−−

))
)) (4.28)

101

which is equivalent to

()
()

()(1)

2 ()()

1 [,]()lim lim
(())()

i
ii

y y
ii ii

y
yy

K y y Et y
t yt y

+

→∞ →∞

′+−
≤

−−

))
)) (4.29)

Since y) is a root of ()(())iE y t , () ()iy t y→) as i →∞ , the limit of the right hand side

of (4.29) becomes

()

()

()

1 [,]
lim

()
i

i
y y

ii y

K y y E

y→∞

′+
= ∞

−

)

) (4.30)

since ()() () ()

1[,] () ()
1!i i iy y y

y y E E y E y′′ ′ ′′= =)))) is a constant. If we let

(1)

2()

()
lim

()

i

i i

y

y

t y

t y
κ

+

→∞

−
=

−

)

) (4.31)

then [0,)κ ∈ ∞ . Therefore from Definition 4.4, with 0 0i = , { }()

0
()i

i
y t

∞

=
 converges to

y) with at least Q-rate, 2r = . Thus we have proven that DISOPE has a quadratic rate

of convergence.

4.6 Summary and Conclusion

 This chapter presents further theoretical analyses of DISOPE. The claims

that DISOPE is a gradient descent algorithm (Roberts, 1993; Becerra, 1994) and its

rate of change is quadratic (Roberts, 1993) are verified here. The algorithm is

decomposed into two distinct sub procedures based on the theorems of composite

mapping. One of the maps is the main DISOPE algorithm and the other is the

updating mechanism of the algorithm. The updating mechanism is treated as a full-

fledged algorithm with an appropriate error function determined for it. The updating

mechanism is established as a gradient-descent type as claimed. The quadratic rate

of change is also proven in this chapter.

As a gradient descent algorithm DISOPE is shown to have the basic

characteristics that are inherent to the method. These are the one-step convergence

when no model-reality differences are introduced and the behavior towards initial

solutions. It is shown that the closer the initial solution to the optimum, the faster the

102

convergence. Two numerical examples are employed to vindicate the property. In

both examples, the convergence to the optimum is faster when the initial solution

chosen to start the iterations is closer to the optimal solution.

 In short, we managed to establish that DISOPE is a gradient descent

algorithm with a quadratic rate of convergence. In the following chapter we present

the first modification scheme intended to improve the performance of DISOPE.

103

CHAPTER 5

DISOPE-MOMENTUM ALGORITHM

5.1 Introduction

This chapter presents one modification of Map C, the updating mechanism of

DISOPE, that exhibit improved convergence speed. In Chapter 4 we verified that

DISOPE is a gradient descent algorithm. Specifically, the updating mechanism is a

type of the gradient descent method. Here, a modification excerpted from the

literature of the back propagation (BP) algorithm of the neural networks is tested on

DISOPE.

The BP algorithm is a prolific gradient descent method. Based on this

observation, modifications done to the BP algorithm for the purpose of improving its

convergence speed are studied. This chapter reports the use of the momentum terms

as addendums of choice to the updating mechanism.

The well-established momentum term has commendable effect in reducing

oscillation of the BP algorithm. The modified DISOPE algorithm as expected show

similar response with the addition. Simulations of numerical examples are used to

see the effects the momentum term on the performance of DISOPE.

A new algorithm called DISOPE-MOMENTUM is developed based on the

modification. A time-complexity analysis is done and the efficiency of this new

 104

algorithm is compared to the efficiency of the original DISOPE discussed in Chapter

4.

5.2 Modification of Map C

As explained earlier, Map C or the updating mechanism of DISOPE is a type

of gradient descent method and because of it, DISOPE is prone to the problem of

slow convergence. The slow convergence of the algorithm is caused by either the

oscillation of the search near an optimum point or the small gradient of the wide flat

surface of the error function. Here we present a technique of modifying Map C in

order to overcome the aforementioned problem. This technique is well known to the

BP algorithm of the neural networks. This technique involves adding a momentum

term to Map C. In doing so, the oscillation is reduced and the flat surface is

traversed with bigger stride.

5.2.1 Similarities Between Map C and BP Algorithm

To start the analysis, we begin with comparing the structure of Map C with

the BP algorithm. Map C as given in Eq. (4.3) is

 (1) () () ()ˆ() () () ()i i i i
yy t y t K y t y t+ ⎡ ⎤= − −⎣ ⎦ (5.1)

In Section 4.3 an appropriate error function was developed for it. The function is

given by Eq. (4.7) as follows

 () () () () ()1
2 ˆ ˆ() () () () ()

Ti i i i i
yE t y t y t y t y t⎡ ⎤ ⎡ ⎤= − −⎣ ⎦ ⎣ ⎦ (5.2)

In terms of the error function, Map C could be expressed as in Eq. (4.9), which is

()

(1) ()
()

()
() ()

()

i
yi i

y i

E t
y t y t K

y t
+

⎡ ⎤∂
= − ⎢ ⎥

∂⎢ ⎥⎣ ⎦
 (5.3)

 The BP algorithm of Rumelhart et al. (1986) is an iterative gradient descent

algorithm designed to train multilayer feed forward networks of sigmoid nodes by

 105

minimizing the mean square error between the actual output of the network and the

desired output. From Eq. (2.6), the BP algorithm is defined as

 (1) () m
ij ij

ij

En n η ∂
+ = −

∂
w w

w
 (5.4)

with its error function given by Eq. (2.4) as the least squares error function

 2

1

1() ()
2

p

j j
j

E t x
=

= −∑w (5.5)

 Comparing Eqs. (5.3) and (5.4) we see that the two equations have basically

the same structure. Both have the role of updating. In Eq. (5.3) Map C updates trial

solutions produced by DISOPE, where as in Eq. (5.4), the BP algorithm updates

weights used in training the neural network. In both equations the error functions

are quadratic functions.

 Based on this observation, one of the modifications done to BP algorithm is

applied on Map C. The inclusion of a term registering the momentum from the

previous immediate step is the chosen modification described in this chapter.

5.2.2 The Inclusion of the Momentum Term

The momentum term is a vector parallel to the previous search direction. An

addition of a multiple of this vector to the current direction deflects the end point of

the search vector to a new location. The new location is situated further down the

line towards the optimum. Fig. 5.1 below illustrates the displacement.

In Fig. 5.1, let ()iy represents the position of the search at iteration i. The

vector a is the direction of the previous search for ()iy . Vector b is the direction

given by the gradient descent algorithm for the current search. Vector c, a multiple

of a, is the momentum term added to b. c deflects b to the new position of d. Thus,

 106

instead of having (1)iy +% as the current position for the search, we have (1)iy + , which is

further down the line towards the optimum.

Figure 5.1: The effect of the momentum term on the search direction.

The magnitude of c is determined by the choice of the values given to the

multipliers, called the momentum parameters. The parameters are set to be between

zero and one. The momentum parameter places an upper limit on the amount by

which an estimate can be changed. As such, the location of (1)iy + is determined by

these choices. The correct choice of the parameters is crucial in determining the

success of the momentum addition because the momentum can cause the estimates to

be changed in the wrong direction and would instead increase the error (Jacobs,

1988).

From Fig. 5.1, we see that the displacement of the solution from the position

of ()iy to the position of (1)iy + is l h+ units with l being the displacement brought

about by the gradient descent algorithm and h by the momentum term. For the next

iteration, a multiple of vector d would be the new momentum term.

In association with the BP algorithm, the momentum term is defined as

 () (1)ij ijn n− −w w (5.6)

The inclusion of this term to the BP algorithm changes Eq. (5.4) to become

 (1) () (() (1))m
ij ij ij ij

ij

En n n nη ϖ∂
+ = − + − −

∂
w w w w

w
 (5.7)

with ϖ being the momentum parameter.

(1)iy −

()iy

(1)iy +%

(1)iy +

b c

d

Direction of the optimum

a

hl

 107

Following the same structure, and with the help of Fig. 5.1, the momentum

term for Map C of DISOPE is defined as

 () (1)() ()i iy t y t−− (5.8)

The addition of the momentum term to Map C in Eq. (5.3) gives us the following

equation (Rohanin et al. 2002)

()

(1) () () (1)
()

()
() () (() ())

()

i
yi i i i

y yi

E t
y t y t K W y t y t

y t
+ −

⎡ ⎤∂
= − + −⎢ ⎥

∂⎢ ⎥⎣ ⎦
 (5.9)

where

0 0
0 0
0 0

u m

y x n

p n

I
W I

I

ϖ
ϖ

ϖ

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

 (5.10)

is a matrix of momentum parameters with , , and (0,1]u x pϖ ϖ ϖ ∈ .

5.3 The Effects of the Momentum Term on DISOPE

From Fig. 5.1 we see that the momentum term delivered additional h units of

displacement to the position of the current trial solution of the search. Furthermore,

the displacement is in the direction of the optimal solution. This displacement helps

lengthen the stride of each iteration. With the distance between the initial and the

optimal solution unchanged, this lengthening of strides makes the search arrive at the

optimum faster. Thus, if the search has been oscillating near an optimum solution,

the number of oscillations is undoubtedly reduced by this action. The same goes for

a search moving with very small steps on a flat area. The momentum term helps

widen the steps so that the search would be able to pass through the flat surface

faster.

There are two sides to the concept of faster convergence. One is exhibited in

the reduction in the number of iterations and the other is in the reduction of the CPU

time (Rohanin and Mohd_Ismail, 2003d). If the modified algorithm exhibits both

reductions then it truly has faster convergence in the true sense. The following

 108

subsection presents simulations of numerical examples to exhibit the effects the

momentum term has on the performance of DISOPE. These examples are taken

from the examples simulated in Chapter 3. The results obtained here are then

compared to the results recorded in that chapter.

5.3.1 Numerical Examples

Two problems from Chapter 3 are used in this section to simulate the effects

of momentum terms on the performance of the algorithm.

Example 5.1

Consider Example 3.1. With every input to the problem in Example 3.1

retained, the results after the inclusion of the momentum terms are recorded in Table

5.1.

Table 5.1 compares the performance of DISOPE, to the performance of

DISOPE with the momentum term. Column (a) records the number of iterations for

convergence of DISOPE. Column (b) records the number of iterations needed after

the modification. *
1J and *

2J respectively record the final values of the performance

indices in both situations.

Table 5.1: Algorithm’s performance of Example 5.1 with the addition of momentum

terms.

Case

r1

kv

(a)

*
1J

CPU
Time (s)

yϖ

(b)

*
2J

CPU
Time (s)

i 0 1 10 0.028 1.832 [0 0.1 0] 5 0.028 0.641

ii 1 1 12 0.028 2.173 [0 0.25 0] 9 0.028 1.753

iii 0.5 1 9 0.028 1.733 [0.01 0.04 0.01] 7 0.028 0.902

iv 0 0.8 9 0.028 1.762 [0.01 0.1 0.01] 5 0.028 0.661

v 1 0.8 13 0.028 2.444 [0 0.4 0] 10 0.028 2.063

 109

Clearly from the table, we see that the momentum terms do affect the speed

of convergence for DISOPE. The addition of the term to the gradient descent search

of the updating mechanism succeeded in effectively reducing the number of

iterations in all the cases simulated. The longer strides discussed above do translate

into reduced number of iterations.

To further synthesize the effects, we recorded the CPU time taken to run each

problem. The CPU time can then be used as a gauge for the efficiency of this

modified algorithm. In the simulations, the CPU time is an important measure of the

worthiness of the reductions. Intuitively, the addition of the momentum term would

increase the complexity of the algorithm. The results tabulated in Table 5.1

however, show that if there is an increase in the complexity of the algorithm, the

increase is negligible since all the CPU times were reduced along with the reduction

in the number of iterations. All the reductions in CPU times are proportional to the

reductions in iterations.

For ease of reference, we will refer to the modified algorithm as DISOPE-

MOMENTUM. Next we present the graphs of the performance indices of DISOPE

and DISOPE-MOMENTUM.

In Fig. 5.2 we plot both performance indices of Case (i) from Example 5.1 on

the same graph for ease of comparison. For this particular case, the number of

iterations for DISOPE-MOMENTUM is half that of DISOPE. Analyzing the graphs,

we see that in the beginning, the estimations of DISOPE-MOMENTUM are similar

to DISOPE’s.

However, once the momentum takes affect the graph with DISOPE-

MOMENTUM shows a character of its own. This effect can be seen starting from

the second iteration. The values of the estimates lie in a range smaller than that of

DISOPE’s. This behavior indicates that the norm between the estimates gets smaller

faster. The iterations eventually stopped after the fifth iteration.

 110

1 2 3 4 5 6 7 8 9 10
0.026

0.027

0.028

0.029

0.03

0.031

0.032

0.033

0.034

iteration number

pe
rfo

rm
an

ce
 in

de
x

DISOPE
DISOPE-MOMENTUM

Figure 5.2: The comparison of the performance indices of DISOPE and DISOPE-

MOMENTUM, for Case (i) of Example 5.1.

 Fig. 5.3 shows the control variation norms, 1() ()i iu t u t+ − of both algorithms.

This is the measure we use for the stopping criterion of the algorithms. We can see

that the slope of the control norm of DISOPE-MOMENTUM is steeper than that for

DISOPE. This is an indication that 1() () 0i iu t u t+ − → faster for DISOPE-

MOMENTUM which translates into faster convergence.

Example 5.1 has been a simple one with the problem requiring only a small

number of iterations to converge. We can conclude that for a simple problem, the

addition of the momentum terms worked wonders in improving the convergence

behavior of the algorithm.

•
•

•
•

•

•

•
• • •

•
•

•
•

 111

1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

iteration number

no
rm

[u
(i+

1)
-u

(i)
]

DISOPE

DISOPE-MOMENTUM

Fig. 5.3: The comparison of the control variation norms of DISOPE and DISOPE-

MOMENTUM for Case (i) of Example 5.1.

 Next we simulate a problem with a higher degree of nonlinearities, a

problem that required a large number of iterations to converge. It is on problems like

this that the contribution of the momentum terms would be most appreciated.

Example 5.2

 Consider Example 3.3. The input to the problem in Example 3.3 is retained

in this example. The results after the inclusion of the momentum terms are tabulated

in Table 5.2. Here too the values for the momentum parameters are chosen by trial

and error, with the values presented in the table being the best values found for each

case.

As in Table 5.1, Columns (a) and (b) record the number of iterations for the

convergence of DISOPE and DISOPE-MOMENTUM respectively. *
1J and *

2J

•

•

•

•

•

• •

•

•
• • • • •

 112

respectively records the final values of the performance indices in both algorithms.

CPU times are recorded for comparison between the two algorithms.

Table 5.2: The comparison of the performances of DISOPE and DISOPE-

MOMENTUM for Example 5.2.

Case

vk = zk

(a)

*
1J

CPU
Time (s)

ϖ

(b)

*
2J

CPU
Time (s)

i 0.30 179 6.462 138.459 [0.1 0.03 0] 76 6.464 60.107

ii 0.35 698 6.462 558.253 [0.1 0.1 0] 83 6.457 63.191

iii 0.20 87 6.452 66.255 [0.1 0.1 0] 79 6.469 62.500

iv 0.25 91 6.460 67.577 [0.08 0.01 0] 78 6.469 57.863

The discrepancies in the values of * *
1 2and J J are within the tolerance

specified for this problem, which is 0.01ε = . Again, in this example, the momentum

terms succeeded in significantly reducing the number of iterations for convergence

while keeping the optimal cost at relatively the same value. In cases (i) and (ii) the

numbers of iterations are cut down to less than half the original values with case (ii)

having the most significant improvement. Even when the algorithm converged in

fewer numbers of iterations as in cases (iii) and (iv), the momentum terms still

manage to further reduce the number of iterations.

We mentioned an increase in the complexity of the algorithm in analyzing

Example 5.1. The results of this example clearly show that this increase is a small

price to pay for the astounding end result the momentum terms could bring about.

The small increase is definitely negligible in the long run. DISOPE-MOMENTUM’s

potential far outweighs its encumbrance. For this example, the CPU time of every

case simulated has been successfully reduced. Together with the reduction in the

number of iterations, DISOPE-MOMENTUM succeeded in reducing the

convergence speed in the true sense of the word.

Next we present the graphs of the performance indices of the two different

algorithms. For comparison purposes, we choose the graphs of Case (i) not Case (ii)

 113

even though Case (ii) showed the best overall improvement. This is done because if

we have chosen Case (ii), and use the same scale for both graphs, the graph for

DISOPE-MOMENTUM would be so cramped to the y-axis that any comparison

would be impossible.

0 20 40 60 80 100 120 140 160 180
4.8

5

5.2

5.4

5.6

5.8

6

6.2

6.4

iteration number

pe
rfo

rm
an

ce
 in

de
x DISOPE

0 20 40 60 80 100 120 140 160 180
4.8

5

5.2

5.4

5.6

5.8

6

6.2

6.4

iteration number

pe
rfo

rm
an

ce
 in

de
x DISOPE-MOMENTUM

 (a) (b)

Figure 5.4: The comparison of the performance indices of (a) DISOPE and (b)

DISOPE-MOMENTUM, for Case (i) of Example 5.2.

 Figs. 5.4 (a) and (b) show the performance indices of Case (i) for both

algorithms. From the figures, we can say that the convergence pattern is basically

similar. One significant different apart from the total iteration numbers is that the

trial solutions for DISOPE-MOMENTUM lie in a smaller range than that of

DISOPE. Also we noticed that in Fig. 5.4 (a), the trial solutions for the performance

index lingered around the optimal solution beginning from about Iteration 40 up to

Iteration 179. We can say that the trial solutions oscillate near the optimum for about

139 times before arriving at the optimal solution. In Fig. 5.4 (b) however, the

oscillation is cut down to about only 36 times. This is the effect of the momentum.

With the aid of the momentum, the algorithm managed to converge to the optimum

faster. For this particular example, the momentum terms managed to make do

without about a hundred redundant iterations.

 The same goes for the graphs of the control variation norms in Fig. 5.5. In

both Figs. 5.5 (a) and (b) the control norms start getting close to zero starting form

approximately Iteration 40. However in Fig. 5.5(a) the process of reducing the norm

to a value less than the given tolerance is prolonged until Iteration 179. In (b)

 114

however, the momentum term used managed to bring the value of the norm to less

than the tolerance within 79 iterations. This is a clear example of the effect that the

momentum terms has on oscillations.

20 40 60 80 100 120 140 160 180
0

0.2

0.4

0.6

0.8

1

1.2

iteration number

co
nt

ro
l n

or
m

DISOPE

20 40 60 80 100 120 140 160 180
0

0.2

0.4

0.6

0.8

1

1.2

iteration number

co
nt

ro
l n

or
m

DISOPE-MOMENTUM

 (a) (b)

Figure 5.5: The comparison of the control variation norms of (a) DISOPE and (b)

DISOPE-MOMENTUM, for Case (i) of Example 5.2.

Example 5.2 exhibited that high degree of nonlinearity of the problem did not

hinder the momentum term from accomplishing its intended purpose. In fact we see

that, it managed to reduce a significantly large number of unnecessary iterations in

two of the cases simulated. From the economics point of view, this achievement

would mean a great saving on cost.

With everything else equal, the momentum terms in DISOPE-MOMENTUM

without a doubt accomplished the feat expected of them. In both examples we see

that DISOPE-MOMENTUM algorithm was able to improve on its convergence

speed compared to the original algorithm DISOPE not only in terms of the reduction

in the number of iterations but also in the reduction of CPU time taken to run the

problem.

We observe that with the inclusion of the momentum term, the algorithm

converged faster. Now the optimal solution could be reached in a lesser number of

iterations and CPU time. The momentum term delivered what was expected of it.

With this success, we formally define the new algorithm called the DISOPE-

MOMENTUM algorithm in the next section.

 115

5.4 DISOPE-MOMENTUM Algorithm

Eq. (5.9) is now the updating mechanism of the modified DISOPE or

DISOPE-MOMENTUM. For the purpose of subsequent analysis, Eq. (5.9) will be

rewritten in such a way that the momentum contribution is separated from the

gradient descent step. For this purpose alone, we will use

(1) (1) (1) (1)() [() () ()]Ti i T i T i Ty t u t x t p t+ + + +=% % % % as the notation for the intermediate step.

Thus let the gradient step be written as

()

(1) ()
()

()
() ()

()

i
yi i

y i

E t
y t y t K

y t
+

⎡ ⎤∂
= − ⎢ ⎥

∂⎢ ⎥⎣ ⎦
% (5.11)

This is Step 4 of DISOPE as found in Algorithm 3.1. The momentum contribution to

the updating mechanism is then written as
(1) (1) () (1)() () (() ())i i i i

yy t y t W y t y t+ + −= + −% (5.12)

This will be Step 5 in the new DISOPE-MOMENTUM algorithm that follows.

Algorithm 5.1: DISOPE-MOMENTUM Algorithm

Data 0 0, , , , , ff L x t tϕ and means for calculating f* and L*.

Step 0 Compute or choose a nominal solution 0 0 0ˆ ˆ ˆ(), (), and ().u t x t p t Set
0 0ˆ0, () ()i u t u t= = , 0 0ˆ() ()x t x t= , 0 0ˆ() (),p t p t= 0[,]ft t t∈ .

Step 1 Compute the parameters () ()(), ()i it tα γ to satisfy (3.13). This is called the

parameter estimation step.

Step 2 Compute the multipliers () ()() and ()i it tλ β from (3.11).

Step 3 With specified () ()(), (),i it tα γ () ()i tλ , and () ()i tβ solve MMOP to obtain
()ˆ (),iu t ()ˆ ()ix t , and ()ˆ ()ip t . This is called the system optimization step.

Step 4 This step is the updating mechanism cum gradient-descent step of the

algorithm.

(1) ()

(1) ()

(1) ()

ˆ() () (() ())
ˆ() () (() ())
ˆ() () (() ())

i i
u

i i
x

i i
p

u t u t k u t u t

x t x t k x t x t

p t y t k p t p t

+

+

+

⎫= − −
⎪

= − − ⎬
⎪= − − ⎭

%

%

%
 (5.13)

 116

 where , , (0,1]v z pk k k ∈ are scalar gains.

Step 5 This step adds momentum terms to the updates of Step 4. It also tests for the

convergence of the solution to ROP.
(1) (1) () (1)

(1) (1) () (1)

(1) (1) () (1)

() () (() ())

() () (() ())

() () (() ())

i i i i
u

i i i i
x

i i i i
p

u t u t u t u t

x t x t x t x t

p t p t p t p t

ϖ

ϖ

ϖ

+ + −

+ + −

+ + −

⎫= + −
⎪

= + − ⎬
⎪= + − ⎭

%

%

%
 (5.14)

 where , , and (0,1]u x pϖ ϖ ϖ ∈ are the momentum parameters. If

(1) ()() () , i iu t u t ε ε+ − ≤ a given tolerance, stop, else set i = i + 1 and

continue from step 1.

Algorithm 5.1 is the DISOPE-MOMENTUM algorithm where together Steps

4 and 5 make up the new updating mechanism. We incorporate the following flow

chart to make clear Algorithm 5.1. In Fig. 5.6, the shaded box indicates the steps that

are exactly the same as the ones in DISOPE.

 117

Figure 5.6: The flow chart of DISOPE-MOMENTUM algorithm.

Stop

Step 1-3
Of DISOPE

Start
Step 0

Provide initial solution

Step 4
Gradient Step

Step 5
Momentum Step

(1) ()

 Is

() ()i iu t u t ε+ − ≤

0 0 0, ,u x p

(1) (1) (1), ,i i iu x p+ + +

() () ()ˆ ˆ ˆ, ,i i iu x p

Y

N

(1) (1) (1), ,i i iu x p+ + +% % %

1i i= +

 118

5.5 Summary and Conclusion

The updating mechanism of DISOPE has been established as a type of a

gradient descent method. As such, it inherits the problems associated with the

method. In an earlier chapter, we have narrowed down the problems faced by

DISOPE to only the problem of slow convergence either caused by the oscillations of

the search when nearing an optimum or the slow advancement of the search when it

faces a relatively flat surface.

In the effort of overcoming the problem, we observed that the equations used

in the updating mechanism of DISOPE were similar in structure to the BP algorithm

of the artificial neural networks. Taking advantage of the similarities, the

improvement done to the BP algorithm namely the addition of momentum was

studied and applied to the updating mechanism of DISOPE. The inclusion of

momentum does reduce the number of iterations needed to arrive at the optimal

solution. Furthermore, this move also succeeded in reducing the CPU time needed to

execute the algorithm. A new algorithm named DISOPE-MOMENTUM, based on

the modification was then formally developed.

In short we conclude that the addition of the momentum terms successfully

overcome the problem of slow convergence in DISOPE. In the next chapter we

present an alternative modification to DISOPE using the parallel tangent algorithm

that can overcome the same problem.

119

CHAPTER 6

DISOPE-PARTAN ALGORITHM

6.1 Introduction

This chapter presents another modification to Map C, the updating

mechanism of DISOPE, which successfully speeds up its convergence. Here we

incorporate a mechanism called the parallel tangent (PARTAN) algorithm to the

updating mechanism. This mechanism proved to be a worthy candidate for

improving the performance of DISOPE algorithm.

The chapter begins with a description of the algorithm and its effects on the

improvement of DISOPE. Simulations of numerical examples are presented to

highlight these improvements. Next we state formally the new algorithm

appropriately called the DISOPE-PARTAN algorithm. A time complexity analysis

is also included to compare the efficiency of DISOPE-PARTAN to DISOPE.

6.2 Modification of Map C

Again in this chapter, we analyze Map C for the necessary alteration in order

to speed up the convergence of the algorithm. As explained earlier, the modification

is necessitate by the nature of Map C, a type of a gradient descent method. The

zigzagging phenomenon is the behavior of the method that needs rectifying.

 120

The modification highlighted in this chapter is also excerpted from the

literature of BP algorithm. It is a form of the gradient parallel tangent method or

gradient-PARTAN. Except for the first iteration, this method involves replacing

every odd-numbered gradient search with a search called an acceleration step. The

acceleration step helps widen the strides of the search resulting in reduced oscillation

in ravines and faster crossings of flat surfaces or basins.

This method is not as popular as the method of momentum discussed earlier

in Chapter 5; however, its simplicity and effectiveness rival that of the momentum.

In some cases, the effectiveness of this method well surpassed the method in Chapter

5. In fact, when the error function is a 2-variables quadratic function, the

convergence is guaranteed to take place in 3 iterations, making the procedure a

quadratic convergent procedure (Pierre, 1969). For the n-dimensional case, if the

error function is quadratic with a well-defined optimum, the exact optimal point is

located after 2n-1 searches, except for round off error (Pierre, 1969).

6.2.1 The Gradient-PARTAN Method

The gradient-PARTAN algorithm uses the deflecting gradient technique that

it may be considered as a special case of the conjugate gradient method (Ghorbani

and Bhavsar, 1993). Conjugate gradient techniques are known to be the most

effective minimization methods that use only the first derivative information (Porter,

1997). They compute the new search direction by using the gradient direction and

the previous search direction. Their advantage over the optimal gradient algorithm is

a faster convergence near an optimum point.

To observe the workings of gradient-PARTAN, reconsider the elliptic

quadratic function depicted in Fig. 2.3 duplicated in Fig. 6.1 below (Rohanin and

Mohd_Ismail, 2004). If the initial point for a gradient search is not precisely on one

of the axes of the systems of ellipses, the search will follow a zigzag course from

0 1 to p p to 2 3to p p , etc., as depicted in Fig. 6.1 below.

 121

Figure 6.1: The zigzagging phenomenon.

Two straight lines 1l and 2l determined by the ridges of the path however,

bound the path. These two lines intersect at the optimum point. This suggests that

the search from 2p could be conducted not in the gradient direction towards 3p but

along the line determined by 0 2and p p . This would make the peak *p reachable

within three steps: first from 0 1to p p along the gradient at 0p , then from 1 2 to p p

along the gradient at 1p and finally, along the line through 0 2and p p from 2p to the

peak *p . Fig. 6.2 illustrates the move. The last step is the parallel tangent or

PARTAN step.

The search method explained above is a combination between the gradient

descent method and the PARTAN method. Hence the name gradient-PARTAN. It

consists of two phases, namely climbing through the gradient and accelerating

through parallel tangent as shown in Fig. 2.10.

0p

2p

*p
3p

4p

1p

1l

2l

 122

Figure 6.2: The optimum is reachable along the line through 0 2 and p p .

Gradient-PARTAN overcomes the problem of zigzagging by deflecting the

gradient step along the ridge (Ghorbani and Bayat, 2000) and it overcomes the

problem of slow crossing of flat surfaces by widening the strides of the search. Its

simplicity and ridge following property is very desirable. Ghorbani and Bayat

(2000) claimed that regardless of the degree of the complexity of the problem used,

the gradient-PARTAN algorithm shows at least two times faster convergence to the

solution than the gradient method alone.

6.2.2 The Incorporation of PARTAN Step

To modify Map C to become a gradient-PARTAN search, the PARTAN step

or the acceleration step is to be incorporated in it. We look into this by re-examining

the workings of the gradient-PARTAN method. We refer to Fig. 6.3 for the

subsequent analysis.

The method alternately performs a gradient descent step followed by an

acceleration step. To begin the gradient-PARTAN search given an initial solution

0p , we search for 1p and 2p using the gradient descent search. Thus in Fig. 6.3, the

vectors a and b are vectors from the gradient method. To get 3p we perform the

acceleration step. This step locates 3p along the line through 0 2 and p p in the

1l

2l
0p

1p

2p

3p

4p

*p

l h

 123

direction of the optimal solution. The vector 0 2p p=c
uuuuur

 gives the direction of the

search. In Fig. 6.3, the search for 3p was done by a multiple of c, the vector αc, with

α (0,1]∈ .

Let (1)
0

ip y −= , ()
1

ip y= , (1)
2

ip y += , and (2)
3

ip y += . Following the above

analysis and with the help of Fig. 6.3, we modeled the searches with the following

equations. From Eq. (4.9), the gradient search for the term (1)iy + , is given by the

equation

()

(1) ()
()

()
()

()

i
yi i

y i

E t
y t y K

y t
+

⎡ ⎤∂
= − ⎢ ⎥

∂⎢ ⎥⎣ ⎦
 (6.1)

Figure 6.3: The vectors involved in the general gradient-PARTAN search.

The next term given by the acceleration step would then be

 [](2)
3 2 2 0

i
yy p p P p p+ = = + − (6.2)

or
 (2) (1) (1) (1)()i i i i

yy t y P y y+ + + −⎡ ⎤= + −⎣ ⎦ (6.3)

where

0 0

0 0
0 0

u m

y x n

p n

I
P I

I

⎡ ⎤℘
⎢ ⎥= ℘⎢ ⎥
⎢ ⎥℘⎣ ⎦

 (6.4)

with , , and (0,1]u x p℘ ℘ ℘ ∈ as the PARTAN parameters.

 One complete cycle of the gradient-PARTAN consists of one gradient search

2p
0p

1p

c
αc a

b

e

d

βe

3p

 124

followed by an acceleration search. Thus in Fig. 6.3, vector d is a gradient direction

for the search of the next estimate. After that, βe is the direction of the acceleration

step that follows. The alternating searches would continue until the optimal solution

is found.

To summarize the gradient-PARTAN technique, we state the following

Procedure 6.1 (Rohanin and Mohd_Ismail, 2004), which out lines the algorithm. In

the procedure, i represents the iteration number.

Procedure 6.1

Begin

if 1i =

do one gradient step

else if i is even

do one gradient step

else

do one acceleration step

end

 In short, with the gradient-PARTAN technique, Eq. (6.1) and (6.3)

alternately act as the updating mechanism of the modified DISOPE. This modified

algorithm is called DISOPE-PARTAN.

6.3 The Effects of Gradient-PARTAN

From the example in Fig. 6.1, we see that when using the gradient search, the

optimum is reachable from 2p in three gradient searches. The first search is from 2p

to 3p , the second search is from 3p to 4p , and the third search is from 4p to *p .

Comparing that to Fig. 6.2, the most prominent effect of the PARTAN step is the by

passing of both 3p and 4p to reach *p . We needed only one acceleration step from

 125

2p to *p . Thus for this particular case with the PARTAN technique we are saving

two unnecessary searches to arrive at the optimum. This by passing of 3p and 4p

also means a reduction in the oscillation of the search.

The next important effect of the PARTAN step is the widening of the strides

of the search. Analyzing Fig. 6.2 further, we see that with the gradient search, the

length of the stride from 2p to 3p is l units. On the other hand, the PARTAN step

has a stride length of l + h units. This lengthening of strides also means that the

search can now move faster on flat surfaces. This would inevitably translate into

faster accessibility of *p .

In general, with the gradient-PARTAN method, where the PARTAN steps are

alternated with gradient searches again and again (Rohanin and Mohd_Ismail, 2004),

the cumulative effects of the cut in the number of searches and the lengthening of

strides would make the final number of searches remarkably less and the CPU time

reduced. In short the altered Map C succeeded in overcoming the problems of

oscillation and the slow advancement on flat surfaces of DISOPE.

The following section presents the simulations of numerical examples to

demonstrate the effects of the gradient-PARTAN approach on the convergence speed

of DISOPE-PARTAN. These examples are taken from Chapter 3. The results

obtained from these simulations are then compared to the results of Chapter 3.

6.3.1 Numerical Examples

Numerical examples are simulated to see the effects of the gradient-PARTAN

adaptation of the updating mechanism of DISOPE. The problems used in the

simulations are problems from Examples 3.1 and 3.2 of Chapter 3.

 126

Example 6.1

This first example is taken from Example 3.1. A few of the cases simulated

there are used here. All the values of the input parameters for these cases are kept

the same. With the incorporation of the PARTAN step, the additional inputs for

these simulations are the PARTAN parameters. The results of the simulations are

tabulated in Table 6.1.

Table 6.1: The algorithm’s performance of Example 6.1 with the incorporation of the

PARTAN step.

Case 1r vk (a) *

1J CPU time (s) y℘ (b) *
2J CPU time (s)

i 0 1 10 0.028 1.832 [0.05 0 0] 8 0.028 1.192

ii 0 0.3 9 0.028 1.683 [0.1 0 0] 7 0.028 1.022

iii 0.5 1 9 0.028 1.733 [0.05 0 0] 5 0.028 0.751

iv 1 1 12 0.028 2.173 [0.1 0 0] 7 0.028 0.951

v 1 1 12 0.028 2.173 [0.05 0 0] 5 0.028 0.711

vi 1 0.8 13 0.028 2.444 [0.1 0 0] 7 0.028 0.971

vii 1 0.8 13 0.028 2.444 [0.05 0 0] 5 0.028 0.741

 Table 6.1 compares the performance of DISOPE with the performance of

DISOPE-PARTAN. Column (a) records the number of iterations for convergence of

DISOPE. Column (b) records the number of iterations for convergence of DISOPE-

PARTAN. Both *
1J and *

2J respectively record the final values of the performance

indices of both algorithms. Column y℘ registers the values chosen for the PARTAN

parameters. These values are user supplied and in these cases, they are chosen by trial

and error. However, the values that we record are the best values for conveying our

point.

As expected, in all the cases, DISOPE-PARTAN algorithm succeeded in

reducing the number of iterations needed for convergence. Comparing the results

recorded in the columns for CPU time, we see that the new algorithm also succeeded

in reducing the time taken to arrive at the optimal solution.

 127

Moreover, starting with one set of inputs, as in Cases (iii) and (iv), the

different sets of values given to the PARTAN parameters, produce different speed of

convergence to the algorithm. For a relatively simple problem as the one simulated

for Example 6.1, this gradient-PARTAN algorithm managed to reduce the number of

iterations up to basically less than half the original number recorded for DISOPE.

To further explore the effects of PARTAN, we graph the performance indices

of DISOPE and DISOPE-PARTAN in Fig. 6.4. We are using the results of Case (iv)

for both figures. Fig. 6.4(a) is the graph of the original performance index using

DISOPE. The optimal solution was obtained after twelve iterations. Fig. 6.4(b) is

the graph of the performance index after using DISOPE-PARTAN. The solution was

reached only after five iterations. By comparing Figs. 6.4 (a) and (b) we can see that

the acceleration step of PARTAN only takes effect at the third iteration. Hence after,

the PARTAN and gradient steps alternate.

 In Fig. 6.4 (a), the graph of the performance index diminishes into a very

gentle slope after the seventh iteration. This gentle slope happens when consecutive

values of the performance index do not differ significantly from each other. This

must have happened whilst the gradient-descent algorithm oscillates when nearing

the optimum. In Fig. 6.4 (b) however, the situation is efficiently remedied by

PARTAN by eliminating the redundant iterations. The result is a faster convergence.

0 2 4 6 8 10 12
0.0265

0.027

0.0275

0.028

0.0285

0.029

0.0295

0.03

iteration number

pe
rfo

rm
an

ce
 in

de
x

0 2 4 6 8 10 12
0.0265

0.027

0.0275

0.028

0.0285

0.029

0.0295

0.03

iteration number

pe
rfo

rm
an

ce
 in

de
x

G

G

A G

 (a) (b)

Fig. 6.4: The comparisons between the performance indices of (a) DISOPE; (b)

DISOPE-PARTAN.

•

•

•
• • • • • • • • • • •

•

•

• •

•

 128

2 4 6 8 10 12
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

iteration number

no
rm

[u
(i+

1)
-u

(i)
]

DISOPE-PARTAN

DISOPE

G
G

G

A A

Fig. 6.5: The comparisons between the control variation norms of DISOPE and

DISOPE-PARTAN of Example 6.1.

Fig. 6.5 is the graphs of the control variation norms, 1() () ,i iu t u t+ − of Case

(v) for both algorithms. For the purpose of stopping the iterations of both algorithms,

this norm was set to be 1() () 0.01i iu t u t+ − ≤ . The purpose of this depiction is to

observe the convergence pattern of DISOPE-PARTAN compared to DISOPE.

In Fig. 6.5, ‘G’ stands for the values of the control norm after application of

the gradient step. ‘A’ stands for like values after application of the acceleration step.

For this particular case, the pattern for convergence of DISOPE closely resembles a

monotonic convergence. The values reduced slowly to the given tolerance.

DISOPE-PARTAN one the other hand has an oscillating convergence pattern.

This is typical of the gradient-PARTAN algorithm where every pair of trials

solutions is generated through two different methods. From the graph, we see that

the norm was sharply reduced to the given tolerance after the fifth iteration. The

•

• •

•
•

•

•

•
• • • • • • ••

 129

search was terminated at the fifth iteration. Without a doubt, DISOPE-PARTAN

succeeded in achieving what it is designed for, accelerating the gradient descent

algorithm.

Example 6.1 has been a simple problem. For a simple problem, the gradient-

PARTAN method successfully reduces the oscillations of the search. In the next

example we simulate a problem with a higher degree of nonlinearities.

Example 6.2

This second example is the third order nonlinear systems problem of Example

3.2. All the values of the basic input parameters for these cases are kept the same as

that in Example 3.2. In these simulations the user supplied values of the PARTAN

parameters are again chosen by trial and error.

The problem solved for this example is more complex than the problem in

Example 6.1 in the sense that one of its state variables has a terminal constraint. The

solution generated by the algorithm has to satisfy one additional condition on top of

the standard conditions of optimality. The effective values of y℘ that we found,

reduce the number of iterations. The results of the simulations are tabulated in Table

6.2. The values registered here are the values that best represent the improvements

expected.

Table 6.2: Comparisons of the final performance of DISOPE and DISOPE-PARTAN

for Example 6.2.

case

2r xk (a) *
1J CPU time

(s)
y℘ (b) *

2J CPU time

(s)

i. 1 0.3 12 0.663 2.794 [0.1 0.35 0] 9 0.663 1.271

ii. 1 0.4 10 0.660 2.344 [0.04 0.35 0] 7 0.659 1.051

iii. 1 0.5 8 0.659 1.973 [0.01 0.35 0] 5 0.657 0.831

iv. 1 0.7 8 0.656 1.912 [0.09 0 0] 7 0.657 1.011

v. 1 0.8 9 0.656 2.244 [0.2 0 0] 5 0.659 0.781

 130

As in Table 6.1, Columns (a) and (b) record the number of iterations for the

convergence of DISOPE and DISOPE-PARTAN respectively. Columns *
1J and *

2J

register the final values of the performance indices of the problems when using

DISOPE and DISOPE-PARTAN respectively. From these two columns, we see that

the variations of the values are well within the tolerance accepted which is 0.01.

All the results cited here satisfy the conditions mentioned above. Thus all the

solutions acquired by these simulations are optimal solutions. In all the cases we

manage to reduce the number of iterations and the CPU time taken to find the

optimal solution. Hence we succeeded in increasing the speed of convergence.

 Case (iii) of the above simulations is chosen for detailed discussion. Fig.

6.6 below shows that along with three optimality conditions, the terminal condition

of 1(2) 0x = is also satisfied by the solution.

 Next we compare the graphs of the performance indices of DISOPE and

DISOPE-PARTAN in Figs. 6.7 (a) and (b). As mentioned in Example 6.1, the

PARTAN algorithm only takes effect beginning at the third iteration. There after,

the gradient step and the PARTAN step alternates.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

x(
t)

t

x1

x2

x3

Figure 6.6: The graph showing the final states ()x t of Case (iii) satisfying the end-

point condition of 1(2) 0.x =

 131

0 1 2 3 4 5 6 7 8
0.65

0.7

0.75

0.8

0.85

0.9

iteration number

pe
rfo

rm
an

ce
 in

de
x

0 1 2 3 4 5 6 7 8
0.65

0.7

0.75

0.8

0.85

0.9

iteration number

pe
rfo

rm
an

ce
 in

de
x G

G

A

G

A

 (a) (b)

Fig. 6.7: The comparison of the performance indices of (a) DISOPE and (b)

DISOPE-PARTAN of Case (iii).

 In Fig. 6.7 (a), the values of the performance index, decreases slowly after

the fifth iteration suggested by the gentle slope. Once again this is caused by the

oscillating gradient-descent algorithm when nearing an optimum. Fig. 6.7 (b) shows

the after effect of using the gradient-PARTAN algorithm. The redundant iterations

are eliminated for faster convergence.

1 2 3 4 5 6 7 8
0

0.5

1

1.5

2

2.5

3

iteration number

no
rm

[u
(i+

1)
-u

(i)
]

G

G

A

G

A

DISOPE-PARTAN

DISOPE

Fig. 6.8: Comparisons between the control norms of DISOPE and DISOPE-

PARTAN of Case (iii).

•
•

•

•
• • • • •

• •

•
•

• •

•

•
•

•

•

•
• • • ••

 132

Fig. 6.8 is the graph of the control variations norm, 1() () ,i iu t u t+ − of Case

(iii) for both algorithms. Again DISOPE displays monotonic convergence pattern.

However the gentle slope after the second iteration suggests that the norm between

two consecutive terms is gradually reduced until it satisfies the stopping criterion of

the algorithm. The gradual reduction causes the algorithm three more iterations

compared to DISOPE-PARTAN. The DISOPE-PARTAN algorithm on the other

hand, sharply reduces the norm after the second iteration. The algorithm succeeded

in increasing the convergence speed to reach the optimum.

 From this section we gather that there are two significant effects of using the

gradient-PARTAN method in DISOPE-PARTAN. One is the reduction in the

iterations number and the other is the reduction in CPU time for convergence. To

end this section we conclude that this scheme successfully does its feat. In the next

section, we formally define the new DISOPE-PARTAN algorithm.

6.4 DISOPE-PARTAN Algorithm

Algorithm 6.1

Data 0 0, , , , , ff L x t tϕ and means for calculating f* and L*.

Step 0 Compute or choose a nominal solution 0 0 0ˆ ˆ ˆ(), (), and ().u t x t p t Set
0 0ˆ0, () ()i u t u t= = , 0 0ˆ() ()x t x t= , 0 0ˆ() (),p t p t= 0[,]ft t t∈ .

Step 1 Compute the parameters () ()(), ()i it tα γ to satisfy (3.13). This is called the

parameter estimation step.

Step 2 Compute the multipliers () ()() and ()i it tλ β from (3.11).

Step 3 With specified () ()(), (),i it tα γ () ()i tλ , and () ()i tβ solve MMOP to obtain

ˆ (),iu t ˆ ()ix t , and ˆ ()ip t . This is called the system optimization step.

Step 4 This step is the gradient step of the updating mechanism. It updates the

estimates for the solution of ROP and tests for convergence.

 133

(1) () () ()

(1) () () ()

(1) () () ()

ˆ() () (() ())
ˆ() () (() ())
ˆ() () (() ())

i i i i
u

i i i i
x

i i i i
p

u t u t k u t u t

x t x t k x t x t

p t p t k p t p t

+

+

+

⎫= + −
⎪

= + − ⎬
⎪= + − ⎭

 (6.5)

 where , , (0,1]v z pk k k ∈ are scalar gains. If 1() () , i iu t u t ε ε+ − ≤ a given

tolerance, stop, else set 1i i= + . If 1 2i + = , go to step 1, else proceed to

step 5.

Step 5 This is the acceleration part of the updating mechanism. It updates the

estimates and also tests for convergence.

(1) () () (2)

(1) () () (2)

(1) () () (2)

()

()

()

i i i i
u

i i i i
x

i i i i
p

u u u u

x x x x

p p p p

+ −

+ −

+ −

⎫= +℘ −
⎪

= +℘ − ⎬
⎪= +℘ − ⎭

 (6.6)

where , , and (0,1]u x p℘ ℘ ℘ ∈ are the PARTAN parameters. If

1() () , i iu t u t ε ε+ − ≤ a given tolerance, stop, else set 1i i= + and continue

from Step 1.

Algorithm 6.1 is the DISOPE-PARTAN algorithm where the updating

mechanism has been amended to include the PARTAN algorithm. It is different

from DISOPE-MOMENTUM in that the original DISOPE algorithm is only used to

generate the first and the even numbered terms. The odd numbered terms on the

other hand are generated purely through the shift done to the even numbered terms

by adding a multiple of the vector determined by the (1)i + th and the (1)i − th terms.

The flow chart of Fig. 6.9 clarifies the state of affairs.

In Fig. 6.9 the two shaded rectangular boxes represent the two alternating

steps taken by the algorithm. The bigger box represents the steps taken by the

algorithm to execute one gradient descent step. The smaller of the two represents the

one step taken to execute the PARTAN step.

Thus far, we have been discussing the achievement of DISOPE-PARTAN

over DISOPE. In the next section we present the efficiency analysis of the new

algorithm in the form of an every-case time complexity analysis. Using this analysis,

 134

Start
With solution for 1i =

Steps 1-3 Of DISOPE

Gradient step

(1) (1) (1), ,u x p

(1) (1) (1), ,i i iu x p+ + +

() () ()ˆ ˆ ˆ, ,i i iu x p

Stop

Y

N, 1i i= +
(1) ()() ()i iu t u t ε+ − ≤

Acceleration Step

N Y

(1) (1) (1), ,i i iu x p+ + +

1i i= +

(1) ()() ()i iu t u t ε+ − ≤

the efficiency of DISOPE-PARTAN will be compared to that of DISOPE.

Figure 6.9: The flow chart of DISOPE-PARTAN algorithm.

6.5 Summary and Conclusion

Based on the problems faced by DISOPE in association with its updating

mechanism, we proposed a method called the parallel-tangent or PARTAN algorithm

to be incorporated in the updating mechanism of DISOPE with the purpose of

overcoming the aforementioned problems. It is a form of conjugate gradient method

known for its effectiveness near optimal points.

Is

 135

The incorporation of PARTAN in Map C sees that a gradient step is

alternated with the PARTAN step. The move successfully speed up the convergence

of DISOPE. The results of the simulations clearly demonstrate the effectiveness of

the parallel tangent algorithm in speeding up the convergence of DISOPE. The

modification of the updating mechanism successfully decreases the number of

iterations needed to arrive at the optimum. Further more the CPU time needed to

complete the iterations were also reduced in the process. Thus we conclude that the

PARTAN algorithm succeeded in improving the convergence speed in the true sense

of the word. Thus we illustrate that DISOPE-PARTAN is a more efficient algorithm

than DISOPE.

136

CHAPTER 7

CONCLUSION

7.1 Introduction

This chapter summarizes the materials presented in the foregoing chapters.

The results and findings are highlighted and conclusions are drawn from them. From

these, suggestions for further research are presented.

7.2 Summary of Significant Findings

The central theme of this research is the gradient-based modifications done to

the Dynamic Integrated System Optimization and Parameter Estimation (DISOPE)

with the purpose of overcoming the slow convergence trait of the algorithm. This

algorithm is designed to solve nonlinear optimal control problems.

An important part of the algorithm is the updating mechanism. This is where

the trial solutions of one iteration are updated as input to the next iteration. The

performance of this mechanism has been largely overlooked in the past. This

mechanism is a form of the gradient descent search algorithm. Intrinsic to the

method are the problems of slow convergence that might even lead to convergence to

false optima. False optima can be in the form of local minima disguised as global

minima or terms that are truly not optimal at all.

 137

We observed that DISOPE inherited this problem of slow convergence. With

DISOPE the problem of convergence to local optima has been overcame by the use

of Linear Quadratic Regulator problem as model. Thus, we are left with the problem

of slow convergence with the possibility of converging to false optima that are not

local minima. Based on the gradient form of the mechanism, we proposed

modifications that would improve the performance of the mechanism per se and

DISOPE as a whole.

 The main goal of this research is to improve the convergence speed of

DISOPE via the modifications of its updating mechanism. In Chapter 1, we gave a

list of objectives to be followed by the research in order to achieve this goal.

There are two possible reasons for the problem of slow convergence. The

first is the oscillation of the search in areas of ravines and the second is slow

advancement of the search on large flat basins on the surface of the function to be

minimized. To get the appropriate methods of improvement we analyzed a well-

known algorithm; the back propagation algorithm of the neural networks, that uses

the gradient descent method as basis. From the literature of the back propagation

algorithm, we resolved to using two of the many modifications found in an effort to

improve the convergence speed. The choice has been based on the simplicity and

effectiveness of the methods. Furthermore, all the information needed by the

methods is readily available while executing DISOPE.

The first of the said modifications is an inclusion of momentum terms to the

basic gradient descent search of the updating mechanism of DISOPE. It is one of the

most popular learning paradigms in the back propagation algorithm. The momentum

terms worked at reducing the oscillation of the search when it jumps over the bottom

of ravines. After the search crossed a ravine, the momentum vector corrected the

gradient vector by deflecting it further down the line in the direction of the optimum.

These deflections make the search traverse the area faster.

 138

The inclusion of the momentum terms, has successfully improved the

convergence speed of the original DISOPE. This observation has been vindicated in

Chapter 5 where simulation of problems with differing degrees of nonlinearities have

been done. DISOPE with the momentum terms converged faster in the sense that the

number of iterations and CPU time for each case simulated are reduced significantly.

This new modified algorithm is named DISOPE-MOMENTUM.

The improvement could be explained by deflecting effect of the momentum

terms. The deflection widens the stride of the search and hence the search traversed

the ranives and the plateaus faster. In doing so, the momentum terms overcame the

problem of slow convergence and possibly the problem of convergence to false

optima too. False minima happened when two consecutive terms on plateaus are

very close together that the difference between the two is so small; it satisfies the

predetermined condition imposed on the stopping criteria. This makes the search

stops even though the solution is not optimal. The deflection widens the stride of the

search and hence reduces the likelihood that any two consecutive terms on a plateau

being too close together.

The second choice of modification is the use of parallel tangent (PARTAN)

algorithm. It uses deflecting gradient technique and may be considered as a special

case of the conjugate gradient method. Its simplicity and ravine following properties

are very attractive. This technique alternates between the use of DISOPE as a whole

with PARTAN step in producing consecutive trial solutions. The part where

DISOPE is used the trial solution is updated using the gradient descent algorithm.

For the immediate consecutive term, the solution produced by the gradient descent

method is updated using PARTAN step. PARTAN deflected the solution by using a

vector determined by the ith and the (i-2) terms.

The deflecting action has basically similar effects on the convergence speed

and the ability to avoid false minima as with the modification using momentum

terms discussed above. The use of PARTAN step successfully overcame the

problems of DISOPE. This is reflected in the results of the simulation done in

Chapter 6. DISOPE with the inclusion of the PARTAN step called DISOPE-

 139

PARTAN, excelled over DISOPE alone. In all the simulation, the new algorithm

managed to reduce the number of iterations and CPU time in executing each search

to the optimal solution successfully. The optimality of this algorithm is established as

its optimality conditions at convergence agree with the solution of the ROP. The

new algorithm also satisfies the sufficient and necessary condition for local stability.

The sufficient condition for the asymptotic convergence shows that the convergence

property has an extra term resulting from the coefficients of the momentum

parameters compared to similar condition for DISOPE. We observed that all the

other terms remained the same as DISOPE’s, hence this extra term could only

influenced the values for the Lipschitz constants which would have to be reduced for

the condition to be satisfied. A reduction in the values of the Lipschitz would have

to mean that the contraction of the terms in DISOPE-MOMENTUM is faster than the

terms in DISOPE. With that we succeeded in proving a conjecture that the

contraction speed of the DISOPE-MOMENTUM is faster than DISOPE hence the

plausible explanation for the faster convergence speed.

With the DISOPE-PARTAN, the modifications rendered the new algorithm

more efficient than DISOPE. The time-complexity function of DISOPE-PARTAN is

definitely less than DISOPE. DISOPE-PARTAN also has the same convergence rate

as DISOPE which is quadratic. This algorithm also satisfies the necessary optimality

conditions imposed on it. It also satisfies the local and global stability conditions

imposed by their respective theorems. The global convergence analysis was divided

into two parts comprising of the terms generated by the gradient descent method and

the terms generated by the PARTAN step. The convergence of first part is

established as being the same as DISOPE. For the second part, the sufficient

condition for asymptotic convergence is unique to DISOPE-PARTAN. From this

analysis, we observed that the PARTAN step of the algorithm contracts faster than

the gradient descent step. Thus DISOPE-PARTAN as a whole contracts faster than

DISOPE, giving us the likely explanation for its faster convergence.

To summarize, the products of these modifications are two new distinct

algorithms, mentioned above as DISOPE-MOMENTUM and DISOPE-PARTAN. In

short, both algorithms show significant improvement in the convergence speed over

 140

DISOPE with DISOPE-PARTAN showing a better improvement over DISOPE-

MOMENTUM. To demonstrate the robustness of the new algorithms, simulation of

numerical examples were done. The examples used in the simulation are examples

with differing degrees of nonlinearities. When compared to the results given by

DISOPE, the outcome of each simulation shows significant reduction in the number

of iterations needed to arrive at the optimal solution. Further more, the CPU time

needed to find the optimal solution for each example is also reduced. All these

results are backed up by the appropriate theoretical analyses for each improved

algorithm.

In conclusion, the research succeeded in achieving its goal; overcoming the

slow convergence of DISOPE. All the objectives outlined for the research have been

satisfied. The end products of the research are two new algorithms that are more

efficient than the original DISOPE and are capable of solving the same nonlinear

optimal control problems in shorter time with less number of iterations. The

following section lists suggestions for further research.

7.3 Further Research

 In this section we present some possible avenues for the research work in the future.

a) A link with pole placements methods. The proper choice of the systems’

weights, Q and R, is a better way to handle this problem of DISOPE

instability than adjusting the convexification parameters 1 2 and r r . Thus, we

propose a link up with pole placement for the determination of acceptable

weights to stabilize the systems before using any one of the algorithms.

b) Extension to hierarchical platform. For large-scale systems, the efficient

approach is to handle them in a hierarchical platform.

c) Extension to bounded systems. So far, we have assumed that the admissible

controls and states are not constrained by any boundaries. We propose that

the research is extended to include systems with control and/or state

constraints.

d) Time delay in the dynamics of the system. In real life, situations where time

delays are an integrated part of the systems are abundant.

e) Extension to stochastic dynamical system.

 141

REFERENCES

Amin, M.H. (1985). Optimal Pole Shifting for Continuous Multivariable Linear

Systems. Int. J. Control. 41(3): 701-707.

Anderson, B.D.O. and Moore, J.B. (1971). Linear Optimal Control. Englewood

Cliffs, New Jersey: Prentice Hall.

Anton, H. (1992). Calculus with Analytic Geometry. New York: John Wiley &

Sons, Inc.

Attoh-Okine, N. (1999). Analysis of Learning Rate and Momentum Term in

Backpropagation Neural Network Algorithm Trained to Predict Pavement

Performance. Advances in Engineering Software. 30: 291-302.

Baldi, P. (1995). Gradient Descent Learning Algorithm Overview: A General

Dynamical Systems Perspective. IEEE Transactions on Neural Networks.

6(1): 182-195.

Bar-Ness, Y. (1978). Optimal Closed-Loop Poles Assignment. Int. J. Control.

27(3): 421-430.

Bartle, R.G. and Sherbert, D.R. (1992). Introduction to Real Analysis. New York:

John Wiley & Sons, Inc.

Bazaraa, M.S., Sherali, H. D., and Shetty, C.M. (1993). Nonlinear Programming:

Theory and Algorithms. New York: John Wiley and Sons, Inc.

Beale, E. (1988). Introduction to Optimization. New York: John Wiley & Sons.

Becerra, V.M. (1994). Development and Applications of Novel Optimal Control

Algorithms. City University, UK: Ph.D. Thesis.

Becerra, V.M. and Roberts, P.D. (1996). Dynamic Integrated System Optimization

and Parameter Estimation for Discrete Time Optimal Control of Nonlinear

Systems. Int. J. Control. 63(2): 257-281.

Becerra, V.M. and Roberts, P.D. (1998). Application of a Novel Optimal Control

Algorithm to a Benchmark Fed-Batch Fermentation Process. Trans. Inst. MC.

 142

20(1): 11-18.

Becker, S. and leCun, Y. (1988). Improving the Convergence of Back-propagation

learning with Secong Order Methods. Proceedings of the 1988 Connectionist

Models Summer School. June 17-26. Carnegie Mellon University. San Mateo:

Morgan Kaufmann Publishers. 29-37.

Bellman, R. (1957). Dynamic Programming. Princeton, N.J.: Princeton University

Press.

Bellman, R. (1969). Stability Theory of Differential Equations. New York: Dover

Publications, Inc.

Bertsekas, D.P. (2001). Neuro-Dynamic Programming: An Overview. Encyclopedia

of Optimization. Dordrecht: Kluwer Academic Publishers.

Bertsekas, D.P., Homer, M.L., Logan, D.A., Patek, S.D., and Sandell, N.R. (2000).

Missile Defense and Interceptor Allocation by Neuro-Dynamic Programming.

IEEE Transactions on Systems, Man, and Cybernetics. A-30(1): 101-110.

Boland, F.M., Owens, D.H. (1980). Linear Multipass Processes: a Two-

Dimensional Interpretation. IEE Proceedings. Part D. 127 (5): 189-193.

Boyce, W. E. and DiPrima, R.C. (2001). Elementary Differential Equations. New

York: John Wiley & Sons.

Brdys, M. and Roberts, P.D. (1987). Convergence and Optimality of Modified

Two-Step Algorithm for Integrated Sysyem Optimization and Parameter

Estimation. International Journal of System Science. 18: 1305-1322.

Brdys, M., Chen, S. and Roberts, P.D. (1986). An Extension to the Modified Two-

Step Algorithm for Steady-State System Optimization and Parameter

Estimation. Int. J. Systems Science. 17: 1229-1243.

Brdyś, M., Ellis, J.E., and Roberts, P.D. (1987) “Augmented Integrated System

Optimization and Parameter Estimation Technique: Derivation, Optimality and

Convergence.” IEE Proceedings Part 3. 14(3): 201-209.

Brogan, B.L. (1991). Modern Control Theory. Englewood Cliffs, New Jersey:

Prentice-Hall, Inc.

Brown, S.C. and Passino K.M. (1997). Intelligent Control for an Acrobot. Journal

of Intelligent and Robotic Systems. 18: 209-248.

Bryson, A.E. (1996). Optimal Control – 1950 to 1985. IEEE Control Syst. Mag.

16(3): 26-33.

 143

Bryson, A.E. and Ho, Y. (1975). Applied Optimal Control. Washington D.C:

Hemisphere Publishing Corporation.

Buchanan, J.L. and Turner, P.R. (1992). Numerical Methods and Analysis. New

York: McGraw-Hill, Inc.

Bunday, B. (1984). Basic Optimization Methods. London: Edwards Arnold.

Cater, J.P. (1987). Successfully Using Peak Learning Rates of 10 (and greater) in

Back-propagation Networks with the Heuristic Learning Algorithm. IEEE

First International Conference on Neural Networks. San Diego, CA, II: IEEE,

645-652.

Cesari, L. (1983). Optimization – Theory and Applications: Problems with

Ordinary Differential Equations. New York: Springer-Verlag.

Clements, D.J., Teo, K.L., and Wu, Z.S. (1982). An Implementable Algorithm for

Linear Time Optimal Control. Int. J. Systems Sci. 13(11): 1223-1232.

Craig, J.C. (1989). Introduction to Robotics. Reading, USA: Addison-Wesley.

Dayhoff, Judith E., (1990). Neural Network Architectures: An Introduction. New

York: Von Nostrand Reinhold.

Derouin, E., J. Brown, H. Beck, L. Fausett, & M. Schneider. (1991). Neural

Network Training on Unequally Represented Classes. In: Dagli, C.H.,

Kumara, S.R.T., and Shin, Y.C. eds. Intelligent Engineering Systems Through

Artificial Neural Networks. New York: ASME Press. 153-141.

Dorato, P. and Abdallah, V.C. (1995). Linear-Quadratic Control: An Introduction.

Englewood Cliffs, N.J.: Prentice Hall.

Eastman, W.L. and Bossi, J.A. (1984). Design of Linear Quadratic Regulators with

Assigned Eigenstructure. Int. J. Control. 39(4): 731-742.

Edwards, C.H. and Penney, D.E. (1994). Calculus with Analytic Geometry.

Englewood Cliffs, New Jersey: Prentice-Hall.

Edwards, C.H. and Penney, D.E. (2000). Differential Equations and Boundary

Value Problems: Computing and Modeling. New Jersey: Prentice Hall

International, Inc.

Edwards, J.B. (1974). Stability Problems in the Control of Multipass Processes.

Proc. IEE. 121 (11): 1425-1432.

Edwards, J.B. and Owens, D.H. (1982). Analysis and Control of Multipass

Processes. Chichester: Wiley.

 144

Ellis, J.E. and Roberts, P.D. (1981). Simple Models for Integrated Optimization

and Parameter Estimation. International Journal of Systems Science. 12: 442-

472.

Fahlman, S.E. (1988). Faster-Learning Variations on Back-Propagation: An

Empirical Study. In: Touretsky, D., Hinton, G., and Sejnowski, T. eds.

Proceedings of the 1988 Connectionist Models Summer School. San Mateo,

CA: Morgan Kaufmann. 38-51.

Fausett, L. (1994). Fundamental of Neural Networks: Architectures, Algorithms,

and applications. New Jersey: Prentice-Hall, Inc.

Fletcher, R. (1979). “Practical Methods of Optimization.” Vol. 1, Unconstrained

Optimization. New York: John Wiley.

Fornasini, E. and Marchesini, G. (1978). Doubly-indexed dynamical systems: state

space models and structural properties. Math. Syst. Theory. 12: 1502-1517.

Fujikana, T. and Omatu, S. (2001). Pole Placement Using Optimal Regulators. T.

IEE Japan Part C. 121 (1): 240-245.

Fukuoka, Y., Matsuki, H., Minamitani, H., and Ishida, A. (1998). A Modified

Back-propagation Method to Avoid False Local Minima. Neural Networks.

11: 1059-1072.

Gautschi, W. (1997). Numerical Analysis. Boston: Birkhäuser.

Ghorbani, A.A. and Bayat, L. (2000). Accelerated Backpropagation Learning:

Extended Dynamic Parallel Tangent Learning Optimization Algorithm. In:

Hamilton, H. ed. Lecture Notes in Artificial Intelligence 1822. Springer-

Verlag.

Ghorbani, A.A. and Bhavsar, V.C. (1993). Accelerated Backpropagation Learning:

Parallel Tangent Learning Optimization Algorithm. Proceedings of the 1993

International Symposium on Nonlinear Theory and Its Applications. Hawaii,

USA: NOLTA, 59-62.

Golden, Richard M. (1996). Mathematical Methods for Neural Network Analysis

and Design. Cambridge: The MIT Press.

Gopal, M. (1984). Modern Control System Theory. New Delhi: Wiley Eastern

Limited.

Hagiwara, M. and Sato, A. (1995). Analysis of Momentum Term in Back-

Propagation. IEICE Trans. Inf. & Syst. E78D(8): 1080-1086.

 145

Haimes, Y.Y. and Wismer, D.A. (1972). A Computational Approach to the

Combined Problem of Optimization and Parameter Estimation. Automatica. 8:

337-347.

Harvey, C.A. and Stein, G. (1978). Quadratic Weights for Asymptotic Regulator

Properties. IEEE Transaction on Automatic Control. AC-23(3): 378-387.

Hassan, M. and Singh, M. (1976). The Optimization of Non-Linear Syatems Using

a New Two Level Method. Automatica. 12: 359-363.

Haykin, S. (1994). Neural Networks. New York: Macmillan College Publishing

Company.

Hocking, L. (1991). Optimal Control: An Introduction to the Theory with

Applications. Oxford: Clarendon Press.

Jacobs, O.L.R. (1974). Introduction to Control Theory. Oxford: Clarendon Press.

Jacobs, R.A. (1988). Increased Rates of Convergence Through Learning Rate

Adaptation. Neural Networks. 1(4): 295-307.

Kamarthi, S.V. and Pittner, S. (1999). Accelerating Neural Network Training Using

Weight Extrapolations. Neural Networks. 12: 1285-1299.

Kautsky, J., Nichols, N.K., and Van Dooren, P. (1985). Robust Pole Assignment in

Linear State Feedback. Int. J. Control. 41(5): 1129-1155.

Kawasaki, N. and Shimemura, E. (1893). Detemining Quadratic Weighting

Matrices to Locate Poles in a Specified Region. Automatica. 19(5): 557-560.

Kirk, D.E. (1970). Optimal Control Theory: An Introduction. New Jersey: Prentice

Hall Inc.

Kirkwood, J.R. (1989). An Introduction to Analysis. Boston: PWS-Kent Publishing

Company.

Kogan, J. (1995). Robust Stability and Convexity: An Introduction. London:

Springer-Verlag.

Koo, D. (1977). Elements of Optimization: with Applications in Economics and

Business. New York: Springer-Verlag.

Kramer, A.H., & Sangiovanni-Vincentelli (1988). Efficient Parallel learning

algorithms for neural networks. In Touretzky, D.S. ed. Advances in Neural

Information Processing Systems. San Mateo: Morgan Kaufmann. 40-48.

Kundu, S. and Ubhaya, V.A. (2001). Fitting a least Squares Piecewise Linear

Continuous Curve in Two Dimensions. Computers and Mathematics with

 146

Applications. 41. 1033-1041.

Lam, J., Yan, W., and Hu, T. (1999). Pole Placement with Eigenvalue and

Stability Robustness. Int. J. Control. 72(13): 1165-1174.

Lee Y., Oh S.S., & Kim M.W. (1993). An Analysis of Premature Saturation in

Back Propagation Learning. Neural Networks. 6: 719-728

Lewis, F.L. and Syrmos, V.L. (1995). Optimal Control. New York: John Wiley &

Sons, Inc.

Lewis, F.L., Abdallah, C.T., and Dawson, D.M. (1993). Control of Robot

Manipulators. New York: Macmillan Publishing Company.

Mahmoud, M.S., Hassan, M.F., Darwish, M.G. (1985). Large-Scale Control

Systems: Theories and techniques. New York: Marcel Dekker, Inc.

Medanic, J., Tharp, H.S., and Perkins, W.R. (1988). Pole Placement by

Performance Criterion Modification. IEEE Transaction on Automatic Control.

33(5): 469-472.

Mohd_Ismail, B.A.A. (1999). Development of Hierarchical Optimal Control

Algorithms for the Interconnected Dynamical Systems. City University, UK:

Ph.D. Thesis.

Mohd, I.B. (1996). Kaedah Penurunan Tercuram Menggunakan Aritmetik Selang.

MATEMATIKA. 12(1): 1-11.

Mohd_Ismail, B.A.A. and Rohanin, A. (2003). On Recent Improvements of Model

Reality Based Nonlinear Optimal Control Algorithm. Proceedings of the

Annual Fundamental Science Seminar. May 20-21. Johor Bahru: Institute

Ibnu Sina, 12-20.

Mohd_Ismail, B.A.A. and Rohanin, A. (2004a). A 2-D Stability and Convergence

Analysis of Optimal Control Algorithm for Systems with Model Reality

Differences. Presented in: The Annual Fundamental Science Seminar. June

14-15. Paper no. SP52.

Mohd_Ismail, B.A.A. and Rohanin, A. (2004b). Development of an Improved

Algorithm for Optimal Control of Nonlinear Dynamical System Based on

Model-Reality Differences. Presented in: International Conference on

Statistics and Mathematics and Its Application in the Development of Science

and Technology. Oct. 4-6. Universitas Islam Bandung, Indonesia.

Moreira, M. and E. Fiesler. (1995). Neural Networks with Adaptive Learning Rate

 147

and Momentum Terms. IDIAP Technical Report. Valais, Switzeland. 95-04.

Neapolitan, R., and Naimipour, K., (1996). Foundations of algorithms. Lexington:

D.C. Heath and Company.

Noton, M. (1972). Modern Control Engineering. New York: Pergamon.

Ochiai, K., Toda, N., and Usui, S. (1994). Kick-out Learning Algorithm to Reduce

the Oscillation of Weights. Neural Networks. 7(5): 797-807.

Omidvar, O and Elliott, D.L. (1997). Neural Systems for Control. San Diego:

Academic Press.

Owens, D.H. (1977). Stability of Linear Multipass Processes. Proceedings of the

Institutions of Electrical Engineers: Control & Science. 124(11): 1079-1082.

Pagilla, P.R. and Tomizuka, M. (2001). An Adaptive Output Feedback Controller

for Robot Arms: Stability and Experiments. Automatica. 37: 983-995.

Parasini, T. and Zoppoli, R. (1994). Neural Networks for Feedback Feedforward

Nonlinear Control Systems. IEEE Trans. On Neural Networks. 5(3): 436-449.

Parks, P.C. and Hahn, V. (1993). Stability Theory. Hertfordshire: Prentice Hall.

Perantonis, S.J. & Karras D.A. (1995). An Efficient Constrained Learning

Algorithm With Momentum Acceleration. Neural Networks. 8(2): 237-249.

Pierre, A.D. (1969). Optimization Theory with Applications. New York: John

Wiley & Sons, Inc.

Plumer, Edward S. (1996). Optimal Control of Terminal Processes Using Neural

Networks. IEEE Trans. On Neural Networks. 7(2): 408-418.

Polak, E., 1997. Optimization: Algorithms and Consistent Approximations. New

York: Springer-Verlag New York, Inc.

Pontryagin, L.S., Boltyanskii, V.G., Gamkrelidze, R.V., and Mishchenko, E.F.

(1962). The mathematical Theory of Optimal Processes. New York: Wiley

Interscience.

Porter, B. (1969). Synthesis of Dynamical Systems. London: Thomas Nelson and

Sons Ltd.

Qian, N. (1999). On the Momentum Term in Gradient Descent Learning

Algorithms. Neural Networks. 12: 145-151.

Qiu, G., Varley, M.R., and Terrel, T.J. (1992). Accelerated Training of

Backpropagation Networks by Using Adaptive Momentum Step. Electronics

Letters. 28(4): 377-379.

 148

Rao, S. (1984). Optimization: Theory and Application. New Delhi: Wiley Eastern

Limited.

Rice, B.J. (1972). Applied Analysis for Physicists and Engineers. Boston:

Prindle,Weber & Schmidt, Inc.

Roberts, C.E. (1979). Ordinary Differential Equations: A Computational

Approach. New Jersey: Prentice-Hall, Inc.

Roberts, P.D. (1979). An Algorithm for Steady State System Optimization and

Parameter Estimation. International Journal System Science. 10: 719-734.

Roberts, P.D. (1993). An Algorithm for Optimal Control of Nonlinear Systems

with Model-Reality Differences. 12th IFAC World Congress on Automatic

Control. 8: 407-412.

Roberts, P.D. (1994a). Unit Memory Repetitive Process Aspects of Iterative

Optimal Control Algorithms. Proceedings of the 33rd Conference on Decision

and Control. December 14-16. Lake Buena Vista, Florida: IEEE, 2: 1394-1399.

Roberts, P.D. (1994b). Unit Memory Repetitive Processes and Iterative Optimal

Control Algorithms. Proceeding of IEEE Int. Conf. Control ’94. 454-459.

Roberts, P.D. (1995). Coping with Model-Reality Differences in Industrial Process

Optimization – A Review of Integrated System Optimization and Parameter

Estimation (ISOPE). Computers in Industry. 26: 281-290.

Roberts, P.D. (1999). Stability Properties of an Iterative Optimal Control

Algorithm. Preprints of 14th World Congress of IFAC International

Federation of Automatic Control. F. Nonlinear Systems I: 269-274.

Roberts, P.D. (2000a). Broyden Derivative Approximation in ISOPE Optimizing

and Optimal Control Algorithms. Preprints of the 11th IFAC International

Workshop on Control Applications of Optimization. 1: 283-288.

Roberts, P.D. (2000b). Numerical Investigation of a Stability Theorem Arising

from the 2-Dimensional Analysis of an Iterative Optimal Control Algorithm.

Multidimensional Systems and Signal Processing. 11: 109-124.

Roberts, P.D. (2000c). Stability Analysis of Iterative Optimal Control Algorithms

Modeled as Linear Unit Memory Repetitive Processes. IEE Proceedings-

Control Theory Applications. 147(3): 229-238.

Roberts, P.D. (2002). Two-Dimensional Analysis of an Iterative Nonlinear

Optimal Control Algorithm. IEEE Transactions on Circuits and Systems-I:

 149

Fundamental Theory and Applications. 49(6): 872-878.

Roberts, P.D. and Becerra, V.M. (2000). Optimal Control of Nonlinear Systems

Represented by Differential Algebraic Equations. Proceeding of the American

Control Conference. June 2000. Chicago, Illinois: 762-763.

Roberts, P.D. and Williams, T.W.C. (1981). On an Algorithm for Combined

System Optimization and Parameter Estimation. Automatica. 17: 199-209.

Roesser, E.P. (1975). A discrete state space model for linear image processing.

IEEE Trans. Auto. Control. AC-20: 1-10.

Rogers, E. and Owens, D.H. (1992). “Stability Analysis for Linear Repetitive

Processes.” Lecture Notes in Control and Information Sciences. 175. Berlin:

Springer-Verlag.

Rohanin, A. and Mohd Ismail, B.A.A. (2002). The Convergence Analysis of the

Updating Mechanism of the Dynamic Integrated Systems Optimization

Algorithm. Prosiding Simposium Kebangsaan Sains Matematik Ke-10.

December 23-24. Johor Bahru: PERSAMA, 326-332.

Rohanin, A. and Mohd Ismail, B.A.A. (2003a). Newton-like Properties of the

Updating Mechanism of a Model-Reality Differences Algorithm.

MATEMATIKA. 19(1): 1-13.

Rohanin, A. and Mohd Ismail, B.A.A. (2003b). Using Weights as Tools in

Handling Systems Instability in Model-Reality Optimal Control Algorithm.

Proceeding of the 7th WSEAS International Conference on Systems. July 7-10.

Corfu, Greece: WSEAS, Paper No.: 457-204.

Rohanin, A. and Mohd Ismail, B.A.A. (2003c). Using Weights as Tools in

Handling Systems Instability in Model-Reality Optimal Control Algorithm. In:

Mastorakis,N.E., Stathopulos, I.A., Manikopoulos, C., Antoniou, G.E.,

Mladenov, V.M., and Gonos, I.F. Computational Methods in Circuits and

Systems Applications. Greece: WSEAS Press. 134-139.

Rohanin, A. and Mohd Ismail, B.A.A. (2003d). An Iterative Algorithm for

Optimal Control of a Robot Manipulator. Proceeding of Malaysia-Japan

Seminar on Artificial Intelligence Applications in Industry. July 24-25. Kuala

Lumpur, Malaysia.

Rohanin, A. and Mohd Ismail, B.A.A. (2004). Accelerating the Convergence of

the Dynamic Integrated Systems Optimization and Parameter Estimation

 150

Algorithm by Way of Parallel Tangent. Jurnal Teknologi. 40: 21-30.

Rohanin, A., Mohd_Ismail, B.A.A., and Becerra, V.M. (2002). Modification of

the Updating Mechanism of the Dynamic Integrated Systems Optimization and

Parameter Estimation Using the Momentum Term. Presented in: The National

Conference on Management Science/ Operations Research. May 26-29.

Rosenthal, J. and Willems, J.C. (1998). Open Problems in the Area of Pole

Placement. In: Blondel, V.D., Sontag, E.D., Vidyasager, M., and Willems, J.C.

eds. Open Problems in Mathematical Systems and Control Theory. Berlin:

Springer-Verlag. 181-191.

Rumelhart, D., Hinton, G.E., & Williams, R.J. (1986a). Learning representations

by back-propagating error. Nature. 323: 533-536.

Rumelhart, D.E. and McClelland, J.L. (1986b). Parallel Distributed Processing.

Cambridge: MIT Press.

Sage, A.P. and White, C.C. (1977). Optimum Systems Control. Second Edition.

New Jersey: Prentice Hall.

Saif, M. (1989). Optimal Linear Regulator Pole-Placement by Weight Selection.

Int. J. Control. 50(1): 399-414.

Sato, A. (1991). An analytical study of the momentum term in a back-propagation

algorithm. In: Kohonen, T., Makisara, K., Simula,O., and Kangas, J. eds.

Artificial Neural Networks. New York: Elsevier. 617-622.

Schwartz, A.L. (1996). Theory and Implementation of Numerical Methods Based

on Runge-Kutta Integration for Solving Optimal Control Problems. Univ. of

California at Berkeley: Ph.D. Thesis.

Shang, Y. (1997). Global Search Method for Solving Nonlinear Optimization

Problems. University of Illinois at Urbana-Champaign: Ph.D. Thesis.

Silva, F.M., & L.B. Almeida. (1990). Acceleration Techniques for the Back

propagation Algorithm. Lecture Notes in Computer Science. 412: 110-119.

Singh, M.G. and Titli, A.B. (1978). Systems: Decomposition, Optimization and

Control. Oxford: Pergamon Press.

Singhal, S. and Wu, L. (1989). Training Feedforward Networks with the extended

Kalman Algorithm. Proceedings of the International Conference on Acoustics,

Speech and Signal Processing. Scotland: 1187-1190.

Siouris, G. M. (1996). An Engineering Approach to Optimal Control and

 151

Estimation Theory. New York: John Wiley & Sons, Inc.

Solheim, O.A. (1972). Design of Optimal Control Ststems with Prescribed

Eigenvalues. Int. J. Control. 15(1): 143-160.

Solomon, R. and Leo van Hemmen, J. (1996). Accelerating Backpropagation

Through Dynamic Self-Adaptation. Neural Networks. 9(4): 589-601.

Sontag, E.D. (1999). Stability and Stabilization: Discontinuities and the Effect of

Disturbances. In: Clarke, H. and R Stern, J. eds. Proceeding of NATO

Advanced Study. Montreal: Kluwer. 551-598.

Spong, M. (1995). “The Swing Up Control Problem For the Acrobot.” IEEE

Control Systems. Vol.15: 49-55.

Stevenson, I.A., Brdyś, M., and Roberts, P.D. (1985). Integrated System

Optimization and Parameter estimation for Traveling load Furnace Control. In:

Barker, H.A. and Young, P.C. eds. Identification and System Parameter

Estimation. Oxford: Pergamon Press.

Stoer, J. and Witzgall, C. (1970). Convexity and Optimization in Finite Dimensions

I. Berlin: Springer-Verlag.

Tatjewski, P., Abdullah, N., and Roberts, P.D. (1986). Comparative study and

Development of Integrated Optimization and Parameter Estimation Algorithms

for Hierarchical Steady-State Control. Int. J. Control. 51(2): 421-443.

Taylor, A.E. and Mann, W.R. (1972). Advanced Calculus. New York: John Wiley

& Sons, Inc.

Teo, K.L., Wu, Z.S., and Clements, D.J. (1981). Computational Method for

Convex Optimal Control Problems Involving Linear Hereditary Systems. Int.

J. Systems Sci. 12(9): 1045-1060.

Tesauro, G., & Janssens, B. (1988). Scaling Relationships in back propagation

learning. Complex Systems. 39-44.

Tollenaere, T. (1990). SuperSAB: Fast adaptive back propagation with good

scaling properties. Neural Networks. 3: 561-573.

Van Ooyen, A. and Nienhuis, B. (1992). Improving the Convergence of the Back-

propagation Algorithm. Neural Networks. 5: 465-471.

Watrous, R.L. (1987). Learning Algorithms for Connectionist Networks: Applied

Gradient Methods of Nonlinear Optimization. In: Caudill, M. and Butler, C.

eds. Proceedings of the IEEE First International Conference on Neural

 152

Networks (IC|NN). San Diego: IEEE. 2: 619-627.

Weir, M. (1991). A Method for Self-Determination of Adaptive Learning Rates in

Back Propagation. Neural Networks. 4: 371-379.

Wilf, H.S. (1986). Algorithms and Complexity. New Jersey: Prentice-Hall

International, Inc.

Yu, Xiao-Hu and Chen, Guo-An. (1997). Efficient Backpropagation Learning

Using Optimal Learning Rate and Momentum. Neural Networks. 10(3): 517-

527.

Yuan, L., Achenie, L.E.K., and Jiang, W. (1996). Linear Quadratic Optimal

Output Feedback Control for Systems with Poles In a Specified Region.

International Journal of Control. 64(6): 1151-1164.

