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COMFORTABLE HOUSING MODEL IN NEW HOUSING PPRT FOR 
ORANG ASLI 

 
 
(keywords: existing orang asli house, government initiated, proposed comfortable)   
 
 
 

This research investigates the proposed comfortable housing model as 
thermal comfort strategy in orang asli house in Malaysia. The Government has 
implemented specific development programmes for the indigenous community or the 
orang asli, which included economic and social programmes to improve their 
standard of living. One such special programme is called the Hard-Core Poor 
Development Programme (PPRT).The new PPRT house initiated by the government 
is not only small but has heat-trapping zinc roofs and concrete walls. This house 
indicated uncomfortable condition compare to the existing orang asli house. 
Unfortunately, the architectural design solutions do not permit good passive cooling 
for thermal comfort. This can be illustrated by the high indoor temperature 
experienced during the day time.  In this research, Proposed Comfortable PPRT 
House Model has been suggested by adopting traditional orang asli house element 
and lifestyle as much as possible as alternative techniques for achieving passive 
cooling. The thermal comfort study in this research involved the use of computer 
simulation using Integrated Environment Solution (IES) technique.  The specific 
software called Apache is used. Validation of IES Apache is done by comparing the 
computer simulation result with the field measurement result on existing house 
model.  The result of the Proposed Comfortable PPRT House Model showed that the 
house model increased thermal comfort performance by reducing air temperature 
(until 2°C) and PMV index (until 1). The other important factor is that it can 
continuously maintain the comfortable condition in mid day regardless of the 
available outside climate condition. This effect is significant toward improving the 
thermal comfort performance of PPRT house designed for orang asli through passive 
cooling, thus provide comfortable healthy and low energy house. 
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MODEL RUMAH SELESA DALAM PENEMPATAN BARU PPRT 
UNTUK ORANG ASLI 

 
 

(kata kunci: rumah orang asli sediaada, pengembangan khas kerajaan, ubah suai 
keselesaaan terma rumah) 

 
 
 

Penyelidikan ini adalah untuk menilai cadangan model rumah yang selesa 
sebagai strategi keselesaan termal dalam rumah orang asli di Malaysia.  Kerajaan 
telah menjalankan pengembangan khas bagi komuniti orang asli yang meliputi 
program ekonomi dan sosial bagi mempertingkatkan keadaan sara hidup. Salah satu 
program ialah Program Pembangunan Rakyat Termiskin. Reka bentuk baru rumah 
PPRT yang dibangunkan oleh kerajaan mempunyai kelemahan dengan adanya 
pancaran haba dari bumbung zink dan dinding batu bata. Reka bentuk baru rumah 
PPRT didapati tidak menepati keperluan keselesaan termal yang dikehendaki di 
dalam rumah orang asli.  Malangnya juga reka bentuk senibinanya belum dapat 
memungkinkan pendinginan semulajadi yang baik.  Keadaan ini ditunjukkan dengan 
tingginya suhu yang di dalam rumah pada siang hari. Ubah suai rumah PPRT telah 
dicadangkan dengan mengadaptasi bagian rumah tradisional orang asli dan cara 
hidup mereka sebagai salah satu kemungkinan di dalam teknik pendinginan 
semulajadi. Kajian keselasaan termal dalam penyelidikan ini melibatkan simulasi 
komputer berteknikan pemecahan alam secara sepadu atau Integrated Environment 
Solution (IES).  Perisian khusus bernama Apache telah digunakan.  Validasi perisian 
Apache telah dilakukan dengan membandingkannya dengan hasil pengukuran 
lapangan dan kajian dalam rumah sediaada.  Keputusan ubah suai model rumah 
PPRT menunjukkan kesan baik kepada peningkatan prestasi keselasaan termal 
dengan penurunan suhu (sampai 2°C)  dan nilai PMV (sampai 1). Faktor penting 
yang lain ialah model ini dapat memberi dan mengekalkan keselesaan secara 
berterusan tanpa mengira keadaan di luar rumah.  Kesan kajian ini cukup besar bagi 
memperbaiki prestasi keselesaan terma rumah PPRT untuk orang asli melalui 
penyejukan semulajadi, seterusnya keselesaan, kesihatan dan penggunaan tenaga 
yang rendah. 
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CHAPTER 1 
 
 
 
 

INTRODUCTION 
 
 
 
 
1.1 Research Background 
 

 

 

The indigenous peoples of Malaysia, or Orang Asli (the Malay term for the 

indigenous peoples in Peninsular Malaysia), are not a homogenous group. There are 

three kinds of “orang asli”. They are known as “Senoi”, “Orang Melayu Asli” and 

“Negrito”. Those who are living in Cameron Highland are the “Senoi” and the 

“Negrito”. The “Senoi” looks exactly like the Malaysians. Those who are darker are 

the Negrito.  The “Senoi” originated from the hills of Vietnam, Cambodia and 

Northern Thailand about 6,000 to 8,000 years ago. In Cameron highland, they work 

as a worker on the highland tea estate to earn money. The “Negritos” are the semi-

nomadic tribes of the “Orang Asli”. The “Negritos” arrived in Malaya 8,000 years 

ago. Their forefathers were hunters and gatherers who used to live in cave and rock 

shelter. These “Orang Asli” live in the jungle in small tribes. Every tribe has their 

own chief. The roof of their house normally is made of leaves while the floor is made 

of wood. They usually live near the river for the river is their main source of water. 

Since they are nomad, they usually move to another place from time to time. But, 

they will not move to another place for no reason. They will only move to another 

place when something happened, such as death or severe illness. However, the chief 

of the tribe will decide whether to move or not and where to move to. For them, 

building a house only takes 2 to 3 hours. Although government built long houses for 

them, they still feel very much comfortable staying in the jungle. However, they are 

all marginalised socioeconomically and culturally. The lifestyle and means of 

subsistence of the indigenous peoples varies from place to place.  
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The Government implemented specific development programmes for the 

indigenous community, the Orang Asli, which included economic and social 

programmes that improved their standard of living. During the Seventh Malaysia 

Plan period (1996-2000), the focus of anti poverty programmes was directed at the 

hard-core poor, spearheaded by a special programme called the Hard-core Poor 

Development Programme (PPRT). Some of the pertinent issues include the provision 

of training, in terms of attitudinal change as well as the application of improved 

production technology and small-scale industry among agricultural households, and 

general education for children of poor households, especially in rural areas. The 

success of programmes, as allocated from the Seventh and Eighth Malaysia Plans, to 

alleviate poverty and provide economic opportunities has demonstrated the 

effectiveness of the nation’s efforts to raise the standard of living of all Malaysians. 

In addition, specific urban-based programmes, namely squatter resettlement and low-

cost housing projects, improved the living conditions of the urban poor. As for the 

hardcore poor, the rapid economic growth prior to mid-1997, and the intensified 

implementation of the Development Programme for the Hardcore Poor or Program 

Pembangunan Rakyat Termiskin (PPRT) helped in reducing its incidence. One effort 

to eradicate poverty is through housing provision. However, according to Peninsular 

Malaysia Orang Asli Association Selangor Branch Vice-Chairman, Yusof Alip, only 

10 to 15 houses are allocated annually, per district, under the Seventh Malaysia Plan 

(through the Orang Asli Department). This means that, "less than 5% of the Orang 

Asli population receive houses each year." (The Star 17 October 1996). Nonetheless, 

the suitability of the houses is questionable. For example, Mahmud Kema from 

Kampung Bukit Kecil was given a two-room house measuring 4.8 x 5.4m as part of a 

poverty eradication programme. The house is not only small but has heat-trapping 

zinc roofs and concrete walls. So, the Government Initiated  PPRT house indicated 

unfomfortbale condition compare than the existing orang asli house.  Fanger (1970) 

defined thermal comfort for a person as a condition of mind, which expresses 

satisfaction with thermal environment.  Thermal comfort is affected by two main 

factors (Fanger, 1970; Abdul Razak, 2004): first, environmental factor (air 

temperature, relative humidity, air movement, and radiation; second, subjective 

factor (activity, clothing, age, sex, heath condition, food and drink, skin color, human 

size. However, these study only investigate the thermal comfort condition in orang 

asli house. 
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1.2 The Problem Statement 

 

 

The main challenge confronting indigenous peoples today is that of being 

dispossessed of their native customary land. Land is their source of livelihood and its 

dispossession has invariably trapped indigenous peoples into a cycle of poverty. 

Equally important is the fact that land embodies their cultural identity and thus its 

loss strikes at the very core of their identity. The irony is that it is the "modern" 

development strategies that have resulted in the present environmental crisis. There 

is international level agreement that development has to be sustainable, i.e. 

consideration has to be given to the environment in planning. Research has found 

that the traditional lifestyles of indigenous peoples are environmentally sound. This 

implies that we may in fact have a great deal to learn from them. This needs to be 

questioned on several grounds. First, what the environmental house condition do 

indigenous peoples want?  Secondly, will indigenous peoples feel comfortable with 

the new housing development proposed?  

 
 
 
1.3 Research Hypothesis 
 
 
 The hypothesis of this study is that “appropriate” design of PPRT house 

model for orang asli will achieve the following: 

- Decrease temperature inside house or similar with outdoor climate condition.    

- Provide optimum PMV within the range of the thermal comfort requirement 

(0 until 0.5) for prediction of the effectiveness of the comfortable house. 

-  

The term “appropriate” refers to the best performance of house model which will 

achieve lower the air temperature and PMV index inside the house in order to obtain 

comfortable house.  
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1.4 Research Questions 
 

 

 The following questions will be addressed in this study: 

Q1. Is the Government Initiated  PPRT house model comfortable in Malaysian 

climatic condition? 

Q2. Is the existing orang asli house model comfortable in Malaysian climatic 

condition? 

Q3. What is the design idea required for the proposed comfortable PPRT house 

model to obtain better thermal comfort condition in Malaysia in relation with 

climate condition elements? 

Q4. Does the proposed comfortable PPRT house at (Q3) effective to increase thermal 

comfort condition in orang asli house? 

Q5. What is the limitation of the proposed comfortable PPRT house model towards 

increasing comfortable house? 

 
 
 
 
1.5 Research Objective  
 
 
 The main objective of this study is to assess and compare the comfortable 

housing model in PPRT housing for orang asli.  

  

 Other specific objectives of the study are as follows: 

- To evaluate thermal comfort performance in PRRT house 

- To develop thermal comfort design  for PRRT house 

 
 
 
1.6 Scope and Limitations 
 
 

The scope of this study is to evaluate the thermal comfort condition of 

existing orang asli house, government initiated PPRT and proposed comfortable 

PPRT house model for Malaysia’s orang asli. The indoor thermal comfort aspects are 

major issue. There are other parameters effecting thermal comfort, for e.g. air 
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temperature, humidity, air velocity, clothing, metabolic heat production and so forth 

(Givoni, 1981; Abdul Razak, 2004).  Metabolic rate and clothing are assumed that by 

setting the occupant at recommended set value, it will provide the required thermal 

quality for that space. This study is entirely carried out by using computer simulation 

program IES (Version 5.6) and thus bears the limitations of the simulation tool used.   

 
 
 
 
 
1.7 Importance of the Research 
 
 
 
 The out come of this study is expected to show that the effectiveness of the 

PPRT house model design will provide decrease indoor temperature and the PMV 

index for comfortable house.   Hence, findings of this study will enable and provide 

the building designer with wider range of options in selecting appropriate thermal 

comfort strategy for achieving comfortable PPRT house.   

 

 

 
1.8 Organization of this Research Report 
 
 
 The study is divided into five chapters as summarized below. 
 
 
 Chapter one introduces the main issue of this research.  This chapter 

discusses the research background, problem statements, hypothesis of the study, 

research questions, objective, scope and limitations of the study, importance of the 

research and the overall structure of the study are also presented in this chapter. 

 
 
 Chapter two presents the literature review on climate condition and thermal 

comfort study for Malaysia.  All aspects of thermal comfort study are discussed in 

this chapter with the intention of giving a comprehensive review of the comfort 

condition.  
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Chapter three discusses the research design and the methodology 

implemented in the thermal comfort study.  The justification of selecting the 

methodology for this study is also elaborated.  Further, the development of the base 

model, procedures, assumptions, limitations, condition and the overall setting-up of 

the IES simulation are also described. The reliability and validity of the methods and 

simulation procedures are also discussed. The estimation of the temperature and 

PMV index for the research is also presented. Finally, the data analysis criterions are 

discussed, which is used to analyze the results of the experiment.    

 

Chapter four presents the results and analysis of the existing orang asli 

house, government initiated PPRT house and proposed comfortable PPRT house 

model. The principle findings of the experiment and simulation are also summarized.  

The results of the research are analyzed as follows by: 

• Assessing the original or existing orang asli house model of IES simulation of 

thermal comfort within Malaysia’s climate.  

• Assessing the Government Initiated  PPRT house model on the targeted 

effectiveness indoor temperature and PMV index for thermal comfort 

performance. 

• Assessing the performance of proposed comfortable PPRT house model on 

Malaysian climate condition.  

• Assessing the comparison of PPRT model on selected climate condition.    

 

This chapter in general is also divided into two sections.  Section one discusses 

the IES simulation of the original or existing orang asli house, government initiated 

PPRT house and proposed comfortable PPRT house on the comfort condition.  The 

neutral temperature, PMV, comfort index and impact of house orientation are also 

discussed in order to understand the basic thermal comfort condition within monthly 

climate conditions.    Section two discusses the comparison of PPRT house model 

employed onto the selected climate condition.   The results obtained from the 

simulation exercises are presented and analyzed.  This includes comparative analysis 

of the predicted internal temperature and PMV index obtained from the PPRT model 

with the required thermal comfort value in Malaysian climate.  The summary of the 

major findings is also presented in this chapter.  



 
 

7

Chapter five concludes the study by summarizing the major findings of the 

experiment.  It also outlines the suggestions for future research on thermal comfort 

study especially beyond the limitations of this study.    



 

 
 
 

CHAPTER 2 
 
 
 
 

LITERATURE REVIEW 
 

 
 
 
2.1 Malaysia’s Climate Condition    
 

 

Malaysia lies between 1º and 7º North latitudes and 100º and 120º East 

longitudes.  Malaysia has two main land areas which is the Peninsular Malaysia and 

East Malaysia.  Being very close to the equator, Malaysia naturally experiences an 

equatorial climate which is characterized by hot and humid condition and heavy 

rainfall throughout the year with no distinct dry season.  Malaysia also enjoys 

abundant sunshine all year round and experiences an almost constant temperature 

with a yearly mean of between 26ºC and 27ºC.  The mean maximum daytime 

temperature is between 29ºC to 32ºC while the mean minimum temperature is 

between 22ºC to 24ºC at night in the coastal areas.  Because it is surrounded by the 

sea and receives heavy rainfall throughout the year with an annual average of about 

2000mm to 3500mm, its high humidity and heavy cloud cover causes a low yearly 

diurnal temperature of about 2ºC.  Daily diurnal temperature is higher, i.e. between 

5ºC to 12ºC (Samirah, 1998).  Malaysia falls under the influence of the Southwest 

Monsoon and the Northeast Monsoon.  The Southwest Monsoon originates from 

Australia and blows across the Sumatera Island and the Straits of Malacca in the 

months of May to September. During Southwest Monsoon season, the West coast of 

Malaysia and Sabah and South of Sarawak receive heavy rainfall. The Northeast 

Monsoon originates from the central Asian continent and blow across the South 

China Sea through Malaysia to Australia from the months of November to March 

(Majid, 1996).  All area in Malaysia that faces and exposes to the South China Sea 

not only receive heavy rainfall during these months but also receive the strongest 
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winds.  Thus the monsoons will bring about more intense rainfall.  Generally, 

Malaysia experiences light winds of variable speed with the minimum wind speeds 

occurring just before dawn and the maximum, in the afternoon.  This pattern is 

controlled by convection in the surface boundary layer as the sun heats the ground 

during the day and is cooled by radiation during the night (Exell, .R.H.B. and Fook, 

C.T. 1985) 

 

 

 

2.1.1 The Wind Climate of Malaysia 

 

 

It is essential to know the geographical conditions of Malaysia in order to 

understand its wind climate. Malaysia is made up of two major sectors: the Peninsula 

and the eastern sectors (Sarawak and Sabah) in the northern part of the island of 

Borneo. The Peninsula is bounded by Thailand in the north, separated from the 

island of Sumatra by the Malacca Street along its western coast, detached from the 

small island of Singapore by the Tebrau Straitt in the south, and separated from the 

eastern sectors by the South China Sea in the east Peninsular Malaysia, experiences a 

hot-humid tropical climate with no distinct seasonal variation (Yeang, 1992). The 

peninsula is narrow and divided into two flat coastal plains by the central mountain 

ranges. The primary and secondary forest that covers almost three quarters of the 

land area is important in modifying the climate near the ground by absorbing heat, 

moderating temperature, giving shade and modifying the wind climate (Yeang, 

1992). At macro scale, peninsular Malaysia and the other parts of Southeast Asia are 

influenced by the major air streams that originate from the North-east and Central 

Asia, the North Pacific, Australia, the South Indian Ocean and the South Pacific 

(Takashi, 1993). The air streams pass over Southeast Asia in three main directions 

and form boundaries. The three boundaries are (as suggested by Majid, 1996): 

a)  The Northern Equatorial Airstream boundary. 

b)  The Southern Equatorial Airstream boundary  

c)  The Combined Airstream boundary  

The winds that blow over peninsular Malaysia and other parts of Southeast Asia are 

related to the above three airstreams and are normally associated with the rainfall in 
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this area (Thomson, 1980). The patterns of air flow created by the airstreams divide 

the year into three seasons: 

a) The north-east Monsoon. 

b) The south-west Monsoon. 

c) The transitional periods between the monsoons. 

 
 
Table 2.1: Summary of wind flow over peninsular Malaysia (Majid, 1996) 
 

Duration Types Of Wind Affected Area 
November 
December  
January 
February 
March 

north-east Monsoon 
(Strong, together with heavy 
rain) 
 

•   The whole of peninsular 
•   East coast of peninsular 

April 
May 

Transitional period 
(Weak and variable) 

•   The whole of peninsular 
 

June 
July 
August 
September  
October 

south-west monsoon 
(Not as strong as the north-east) 
Southerly wind (Light wind) 

•   Northern part of peninsular 
•   Southern part of peninsular   
     below latitude 5°N 

October 
November 

Transitional period 
(Weak and variables) 

•   The whole of peninsular 
 

 
 

Table 2.1 shows that in the month of November or early December until around 

March, the strong north-east monsoon arrives in the peninsular with heavy rain 

especially on the east coast. This is followed in the month of April or May by a 

transitional period of between half a month and two months with weak and variable 

winds. In the months of June to September or early October a less strong south-west 

wind blows over the northern part of the peninsular. However, at about the same time 

the southern part of the peninsular, especially below latitude 5°N, experiences a light 

southerly wind. The southwest and southerly winds are never strong and are 

sometimes overshadow by the land and sea breezes. Finally, in the months of 

October and early November there is another transitional period of weak and variable 

wind. 

 

 

Other important wind phenomena in peninsular Malaysia, especially in the 

coastal regions, are the land and sea breezes. These winds are developed by the 

differential heating and cooling over land and sea. The sea breeze begins at about 10 
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am and blows with the greatest force in the early afternoon and fades out at sunset 

(Mcliveen, 1992), while the land breeze normally takes over in the late evening and 

night. The land breeze is never as strong as the sea breeze and is only felt within a 

range of about 16 km from the shore (Yeang, 1992).  However, both of these breezes 

can reach a maximum average speed of about 3 m/s and are able to overshadow the 

monsoons in some areas. The prevailing north-easterly winds are too strong to let the 

land breeze develop along the east coast and the sea breeze along the west coast. 

Since the south-west monsoons are not as strong as those from the northeast, a 

reversal situation may also occur, but only for a limited period. 

 

 

On the whole, the surface winds over peninsular Malaysia are generally mild, 

with a maximum speed of about 8 m/s and gust speeds of less than 13 m/s (Majid, 

1996). The percentage of calm period (periods of no wind) ranges between 20% and 

50%, and varies from place to place (Mcliveen, 1992), Local squalls occur, caused 

by the differences in local topography that disrupt the smooth flow of air streams. 

Line squalls may accompany a moving air stream and intensify the wind. Both 

squalls are normally very active from May to August, but may vary from place to 

place. The most well known line squalls, which normally occur along the west coast 

of the peninsular, are the "Sumatras" (Majid, 1996). 

 

A comparison between the IES monthly data and the Subang Meteorological 

Station monthly data (2000-2003) indicated that the IES monthly data had a range 

between 0.1 m/s to 0.3 m/s differences for wind speed on other months than the 

monthly data.  Values on wind speed deviation suggests that the respective day 

values under predicts (February, May, August, December) and over predicts 

(January, March, April and November) than the monthly data, while on the values 

over than 15 %.  However, in other months, the deviation values for wind speed 

ranged below 10% which is within the acceptable range.  In view of the above 

accuracy criterion, it is assumed that the IES wind climate data provide relatively 

similar climatic conditions of Subang Meteorological Station data.      
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Figure 2.1:  Comparison of the monthly data between IES Kuala Lumpur and 
Subang Meteorological Station weather file data (2000-2003) for wind speed 

(Latitude: 3.120, Longitude: +101.550 & Time zone: +7) 
 

 

 

2.1.2 The Solar Radiation in Malaysian Condition  
 

 

In order to understand the solar radiation distribution, the geographical   

features of Peninsular Malaysia is briefly described. The land mass is divided into 

the east and west coasts by the main range running from north to south.  The South-

west monsoon brings rain and cloud to the west coast from June to early October, 

while   the North-east monsoon brings rain and cloud to the east coast from 

November to early March.  Therefore, the west coast is dry from November to April,   

while the east coast is dry from March to August. During the dry season, the climate 

is hot and sunny, with intermittent breaks of cloud formation and hence rainfall in the 

late afternoons due to convection current. For the purpose of this study, the peninsula 

will be divided into three regions according to their geographical conditions, namely, 

Northern Region, East Coast Region and the Southern Region.  Alor Setar, Penang, 

Ipoh, Cameron Highlands, Sitiawan will be referred to as northern towns.    Kota 

Bharu, Kuala Trengganu and Kuantan will be called the east coast towns, while 

Kuala Lumpur, Malacca, Mersing and Senai, the southern towns (Chuah, 1984). 
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In Peninsular Malaysia, daily total radiation data are recorded for at least five 

years since 1975 in three major towns, namely, Kuala Lumpur, Penang and Kota 

Bharu. These locations represent the three regions of different geographical and 

climatic conditions. Total radiation data are also recorded in stations in Ipoh, 

Malacca, Kuala Trengganu (since 1977) and Kuantan (since 1980). Records of 

radiation data in other towns are scarce. In Sabah and Sarawak the only radiation 

data available are those from the Kunak estate (Cuah, 1984). The solar radiation 

received on the ground in most parts of the peninsular is mainly the diffuse radiation 

component rather than direct radiation. This situation is caused by the continuous 

presence of clouds in the atmosphere that reflect and scatter the solar radiation. 

Therefore, the radiation that reaches the ground is normally much diffused, which 

causes the uncomfortable sky glare. The continuous presence of cloud and water 

vapour in the atmosphere over peninsular Malaysia also reduces outgoing radiation at 

night. The mean global radiation in most areas is between 10.5 to 19.0 Mj/m/day 

(Majid, 1996). Figure 2.2 shows the results of total monthly global solar radiation for 

data measured at the IES Kuala Lumpur weather data and Subang Meteorological 

Station (2000-2003). Comparison between the IES weather data with Subang 

weather data indicates same pattern for solar radiation.    The IES data had a 

maximum of 12 % deviation for total global solar radiation on the month of May and 

no differences on the month of January and a mean deviation 3%.  It is assumed that 

the IES data provide relatively similar climatic conditions of monthly data.  
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Figure 2.2:  Comparison of the monthly data between IES Kuala Lumpur and 
Subang Meteorological Station weather file data (2000-2003) for total global solar 

radiation (Latitude: 3.120, Longitude: +101.550 & Time zone: +7) 
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2.1.3 Air Temperature and Relative Humidity of Malaysia 

 

 

The air temperature of peninsular Malaysia remains almost uniformly high 

throughout the year. Based on the records monitored by the Malaysian 

Meteorological Service up to 1993, the daily variation of air temperature for most of 

the months in a year for the major parts of the low land areas is from 22°C to 34°C. 

The mean maximum temperature during the day is between 31°C and 34°C, and the 

night mean minimum varies between 22°C and 27°C (Majid, 1996). However, there 

is a small but noticeable drop in the monthly mean temperatures in the east coast part 

of the peninsular during the north-east monsoon season. In most parts of the 

peninsular, the mean animal range is very small and the diurnal range of the 

temperature is quite narrow, which is typical for a hot-humid tropical climate. 

 

 

The average relative humidity (RH) remains high at about 80% in most areas 

in peninsular Malaysia. The actual values however may vary from 55% to almost 

99%. The characteristic features of peninsular Malaysia, i.e. the steady high 

temperature and relative humidity, are far from being optimal for physical comfort. It 

is therefore the air movement from the prevailing winds, and the local land and sea 

breezes that are the only means of bringing some natural relief to the uncomfortable 

conditions of this climate (Majid, 1996). 

 
 

Base on the IES Kuala Lumpur weather data, the mean temperature ranges from 

25.3°C to 27.3°C. The mean relative humidity is almost uniformly high at about 76.9% 

to 88.9% and is similar to that of the year. A comparison between the IES data and the 

Subang Meteorological Station weather file data (2000-2003) indicated that the IES 

data had a maximum of 1.17 0C differences for dry bulb temperature on the month 

of May and 6.62% differences for RH on the month of July and a mean deviation 

2% for DBT and 4% deviation for RH.  In view of the above accuracy criterion, it is 

assumed that the IES weather data provide relatively similar climatic conditions of 

Subang Meteorological Station weather file data (2000-2003).      
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Figure 2.3 :  Comparison of the IES Kuala Lumpur weather data with Subang 
Meteorological Station weather file data (2000-2003) for dry bulb temperature and 

relative humidity (Latitude: 3.120, Longitude: +101.550 & Time zone: +7)  
 

 

Figure 2.4 show the hourly air temperature obtained by each part of monthly 

peak days.  6 July indicated the highest air temperature, while the maximum amount 

was reported at 17:00 noon.  Generally, the maximum air temperature mean value 

was about 340C at 13:00 – 15:00 noon.   The minimum air temperature mean value 

was 23.9 0C at 00:00 – 07:00 morning. 
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Figure 2.4:    Hourly dry bulb temperature on the monthly peak day 
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Hourly the monthly peak day relative humidity was obtained in RH scale 

(figure 2.5).  The highest humidity in RH (99%) was recorded on 29 June and in 

lowest RH (44%) was recorded on 20 April. The relative humidity had an average 

maximum value of about 94.67% at 00:00 – 08:00 morning.  During this time, the 

evaporation was highest from the ground.  The average minimum RH was indicated 

at 11:00 morning until 16:00 noon, the average value was about 52%.   
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Figure 2.5:    Hourly relative humidity on the monthly peak day 
 
 
 
 
 
 

2.1.4 Climate Data for Comfort Analysis  

 

 

Climatic data collected in meteorological stations, and published in summary 

form usually consists of (La Roche, 2004); 

- Temperature: dry-bulb temperature. 

- Humidity: expressed as relative humidity or absolute humidity. Wet-bulb or 

dew-point temperatures may be stated, from which the relative humidity can 

be determined, 

- Air movement: wind speed and direction. 

- Precipitation: the total amount of rain, hail, snow or dew, in mm per unit time 

(day, month, year). 
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- Cloud cover: based on visual observation and expressed as a fraction of the 

sky hemisphere (tenths, or 'octas' = eights) covered by clouds. 

- Sunshine duration: the period of clear sunshine (when a sharp shadow is 

cast), measured by a sunshine recorder which burns a trace on a paper strip, 

expressed as hours per day or month. 

- Solar radiation: measured by a pyranometer, on an unobstructed horizontal 

surface, usually recorded as the continuously varying irradiance (W/m2). 

The four environmental variables directly affecting thermal comfort are temperature, 

humidity, solar radiation and air movement.  Rainfall data is helpful in designing 

drainage systems and slopes. These are the climatic characteristics which are most 

important in building design. The following data is of interest for each one of them: 

- Temperature: monthly mean of daily maximal (°C) monthly mean of daily 

minimal (°C) 

- Humidity: minimum mean relative humidity (early morning) (in %) 

maximum mean relative humidity (early afternoon) (in %) 

- Solar radiation: monthly mean daily total (in MJ/m2 or Wh/m2) 

- Wind: prevailing wind speed (m/s) and direction 

In architectural design, climate graphs and charts are useful because they permit us to 

understand climate quickly. Much more detailed data may be required if thermal and 

energy simulation programs are used. The raw weather data from the meteorological 

station are usually analyzed and presented in tabular form and/or in graph form. 

Some design handbooks and standards such as ASHRAE also provide general 

climatic data for building design and manual load calculations. To study year round 

building performance, annual weather data will be required. The development of 

detailed computerized simulation programs for the thermal response of buildings has 

determined the need to generate a coherent set of data sets to represent hourly yearly 

data. Most data set systems construct a composite year's data by selecting periods 

from actual data over many years of recording. The specific microclimate of the site 

is also very important. Precipitation, terrain, vegetation, degree of solar exposure, 

wind patterns, the presence of water bodies, geology and the influences of buildings 

or other built forms on or near the site create unique, site-specific, climatic 

conditions (Crowther R,, 1984). Since this microclimate might considerably affect 

conditions close to the building and its design, the architect must also try to 

determine its effects in thermal performance of the building either by collecting data 
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through low cost weather stations or by trying to determine the microclimatic effects 

on available data (La Roche, 2004). 

 

 

 

2.2 Comfort Condition in Malaysia  

 

 

The ASHRAE definition of comfort is "that condition of mind that expresses 

satisfaction with the thermal environment" (ASHRAE 1997). Comfort is affected by 

several factors, generally classified as: 1) environmental: air temperature, air 

movement, humidity and radiation; 2) personal: metabolic rate, state of health and 

clothing; and 3) contributing: acclimatization, body shape and subcutaneous fat.  

 
Figure 2.6: The human body interactions with surrounding (Al-Mogbel, 2004).  

 

 

An overall view of the climatic condition in Malaysia indicates that main 

factors that affect thermal comfort in this region area solar radiation, high 

temperature and high humidity  (Samirah, 1998).  Thermal comfort requirement in 

hot and humid conditions of Malaysia calls for the minimization of heat gain by the 

building fabric through solar radiation as well as heat gain by the human body while 

maximizing heat dissipation from the body by ventilation and evaporative cooling. 

The indoor comfort condition in building in Malaysia comfort to the ASHRAE 

Summer Comfort Zone described in the ASHRAE Handbook Fundamental (1989).  



 19

All studies about indoor comfort in hot and humid climate indicated a higher neutral 

temperature than that predicted by ASHRAE. 

 

 

 

2.2.1 Neutrally Temperature 

 

 

The analytical method of evaluating the comfort zone for Malaysia have 

been studied by several authors (Rajeh, 1988; Abdul Malek and Young, 1993; 

Zain Ahmed, Sayigh and Othman, 1997; Abdul Rahman and Kannan, 1997), 

using the “Neutrality Temperature”.  This is the temperature at which the 

respondents in the various studies experienced neither warm or cool, which is a 

state of “neutral” or “comfortable”.  It is the mid point of the comfort zone, as an 

average value for many experimental subjects.  There four factors that can 

combine together to produce different neutral temperature for the individual: 

thermal environment, level activity, thermal insulation of the clothing and 

physiological state of the individual.  For adult the neutrality temperature range 

from 17°C to 30°C The observed range of neutrality temperatures is therefore 

effectively 13 degree.  But it is necessary to conclude that acclimatization also had an 

affect on the temperature required for thermal neutrality. At this stage it is intended 

to compare three set of neutrality temperature derives from different authors. 

Humphreys (1978) studied data from over thirty thermal comfort studies in various 

different climates and revealed that a very close correlation existed between thermal 

neutrality and the monthly mean outdoor air temperature. The comfort temperature 

or neutrality temperature can be predicted from the linier equation for naturally 

ventilated building as:  

 

Tn = 11.9 + 0.534 x To      (1) 

Where, 

Tn = predicted neutral temperature 

To = mean outdoor temperature for the month 

The residual standard deviation is 1°K 
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The range of application is from 10°C to 33 °C 

According to Nicol (1994) results of field studies of thermal comfort in different 

parts of Australia conducted by Auliciems (1981) supported Humphreys’s ideas and 

developed the following relationship for all buildings whether climate controlled for 

outdoor air temperature between 5°C and 30 °C 

 

Tn = 17.6 + 0.31 x Tav      (2) 

Where, 

Tn = neutral temperature with+/- 2°K range 

Tav = mean air temperature of the month 

Szokolay recommended the use of the annual mean temperature (AMT) for 

applied Auliciems’s equation for Kuala Lumpur data (Rajeh, 1988).  

 

Tn = 17.6 + 0.31 x Tamt      (3) 

Where, 

Tn = neutral temperature with+/- 2°K range 

Tamt = annual mean air temperature of the month 

 

 

Rajeh (1988) used Auliciems neutrality temperature equation (combining 

the free running and actively controlled buildings) to define the comfort 

temperature of Malaysian and proposed a bioclimatic chart showing the comfort 

zone for Malaysia based on Szokolay (1984) version of the bioclimatic chart. He 

used the climatic data of Kuala Lumpur and found that comfort range between 

26.6°C and 30°C was acceptable with the neutral temperature of 26.1°C   

Climate chamber studies conducted by Abdul Malek and Young (1993), and field 

study by Zain Ahmed, Sayigh and Othman (1997).  Both studies indicated a 

higher neutral temperature than that predicted by ASHRAE.  In fact the neutral 

temperature found in the field study conducted by Abdul Rahman and Kannan 

(1997) in naturally ventilated building agreed well with Humpreys adaptive 

approach.  According to Szokolay (1997) with the width of the comfort zone taken 
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to be 5°C, thermal comfort temperatures extends approximately about 2.5°C above 

and below the neutral temperature.  While Humphrey’s equation gives a good 

approximation of a single comfort temperature in free running buildings, the thermal 

comfort zone defined using solely this technique does not accommodate the 

influences of thermal comfort in hot and humid climates.  McFarlane (1958) 

suggested the following adjustments to be made for comfort zones in naturally 

ventilated buildings for zones less than and greater than 30º latitude: for each 10% 

increase in relative humidity above 60%, the thermal comfort zone temperatures 

should be lowered by 0.8ºC, for each 0.15 m/s of air flow past exposed skin up to dry 

bulb air temperature of 33ºC (mean skin temperature), the thermal comfort zone 

temperatures should be raised by 0.55ºC. According to Razak (2004) and Samirah 

(1998) Szokolay in 1997 took the analysis revealed that there no cooling effect below 

0.25m/s and the existence of 1.5m/s of air velocity would allow the extension of the 

upper limit by 6º C.  He devised a procedure for plotting the comfort temperature and 

comfort zone.  However, only Szokolay’s revised versions of the effect of air 

movement on the comfort temperatures are used in the calculation:  

 

dT = 6 x (v – 0.25) – (v-0.25)2   (4)  

where, 

dT= temperature reduction 

v = air velocity 

 

Using this equation, the upper limit of the comfort zone can be extended by 

providing natural ventilation or some form of air movement.  With air movement of 

1m/s recommended by most researchers, the upper limit of Malaysia’s comfort 

temperature can be extended by about 4º C.  However, an air flow of 1.5m/s, which 

is considered still acceptable for hot environment, would be allow the extension of 

upper temperature limit by 6º C. In extreme cases, the air velocity of 2 m/s is 

acceptable and the extension would be 7.4 K that the highest acceptable temperature 

would be 37°C. This cooling effect is very similar to the suggestion given by 

MacFarlene. 
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2.2.2 PMV 

 

All of the comfort indices mentioned earlier has used a graphical presentation 

to display their results. Several of these methods (i.e., ASHRAE's and Givoni's 

BBCC) superimposed these results on top of a psychrometric chart. Unfortunately, 

this limits the possible uses of these methods. An alternative, proposed by the Danish 

scientist, P.O. Fanger, in 1972 used a mathematical model for assessing human 

comfort conditions. Fanger proposed that human thermal comfort could be derived 

from a heat balance equation. According to Fanger, the range of comfort could be 

defined by a subject's vote on a seven-point scale (Fanger 1972). A complete 

description of the index PMV is described numerically as: cold (-3), cool (-2), 

slightly cool (-1), neutral (0), slightly warm (+1), warm (+2) and hot (+3). From his 

proposed comfort equation, Fanger also proposed a "Predicted Mean Vote" (PMV) 

and "Predicted Percentage of Dissatisfied" (PPD). Fanger's heat balance equation and 

PMV is useful for this research in terms of how the measured and simulated 

environmental parameters can be used to predict the comfort level in a space 

(Sreshthaputra, 2003).  

 

  

 

2.2.3 Comfort Zone in Malaysia 

 

The comparative comfort zone, using above three equations and the 

annual mean air temperature of the month worked out from the climatic data for 

IES weather data as given in figure 2.7.  This will give a general picture of the 

range of comfort zone for Malaysia.  The single value resulted from this 

comparative study is checked with previous study. With the width of the comfort 

zone taken to be 5º C (Szokolay, 1997), thermal comfort temperatures extends 

approximately about 2.5º C above and below the neutral temperature.  Taking the 

neutral temperature of 26ºC in free running building as an illustration, as this 

research is concentrated on naturally ventilated buildings, the upper limit of the 

comfort zone would then be 28.5ºC.  This neutral temperature is for conditions 

without air movement.  
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The most comfortable periods appeared to be between October to January, 

which is closely related to the south solstices and the monsoon seasons.  The most 

uncomfortable periods occurred during April to June, which is month between the 

equinoxes and north solstices, that coinciding well with the inter monsoonal periods. 

The neutral temperature maxima and minima area approached in June and December 

respectively. The north-east monsoon (from December to January) appears to have 

significant effect in lowering the neutral temperature.  
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Figure 2.7:    Neutral temperature on the IES monthly data 

 

Daily climatic patterns in the tropics required climate conscious building 

design strategies to achieve thermal comfort. Outdoor temperature and humidity for 

monthly peak day is plotted in Figure 2.8. According to the fig.2.8 the outdoor air 

temperature reached to 33°C between 10:00 to 16:00 and during this period the 

relative humidity is at its minimum. The lowest temperature was reported as 22.7°C 

at 05.00 h and the average temperature is about 27°C. According to Szokolay 

comfort formula, the neutral temperature needed to maintain at 28.5ºC.  Generally, 

the daytime measured air temperature between 10.00h and 21.00h are above the 

require comfort level temperatures except peak day on May, September, October and 

December. It is shown that the range of comfort for climatic data for Malaysia is 

given as 10.00-16.00, and it is compatible to Webb (1952) empirical results for 

monthly peak days. 
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Figure 2.8:    Hourly dry bulb temperature on the IES monthly data 

 

 

2.3 Summary 

 

Malaysian climate condition influenced by the monsoon, the land and sea 

breezes.  Weather data from IES weather data for the monthly peak days were 

analysed to compare between IES Kuala Lumpur data and Subang Meteorological 

Station weather file data (2000-2004) as a representative year.  Comparisons were 

carried out on wind speed, solar radiation, air temperature and relative humidity. The 

impact of winds speed, temperature and humidity were discussed for further comfort 

analysis in next section. Thereby, it is assumed that using the monthly peak day data 

may provide relevant climatic data for accurate wind speed, solar radiation, 

temperature and humidity which represents the hot and humid climates like in 

Malaysia.    The comparison of empirical and analytical approach appears to be more 

practical method to be employed in determining Malaysia’s comfort or neutral 

temperature. As regards to the thermal comfort range for Malaysian climate, Webb’s 

(1952) recommendation of air temperature 30°C for the upper limit and 26.6°C the 

lower limit is acceptable with the neutral temperature of 26.1°C by empirical 

method. Based on the most current data, the neutral temperature for Malaysia, using 

Szokolay neutrality temperature equation was found to be 26°C for free running 

building which is the centre of the comfort zone of Malaysia. The comfort range 

based on analytical approach is close with empirical approach.     



 

 
 
 

CHAPTER 3 
 
 
 
 

METHODOLOGY 
 

 
 
 
  This research is divided into three main stages.  First, is the research design; 

second, IES simulation; and lastly third, development of simplified model of the 

PRRT house model.  The methodologies planned for the research are described in 

this chapter.  These methodologies were reviewed from selected literatures and 

redefined specifically for the purpose of this research. 

 

 

 

3.1 Research Design  
 

 

In order to achieve the aforementioned set of objectives, the following steps 

are suggested: preparing climate data, IES software validation, simulation of PPRT 

house model and thermal comfort analysis. For this study, the climate data of 

Malaysia with Kuala Lumpur weather data will be adopted to present of analysis, and 

to determine trend of monthly dry bulb temperature, wind speed and relative 

humidity available for thermal comfort in PPRT house.  Climate data consist of 

annual climate data and selected maximum and minimum peak days of dry bulb 

temperature each month.  The effect of thermal building interaction for thermal 

comfort is quite difficult to be determined by analytical means.  The simplest means 

is to investigate by using computer simulations of both the climate data and 

buildings.  The IES is the instrument that is used to model the PPRT house thermal 

comfort.   IES validation is done by comparison between field study and IES 

simulation.  This step will involve the testing of a variety PPRT house models in 
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order to fulfill some the previous stated objective.  A typical unit of a PPRT house 

model (the existing orang asli house, the government initiated PPRT house and the 

proposed comfortable PPRT house) is built to a scale of 1:1.  The testing of the 

models exclusively is divided into two parts to ease the comparison between various 

type pf thermal comfort performances.     

 

 

 
Figure 3.1: The research schematic design 

 

 

 

3.2 IES Simulation  

 

 

The Integrated Environment Solution is an integrated suite of applications 

linked by a Common User Interface (CUI) and a single Integrated Data Model 

(IDM). This means that all the applications have a consistent “look and feel” and that 

data input for one application can be used by the others. Modules such as 

“ApacheSim” for thermal simulation, “Radiance” for lighting simulation, and 

“SunCast” for solar shading analysis are available. “Model IT” is the application 

used for input of 3D geometry used to describe the model. 

Climate Climate Analysis Peak Days 

PPRT House Existing, Government, Comfort model 

Thermal Index 

 

Neutrally, Predicted Mean Vote 

Result 

IES simulation Validation 
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3.2.1 IES Modeling Methods 

 
 

The Component modeler is a model building element in the IES. It allows the 

user to create a library of components which can then be placed within the model. 

Components are geometrical entities and can be used to model things such as desks, 

chairs, computers, etc. These can then be placed in the model by Model IT. The 

Component modeler uses many of the same drawing and editing tools that are used 

in Model IT. The material composition of the walls, windows and other elements of 

the building fabric are described using the program APcdb (Apache constructions 

database manager). APcdb provides databases of materials and constructions which 

may be imported into the building and edited as necessary. Constructions are built up 

from layers with specified thermo-physical properties and widths. In the case of 

glazing constructions the layer properties include solar transmittance, absorptance 

and reflectance characteristics. Construction details may be passed between projects 

using a Construction Template. The following utilities are also provided: 

• Calculation of U-values and admittance parameters 

• Calculation of glazing angular solar transmission properties 

• Condensation analysis 

 
 
a. Model IT 

 

 

Model IT is the model building component of the IES. Model IT allows the 

user to create the 3D models required by other components within the IES. Model IT 

is designed to enable appropriate levels of complexity to be incorporated within a 

model across the entire design spectrum. At the sketch design or feasibility stage, 

basic models may be generated from scratch using a variety of simple modeling 

tools, in order to conduct preliminary performance appraisals or comparative studies. 

Similarly, at the other end of the design process, fully worked computer aided design 

(CAD) files may be attached to Model IT and using the tools provided, three-

dimensional building spaces may be generated rapidly by tracing over the DXF 

outlines. Moreover, in the case of the optional Construct/DXF module, a complete 
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model including doors and windows may be generated from a DXF file entirely 

automatically. Construct DXF is used to produce data for IES’s thermal, shading 

analysis, lighting and building design appraisal software by scanning ordinary DXF 

drawings of building plan layouts, and generating a 3D building data model, within 

the Model IT environment. Construct DXF simplifies and accelerates the preparation 

of data for a wide range of building design studies including thermal design, shadow 

modeling, dynamic thermal simulation, multi-zone airflow analyses and electric 

lighting/daylighting studies. Construct DXF is run from within Model IT (IES’s 3D 

modeling tool). The two programs together provide the user with a comprehensive 

set of tools to allow the generation of a full three-dimensional spatial building model 

and associated non-graphical attribute data from DXF format drawings. The familiar 

windows style interface is used to provide dialogue box data entry for information 

unobtainable from the drawing file(s), such as storey, window and door heights, 

element constructions, building and room default attributes, and for the subsequent 

editing of room and room element data. The data model can be generated from DXF 

drawings containing any conventional drawing element (arcs, shapes, cells, B-

splines, etc.). No special elements or attributes are required. In addition to single 

floor plans, Construct DXF will cater for several buildings on one site, multi-storey 

buildings, and buildings that bifurcate as they rise up. The information from the data 

model generated by Construct DXF is used to generate files for IES’s thermal 

analysis, shadow analysis, airflow or lighting software. Results from the calculation 

software are read back into Model IT and if required, these results can be viewed 

within the Model IT environment. Additionally, luminaires can be placed and 

modified in the 3D model either directly by the user (for subsequent point-by-point 

analysis by the lighting calculation software) or as a result of performing a lighting 

design with the lighting software. 

 

 

b. Construction Database, classes and categories 

 
 
 
The Constructions database (formerly called APcdb) provides facilities for 

viewing and editing constructions used in the thermal applications ApacheCalc, 

ApacheLoads and ApacheSim. A construction defines the thermal properties of a 
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building element such as a wall, ceiling or window. It consists of a number of layers 

of different materials, together with thermal properties of the materials, surface 

properties and other attributes used in thermal analysis. Constructions are divided 

into two classes – opaque and glazed – with different thermal parameter sets. In the 

case of opaque constructions thermal capacity, as defined by density and specific 

heat capacity, is important. Glazed constructions, by contrast, are to a good 

approximation mass-less, but they require properties characterizing their solar 

transmission properties. The construction categories correspond to categories of 

building element used for construction assignment in the Apache View. The thermal 

parameter sets for constructions are broadly similar for categories belonging to the 

same class (opaque or glazed), but in some cases differ in respect of their building 

regulations parameters and default values for surface resistance. 

 

 

The purpose of the constructions database is to assemble a set of 

constructions for use in the project. The function of the constructions database is to 

facilitate the process of setting up and checking this data. There are many different 

classes of parameter set of opaque and glazed construction. These classes are further 

broken down into categories:  

• Emissivity: the emissivity of the outside surface of the construction. Most 

materials have an emissivity of about 0.9. Lower values apply to unpainted 

metals. 

• Solar absorptance: the fraction of incident solar radiation absorbed by the 

surface. This is a function of the colour and surface finish.  

• Resistance: the thermal resistance between the outside surface and its 

environment. This is the reciprocal of the outside heat transfer coefficient, 

which is made up of convective and radiative components. Ticking the 

default box displays a standard value determined from the construction 

category, together with the Wind exposure in the case of external adjacency. 

• Floor area: The total internal area of the floors to which this construction is 

assigned. 

• Exposed floor perimeter: The exposed perimeter length of the floors to which 

this construction is assigned. 
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• External wall thickness: The average thickness of the external walls along the 

floor perimeter. 

• Ground conductivity: The thermal conductivity of the ground under the 

building. Using these parameters the software will calculate and display the 

CIBSE uninsulated U-value. If this is less than 0.25 W/m
2
K it will be used to 

create a bespoke floor construction that will be assigned to the relevant floors 

in the notional building. If the construction belongs to the Door category an 

additional parameter must be set for UK Building Regulations compliance 

testing. 

• Vehicle access or similar large door: a category of door to which special 

rules, including more stringent U-value requirements, are applied in the 

Building Regulations. 

• Wall or roof element: select this option if you have used a door to represent 

elements of a wall or roof. This will place these elements in the correct 

category for Building Regulations purposes. 

• Construction layers (outside to inside), the construction may consist of up to 

10 homogeneous layers, which are listed in order from outside to inside. With 

the exception of air gaps, each layer has a thickness and a material. The 

material has a set of properties which are stored in the Project Materials 

database, but which may be edited within the layer. Any the government 

initiated PPRT house materials created by edits of this kind will be added to 

the list of Project Materials. Air gaps (which can include cavities filled with 

other gases such as argon) are assigned a thermal resistance in place of a 

material. 

• Resistance: (air gap only) the thermal resistance of the air gap, taking account 

of both convection and radiation across the gap. 

• Specific heat capacity: the specific heat capacity of the material.  

• Conductivity: the thermal conductivity of the material.  

• Density: the density of the material.  

• Vapour Resistivity: the vapour resistivity of the material or air gap. This field 

is blank for many materials, but a value must be supplied before condensation 

analysis is carried out.  

• Category: the material category from the system materials database. 
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c. Site Data 

 

 

Location data is about latitude, altitude, longitude, time adjustment, daylight 

saving period, ground reflectance, terrains type and wind exposure. The latitude is 

expressed as decimal degrees north or south. In other words, 20º 30” N should be 

entered as 20.50 and the drop-down box beside the number set to N. The latitude of 

the building is expressed in decimal degrees (positive for northern locations, negative 

for southern locations). Altitude is the height above sea level of the building. For 

locations below sea level, negative values are appropriate. The data is used in the 

calculation of solar gains and atmospheric pressure in heat gain. The longitude is 

expressed as decimal degrees east or west. In other words, 20º 30” E should be 

entered as 20.50 and the drop-down box beside the number set to E. The building 

longitude is in decimal degrees. The longitude is regarded as increasing westwards 

from Greenwich, so 20º East of Greenwich is rendered as entered as 340º.  Time 

adjustment is the local time correction applicable for daylight saving time. The value 

must be approximated to the nearest hour. Positive is in advance of sun time. Ground 

reflectance is a measure of the ground albedo (Kr). It is used for the calculation of 

ground reflected radiation on building facades. Terrains type such as country, 

suburban and city define how the wind speed will vary with height, dependant upon 

the local terrain. These definitions are based on ASHRAE 2001 wind speed profiles. 

This data affects the natural ventilation air exchange rates when the velocity profile 

changes with height in relation to the choice of terrain type. The wind exposure index 

is used to calculate the external surface resistance of walls, windows, roofs etc. The 

wind exposure divided into three categories: sheltered sites (e.g. city centres), normal 

exposure sites and sites with severe exposure (e.g. coastal).   In most cases, the peak 

summertime conditions will occur for a sheltered site. This is because the higher 

surface resistance levels give rise to higher sol-air temperatures on external surfaces. 

Higher surface resistance levels also reduce the conduction of heat out of the 

building at night.  
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3.1.2. Solution Method 

 
 

Apache Simulation is a dynamic thermal simulation program based on first-

principles mathematical modeling of the heat transfer processes occurring within and 

around a building. ApacheSim qualifies as a Dynamic Model in the CIBSE system of 

model classification, and exceeds the requirements of such a model in many areas. 

The program provides an environment for the detailed evaluation of building and 

system designs, allowing them to be optimized with regard to comfort criteria and 

energy use. Amongst the issues that can be addressed with ApacheSim are: 

• Thermal insulation (type and placement) 

• Building dynamics & thermal mass 

• Building configuration and orientation 

• Climate 

• Glazing properties 

• Shading, solar gain & solar penetration 

• Casual gains 

• Air-tightness 

• Natural ventilation 

• Mechanical ventilation 

• HVAC systems 

• Mixed-mode systems 

Within ApacheSim, conduction, convection and radiation heat transfer processes for 

each element of the building fabric are individually modeled and integrated with 

models of room heat gains, air exchanges and plant. The simulation is driven by real 

weather data and may cover any period from a day to a year. The time-evolution of 

the building’s thermal conditions is traced at intervals as small as one minute. 

Results output by the simulation include: 

• Comfort statistics 

• Energy consumption 

• Carbon emissions 

• Room load statistics 

• Plant sizes 
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• Detailed performance measures including hourly room temperatures (air, 

mean radiant and dry resultant), humidity, plant loads, casual gains and air 

exchanges 

• Surface temperatures for comfort studies or CFD boundary conditions  

 
 
a. Simulation Principles of Heat Conduction and Storage Fundamentals 

 
 

ApacheSim deals separately with each of the fundamental heat transfer and 

control processes affecting building thermal performance.  In ApacheSim modeling 

assumptions, conduction in each building element (wall, roof, ceiling, etc) is 

assumed to be uni-dimensional. Furthermore, the thermo-physical properties and c of 

each layer of the element are assumed to be uniform within the layer. The system of 

equations is closed by the application of appropriate boundary conditions and the 

stipulation that W is continuous at the layer boundaries. 

 

 

ApacheSim adopts a finite difference approach to the solution of the heat 

diffusion equation. This involves first replacing the element with a finite number of 

discrete nodes at which the temperature will be calculated. To improve accuracy and 

stability a combination of explicit and implicit time-stepping is often used. The 

Crank-Nicholson semi-implicit method is an example of such a scheme. Another is 

the ‘hopscotch’ method, which applies explicit and implicit time-stepping to alternate 

nodes of the construction. This is the method adopted by ApacheSim. The 

advantages of this method are a high level of accuracy combined with very efficient 

computation. 

 

 

At the air mass and furniture modeling, the effect of heat storage in the 

furniture may be incorporated into the analysis. A facility is offered for modeling 

furniture on the assumption that its temperature closely follows that of the air. Under 

this assumption its effect is to increase the effective thermal mass of the air by a 

factor termed the furniture mass factor. In cases where the furniture has substantial 
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thermal capacity, it is best to model it by introducing additional internal walls, with 

suitable thermal properties, into the room model. 

 

 

b. Convection Heat Transfer Fundamental 

 

 

Convection is the transfer of heat (and in general other physical quantities) 

resulting from the flow of fluid over a surface. For the purpose of the present 

discussion the fluid is air and the surface is an element of a building. If the 

convective air flow is driven by external forces – for example wind or mechanical 

ventilation – it is referred to as forced convection. The term natural convection 

describes convection arising from buoyancy. 

 

 

Exterior Convection occurring at the external surfaces of the building is 

predominantly wind-driven forced convection. In ApacheSim external forced 

convection is modeled with a wind speed dependent convective heat transfer 

coefficient calculated from McAdams’ empirical equations. Variables on the 

simulation weather file are recorded at hourly intervals. Linear interpolation is 

applied between the recorded values to compute values at each simulation time-step. 

Provision is made in the constructions database program APcdb for the user to 

override this calculation procedure with a fixed value for the external convection 

coefficient. Interior convection has a number of options for modeling convection 

heat transfer between air masses inside the building and the adjacent building 

elements: 

• Fixed convection coefficients specified by CIBSE 

• Variable convection coefficients calculated according to CIBSE procedures 

• Variable convection coefficients calculated from the relations the proposed 

comfortable PPRT house by Alamdari & Hammond. 

• User-specified fixed convection coefficients 

The first three options may be selected from the Simulation Options facility of the  
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ApacheSim interface. The fourth option will apply to any constructions for which 

fixed internal surface coefficients are applied in the constructions database program  

APcdb. For such constructions the fixed value will override the method selected in 

the Simulation Options interface. 

 

 

c. Heat Transfer by Air Movement 

 

 

ApacheSim models the following types of air movement: 

• Pre-specified air exchanges, classified as infiltration, natural ventilation or 

mechanical ventilation. These air exchanges may be sourced from outside air, 

outside air modified by a temperature offset, air at a (possibly varying) 

temperature defined by an absolute profile or air from another room. The rate 

of air flow is specified before the simulation, but may be made to vary with 

time by means of a profile. If the profile is a formula profile, the air flow rate 

may also vary with simulation variables such as room air temperature. 

• Air flows calculated by MacroFlo. MacroFlo calculates natural ventilation air 

flows arising from wind and stack pressure (buoyancy). It also takes account 

of flow imbalances generated by HVAC systems. MacroFlo runs in tandem 

with ApacheSim and the calculations of the two programs are interdependent. 

• Air flows specified or calculated by ApacheHVAC. Like MacroFlo, 

ApacheHVAC is fully integrated with ApacheSim and its ducted mechanical 

ventilation rates are superimposed on other air flows dealt with by 

ApacheSim. The calculation of air flow rates by MacroFlo and ApacheHVAC 

is dealt with in the sections devoted to these programs. 

 

 

d. Thermal Radiation Fundamentals 

 

 

Building surfaces emit thermal radiation by virtue of their absolute 

temperature. For small surface element (dA) of a Lambertian emitter the radiation 

flux emitted into a small solid angle (d.) lying in a direction making an angle to the 
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surface normal is surfaces also absorb a proportion of the radiation they intercept. By 

Kirchhoff’s law the fraction of incident radiation that is absorbed by a surface is 

equal to its emissivity, e. These results represent an idealisation of the physics of 

radiation emission and absorption in that they assume Lambertian angular 

characteristics and do not enter into the detail of wavelength dependence (the grey 

body assumption). However, they provide a sound basis for modeling radiation 

exchange in buildings. 

 

 

The emission and absorption of thermal radiation by building surfaces 

represents an important mechanism for heat transfer. The following discussion 

centres on the exchange of radiation between solid surfaces. Gases and suspended 

particles in the air also participate in radiant exchanges and this can be important 

both inside and outside the building. Thermal radiation is described as long-wave if it 

is characteristic of temperatures normally experienced in the human environment. 

Solar radiation lies in a shorter wavelength band and is treated separately. Surface 

properties are often significantly different in the long-wave and solar wavelength 

bands, giving rise to differences between surface emissivity and solar absorptance. 

Transmission properties are also strongly wavelength dependent: glass is mainly 

transparent to the solar spectrum but almost opaque in the long wave. 

 

 

e. Interior and Exterior Long-wave Radiation 

 

 

By calculating shape factors and accounting for scattering (radiosity), it is 

possible to construct an accurate model of radiant heat exchange in an enclosure. For 

practical purposes, however, simpler models are adequate. Models based on the 

concept of mean radiant temperature reduce the computational effort involved in 

radiant exchange calculations by a large factor. Such models introduce a single 

(fictitious) radiant node which serves as a clearing house for all surface radiant 

exchange transfers. In an n-surface enclosure this reduces the number of heat transfer 

pathways from approximately ½ n2 to n. The various mean radiant temperature 

models differ by small amounts in the values assigned to this coefficient. ApacheSim 
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adopts the CIBSE mean radiant temperature model, which provides a good 

representation of radiation exchange where it can be assumed that the emissivities of 

the surfaces bounding the enclosure do not differ greatly from one another (which is 

almost always the case). Exterior building surfaces receive long-wave radiation from 

the sky, the ground and other objects in the environment. They also emit thermal 

radiation. The difference between radiation emitted and radiation absorbed 

constitutes the net long-wave gain (which in most instances is negative). The model 

adopted by ApacheSim for the treatment of exterior long-wave radiation follows 

work undertaken for the CEC European Solar Radiation Atlas and endorsed by 

CIBSE in Guide A. 

 

 

f. Solar Radiation Fundamentals: Calculation of Incident and Distribution of 

Diffuse Solar Radiation 

 

 

To a good approximation, the sun is a black body radiator with a surface 

temperature of 5800K. The energy it radiates produces a radiation flux at the top of 

the earth’s atmosphere which over the course of a year averages to 1353 W/m2. 

Filtering by gases in the atmosphere and by cloud and particulates means that fluxes 

at the earth’s surface are variable and typically considerably less than this figure. 

Further factors influencing solar radiation at ground level are varying sun angles and 

diffusing of the radiation by the atmosphere. Solar radiation incident on building 

surfaces can be broken down into three main components: direct (beam) radiation 

emanating from the region of the sky near to the sun’s disc, diffuse radiation from 

the sky vault, and radiation scattered by the ground. Direct radiation is significantly 

modified by shading by nearby buildings and landscape features. Solar radiation 

enters the building through glazing and is absorbed (after repeated scattering) by 

internal surfaces. Part of this radiation may be lost by being re-transmitted out of the 

building through glazing. The effect of absorption and scattering by exterior surfaces 

(both opaque and transparent) is also significant. 
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ApacheSim is driven by actual weather recorded at hourly intervals and 

stored on a simulation weather file. The solar altitude and azimuth are calculated 

from the location of the site where the weather was recorded, together with time zone 

and summertime clock adjustment information. This information is also used by the 

programs SunCast and SunCast Lite to generate shading data for ApacheSim, and it 

is important that the same location data is used in both cases. ApacheSim calculates, 

at each time-step, the solar flux incident on every external building surface. This 

analysis covers the case where the sky diffuse radiation is assumed to be isotropic, 

the factors involving rising from integration of this isotropic radiation over solid 

angle. If the user selects the anisotropic diffuse solar radiation model from the 

Simulation Options menu the calculation designates a portion of the diffuse radiation 

circumsolar, which it treats as if it emanated from the sun position. The proportion of 

the diffuse radiation designated circumsolar varies with the intensity of the beam 

radiation. 

 

 

Diffuse radiation incident on an exposed surface is the sum of components 

from the sky, the ground, and certain types of shading object. Shading objects block 

diffuse sky solar radiation to a degree determined by a diffuse shading factor. Diffuse 

shading factors for remote shading objects are calculated optionally by SunCast (or 

assumed to be 1 if not calculated). This type of shading applies to both glazed and 

opaque surfaces. Diffuse shading factors for construction-based shades defined in 

APcdb and classified as ‘local’ (side-fins, overhangs and balconies) are calculated 

for each instance of the construction occurring in the model. Where both remote and 

local shades apply to the same surface, their diffuse shading factors are combined by 

taking the lower of the two factors. This gives a conservative estimate of the degree 

of shading. SunCast and ‘local’ shading objects are assumed to scatter ambient 

radiation, as well as blocking diffuse radiation from the sky. This gives rise to an 

additional term in the diffuse incident flux. For the purpose of estimating this flux, 

shading objects are assumed to be vertically oriented, adjacent to a large vertical 

wall, and both wall and shading object are assumed to have a reflectance of 0.3. 

Ground reflection is accounted for, but direct and circumsolar radiation is excluded 

from the calculation. Construction-based shades of the ‘external’ type (shutters and 

louvres) have a sky shading factor and a ground shading factor set in APcdb (both of 
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which may optionally be calculated from the direct shading characteristics). These 

factors attenuate the radiation incident on the glazed element from the sky, the 

ground and the other types of shading object. Radiation scattered by shading devices 

of this type is ignored. 

 

 

The diffuse component of solar radiation incident on an external glazed 

element – the sum of components from the sky and the ground – is partially 

transmitted and partially absorbed in the element. The transmitted portion is 

distributed over the interior building surfaces as follows. In simple cases the diffuse 

radiation entering a room through a glazed element is distributed over the other 

surfaces in the room in proportion to their areas. An exception to this rule may apply 

in the case of glazed, external receiving surfaces. If the shape factor implied by the 

area-weighted distribution is greater than the maximum theoretical shape factor 

between the receiving surface and the source surface (given their areas and relative 

orientation) the shape factor is reduced to the theoretical maximum. The radiation 

deficit is then spread over the other receiving surfaces in proportion to their 

estimated shape factors. This exception prevents windows in the same façade from 

radiating directly to each other. Such windows are treated effectively as one large 

window. Surfaces receiving diffuse radiation distributed in this way reflect, absorb 

and (if transparent) transmit it in appropriate proportions. ‘Holes’ are treated as 

perfectly. Radiation transmitted through transparent partitions in the course of these 

processes is treated in a similar way to radiation entering the building from outside. 

No shape factor adjustment is applied, however. A portion of any radiation 

distributed to external windows is lost by transmission back out of the building. The 

above steps are repeated up to 10 times to distribute the diffuse radiation through the 

building. Any residual radiation at the end of the process is assigned to room surfaces 

in a final modified acceptance distribution. 

 

 

g. Solar Transmission by Glazing and Opaque Surface 

 

From this data the program calculates the following derived parameters for 

the construction as a whole: 
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• Solar transmission, absorptance and reflectance parameters at 10 angles of  

incidence 

• Parameters describing the distribution of solar absorption within the 

construction 

• Separate U-values for the glazing and the frame 

For each glazing layer (pane) the solar characteristics are checked for consistency. 

An analysis based on the Fresnel equations is carried out for a pane having the given 

layer refractive index and an absorption parameter (extinction coefficient) that is 

adjusted to match the given pane absorptance. This is done for two rays with 

perpendicular polarisations, and the results are combined to give normal-incidence 

transmittance, absorptance and reflectance values. These are then compared with the 

values entered for these parameters. The most likely cause of a discrepancy in this 

comparison is the presence of a reflecting film on the glass surface. In this case the 

discrepancy is corrected by adding a reflecting film with properties chosen to match 

the characteristics entered. When the discrepancy cannot be corrected by a 

modification of this sort, the refractive index is adjusted to produce a match. The 

derived characteristics are then used to produce transmittance, absorptance and 

reflectance parameters for 10 incidence angles, again using the Fresnel equations 

applied to rays of two polarisations. The solar characteristics of the construction as a 

whole are then calculated for the 10 incidence angles and the two polarised rays. This 

process in general involves consideration of an infinite number of reflections at 

glazing/air interfaces. The result is a set of solar transmission, absorptance and 

reflectance parameters at 10 angles of incidence, the absorptance characteristics 

being further resolved according to where in the construction the absorption occurs. 

The absorption parameters are then simplified, without any compromise of accuracy, 

by replacing each absorption by equivalent absorptions at the external internal 

surface of the constructions, using an equivalent circuit representation involving the 

thermal resistances of the layers. During a simulation, whenever solar radiation 

strikes a glazed surface the interaction of the radiation with the glazing is calculated 

using the construction’s solar parameters. Portions of the incident radiation are 

transmitted, absorbed, and reflected. For direct (beam) radiation the appropriate 

angular characteristics are used. For diffuse radiation, the calculation uses 

hemispherically averaged characteristics. Any frame forming part of the construction 

is assumed to have a transmittance of zero and an absorptance of 0.55. External 
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shutters/louvres and internal blinds/curtains participate in the interaction according to 

their parameters as specified in APcdb. External opaque building surfaces absorb and 

reflect solar radiation according to their solar absorptance as assigned in APcdb. 

SunCast and SunCast Lite shading data is applied to external opaque surfaces, and 

SunCast shading data is applied also to internal opaque surfaces. 

 

 
 
3.1.3 IES Procedures 

 

 

Apache is the name given to the thermal analysis programs in the Virtual 

Environment. The Apache view provides facilities for: 

1. Preparation of input data for the thermal analysis programs ApacheCalc, 

ASHRAE Loads and ApacheSim 

2. Calculations and simulations using ApacheSim, ApacheHVAC, MacroFlo, 

ApacheCalc, and ASHRAE Loads 

The preparation of thermal input data consists of three main tasks: 

1. Specification of building location and weather data 

2. Specification of building element data (properties of the building fabric) 

3. Specification of room data (conditions in each room) 

The interfaces to the thermal analysis programs provide facilities for: 

1. Setting up the calculations and simulations 

2. Specifying the results to be recorded 

 

 

Data on the global location of the building and the climate to which it is 

exposed are specified using the program APlocate. The location data includes the 

latitude and longitude of the site, together with information about the local time zone 

and any summertime clock adjustment. The weather data covers the requirements of 

both the heat loss and heat gains calculations and the thermal simulation program. 

For the heat loss calculation the weather data takes the form of a single outside 

winter design temperature. For the heat gains calculation the data provides hourly 

dry-bulb temperatures, wet-bulb temperatures and solar data for one design day per 
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month. For thermal simulation the weather data is more extensive and is stored on a 

simulation weather file. This file contains the values of the following weather 

variables measured at hourly intervals over a year: 

• Dry-bulb temperature 

• Wet-bulb temperature  

• Direct beam solar radiation 

• Diffuse solar radiation 

• Wind speed 

• Wind direction 

• Cloud cover 

Weather data in these formats is available for a large number of sites world-wide. 

 

In common with other Virtual Environment applications, the Thermal 

applications derive their geometrical data from the ModelBuilder. This is 

supplemented with application-specific data provided within the Thermal 

Application Category. The input data requirements of the thermal applications are 

summarised below. The data is managed by utility programs invoked from the 

Application Views. Where possible, applications access common data so that it is 

never necessary to re-enter values in order to carry out different types of analysis. 

The efficiency of data input is further enhanced by the use of objects called 

Templates. Templates bring together groups of thermal input variables so that they 

can be assigned collectively to sets of rooms, building elements or other objects. 

Construction Templates store descriptions of constructions for the various categories 

of building element (walls, floors, windows and so on). Room Thermal Templates 

store sets of casual gains, air exchanges, plant operation parameters and zoning 

information associated with rooms of a given type. After a Room Thermal Template 

is assigned to a room it may be overridden by subsequent ad hoc changes. Templates 

can be transferred between projects. They offer a powerful means for imposing 

structure on the input data, maintaining data quality and saving the user time. 

 

 

The following is a summary of the data required by the thermal applications 

and the utility programs that manage this data. ApacheSim is a dynamic thermal 
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simulation program based on first-principles mathematical modeling of the heat 

transfer processes occurring in and around a building. ApacheSim qualifies as a 

Dynamic Model in the CIBSE system of model classification, and exceeds the 

requirements of such a model in many areas. The program provides an environment 

for the detailed evaluation of building and system designs, allowing them to be 

optimised with regard to comfort criteria and energy use. Within ApacheSim, 

conduction, convection and radiation heat transfer processes for each element of the 

building fabric are individually modeled and integrated with models of room heat 

gains, air exchanges and plant. The simulation is driven by real weather data and 

may cover any period from a day to a year. The time-evolution of the building’s 

thermal conditions is traced at intervals as small as one minute. 

Results output by the simulation include: 

• Comfort statistics 

• Energy consumption data 

• CO2emission data 

• Room load statistics 

• Plant sizes 

• Detailed performance measures including hourly room temperatures (air, 

mean radiant and dry resultant), humidity, plant loads, casual gains and air 

exchanges  

• Surface temperatures for comfort studies or CFD boundary conditions 

The simulation engine has the following features: 

• Finite difference dynamic heat conduction modeling 

• Dynamically calculated surface convection characteristics 

• Air temperature, surface temperature and room humidity modeling 

• Advanced solar and long-wave radiation exchange models 

• External solar shading using data from SunCast 

• Solar tracking through an arbitrary number of transparent internal partitions 

using data from SunCast 

• Angle-dependent glazing transmission, reflection and absorption 

characteristics  
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3.3 Development of Simplified PPRT Model  

 

 

The simplified PPRT house model used in the IES simulation is developed 

from the basic model of the the existing orang asli house, the government initiated 

PPRT house and the proposed comfortable PPRT house comfortable PPRT house, 

which is identify through inventory exercise as discussed in chapter 1. From the 

basic model, three sets of simplified model with four cardinal orientations (by 

introducing thermal comfort performance) of PPRT house model are derived.  The 

development of the simplified PPRT house model is described in the following 

sections. 

 

 

3.3.1 The Existing Orang Asli House Simulation Model 

 

 

The basic simplified existing orang asli house shown in figure 3.2 is a typical 

configuration with overall size of 5m x 5 m x 3.5m high.  This size is to represent 1 

living room and 1 verandah on existing orang asli house.   

   
 

Figure 3.2: The existing orang asli house model in the IES 
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3.3.2 The Government Initiated PPRT House Simulation Model 

 

 

The government initiated PPRT house model are the government initiated 

PPRT house design by government of the existing orang asli house model described 

in section 3.3.1. In this stage, the government initiated PPRT house model is 

modified by introducing geometry and material configuration.   In this study, the 

house size is 8.5 m x 6 m x 3 m high.  However, when considering the thermal 

comfort performance, three rooms were simulated: living room, bedroom 1 and 

bedroom 2. 

 

 
Figure 3.3: The government initiated PPRT house model in the IES 

 

 

3.3.3 The Proposed Comfortable PPRT House Simulation Model 

 

 

The the proposed comfortable PPRT house comfortable PPRT house is 

modification of the the existing orang asli house and government initiated PPRT 

house model described in last section. In this stage, the the proposed comfortable 

PPRT house comfortable PPRT house is modified physically into 3 bedrooms, 1 

living room and 1 kitchen.  The modification is by geometry, material configuration 

and thermal comfort principle.   
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Figure 3.4: The the proposed comfortable PPRT house comfortable PPRT house 

model in the IES 

 

 

3.3.4 The simulation data of PPRT House Model 

 

 

Table 3.1: Construction Input Data for IES simulation  
Model Element Material Thickness (m) U value (Wm2K 

Roof Zink 0.05 3.5 
Ceiling - - - 

External Wall Timber (Oak) 0.2 2.2 
Internal Wall - -  

Floor Stone, cast 
concrete 0.1 0.5315 

Window - - - 

Existing orang asli 
house  

Door Wood 0.1 0.3488 
Roof Asbestos Cement 

Decking 0.15 4.6 
Ceiling Gypsum 

plastering 0.1 2.0686 
External Wall Brickwork 0.22 4.5 
Internal Wall Brickwork 0.22 4.5 

Floor London clay, 
stone, cast 
concrete 0.2 0.803 

Window Single Glass 0.1 5.448 

Government 
initiated PPRT  

Door Wood 0.15 0.3488 
Roof Asbestos Cement 

Sheet 0.1 2.1 
Ceiling - - - 

External Wall Plywood 0.1 0.1609 
Internal Wall Plywood 0.1 0.1609 

Floor London clay, 
stone, cast 
concrete 0.1 0.803 

Window - - - 

The proposed 
comfortable PPRT 
house comfortable 

PPRT  

Door Wood 0.1 0.3488 
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The initial conditions for simulation have been set using the climatic data from the 

annual hourly IES weather data of Kuala Lumpur.  The immediate surrounding 

environmental conditions were measured at 10 m above the ground. Data for solar 

radiation, wind speed, wind direction, air temperature and relative humidity were 

obtained using the IES weather data. The IES program requires inputs representing 

problem type, model builder (material, type of construction, etc.), simulation 

conditions, and calculation method (suncast and multi-zone air movement). The 

problem type is used to activate calculation modules; in this case, thermal calculation 

and simulation. 

 

 

3.4 The Validation of Field Study and IES Simulation  

 

In order to validate the IES simulation setting-up, procedures and 

conditions. A field study was carried out to validate the capabilities of the IES 

software in generating indoor house temperature and consequently estimating 

the thermal comfort performance. The results of the field study will justify the 

validity of the simulation procedures and conditions. According to Sapian 

(2004), Baskaran and Stathopoulos (1992), method of validation can be 

performed by comparing the simulation results with measurements.  

 

 
Figure 3.5: The field study house model in the IES 
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3.4.1 The Field Study Simulation Model 

 

 

The field study house model is takes from the terraced houses measurement 

by Nugroho (2006). In this stage, the terraced house model is simplified by 

introducing geometry and material configuration.    Three rooms were simulated: 

living room, bedroom 1 and bedroom 2, when considering the indoor temperature 

comparison. 

 

 

3.4.2 Result and Finding of Field Study Validation 

 

 

Figure 3.5 show the plot of points for field measurement and IES weather 

data on 21 March 2006. The figure shows close agreement between measurement 

and simulation values. Deviations are within a range of 5% of the calculated dry bulb 

temperature and relative humidity. For most of the observations, this difference is 

less than 20% of the calculated values. 
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Figure 3.5: Comparison of the dry bulb temperature, relative humidity and wind 

speed result between field measurement and IES simulation 
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Figure 3.6 showed a good agreement between IES simulations with the field 

measurement results. The difference was less than 20% for most of the calculated 

points on the temperature and the mean deviation were less than 10%. In those cases, 

the absolute differences were less than 3.2°C. In summary, the outdoor/ambient and 

indoor air temperature calculated by the IES simulation showed a good agreement 

with the results of the field measurement.  
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Figure 3.6: Comparison of the dry bulb temperature result between field 
measurement and IES simulation 

 

 

Although there are slight differences between the results of IES and field 

measurement, it can be inferred that the IES modeling is appropriate to reproduce the 

phenomena occurring in the measurements. The use of the IES model to investigate 

the performance of the thermal comfort ventilation can be validated. 

 

 

 



 

 
 
 

CHAPTER 4 
 

 

RESULTS, ANALYSIS AND FINDINGS: THERMAL PERFORMANCE OF 

PPRT MODEL  

 

 

 

This chapter evaluates the simulation results obtained for indoor temperature 

and predicted mean vote (PMV of comfort index for the PPRT house model tested).  

The evaluation on indoor temperature and PMV is based on monthly data and 

selected peaks dry bulb temperature (DBT) days.  The thermal comfort analysis is 

based on the neutrality temperature and comfort index which includes both indoor 

temperature and PMV.  Further, in order to find the correlation between the neutral 

temperature and comfort index, the minimum air temperature requirement and 

comfort index performance results are presented in the same graph as a function of 

building orientation.  The impact of PPRT house model is established based on the 

maximum of decreasing indoor temperature and PMV index.  Finally, the 

comparisons of the results of the three houses designs on thermal comfort 

performances are discussed. 

 
 
 
4.1 Neutrality Temperature and PMV index on PPRT house design  

 

 

The primary purpose of the thermal comfort design is to reduce the indoor air 

temperature and PMV index.  The average air temperature and PMV index incident 

on the selected room was obtained for three houses (existing orang asli house, 

government initiated house, proposed comfortable PPRT house), at 24 hour times 

within monthly data.  Both indoor temperature and PMV index were analyzed as a 

function of thermal comfort housing design, for the four main cardinal house 
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orientations (North, South, West and East) on average DBT monthly data. The 

maximum peak DBT on 6 March and on 10 March achieve the minimum peak day of 

DBT (Fig.4.1).   
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Figure 4.1:  The monthly average, maximum peak day and minimum peak day of 
DBT 

 

 

 

4.1.1 Existing orang asli house 

 

 

The existing orang asli house model was simulated for indoor air temperature 

and PMV index on four cardinal orientations. The existing orang asli house has two 

rooms. They are living room and verandah. In the IES simulation, the house was kept 

empty without furniture to reduce the thermal exchange between objects. The house 

is without window and just has one door facing towards the front.   
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a. Existing orang asli house on North Orientation 
 

 

The maximum indoor temperature on the north oriented house is achieved on 

the living room on month of June. The verandah temperature profile also indicates 

similar trend against the outdoor temperature.  This means the indoor temperature 

close with outdoor temperature can be achieved by maximize opening on verandah 

room.   Figure 4.2 illustrates that the minimum target neutral temperature (28°C) is 

obtained during all monthly average air temperature simulations except on month of 

May and June.  During month of June the indoor temperature is at higher temperature 

and the amount of PMV is also high.  Generally, there is less temperature on month 

of December.  This can be explained that on June the north façade receive higher  

solar radiation than on December. But on 21 December, the façade receives lower 

solar radiation; therefore the temperature values are low.  The maximum PMV index 

on month of March indicates a higher value compared to the other months (on north 

orientation).  The profile pattern of PMV addition on the verandah had a similar 

pattern during all months considered. The position of the verandah is facing north. 

This implies that on north facing room, the impact of PMV is the main source for 

north hemisphere.  The maximum PMV was recorded during March, April and June. 

Also this is clearly evident that higher PMV is received when the sun is at higher 

altitudes and when the solar radiation is totally induced.  The PMV profile also 

showed a high gradient for the target PMV level than the minimum temperature.  

This indicates that with the increase of indoor temperature, the PMV index were 

added significantly compared to the maximum temperature values on month of June. 
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Figure 4.2:  The average indoor temperature and PMV of existing orang asli house 
model on monthly data, north orientation 

 

 

 

b. Existing orang asli house on South Orientation 

 

 

Indoor temperature incident on the living room and verandah is evident on 

month of June on south oriented room façade (figure 4.3).  A higher amount of 

indoor temperature on the living room is recorded compare to verandah. The 

maximum average indoor temperature (28.3°C) is above the neutral temperature.  

However, in month of March, it exhibits the maximum PMV values as the sun is at 

the equinox.  The maximum PMV is 2.25 (warm). The addition pattern of the PMV 

had a similar profile on all months considered (figure 4.3).   
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Figure 4.3:  The average indoor temperature and PMV of existing orang asli house 
model on monthly data, south orientation 

 

 

c. Existing orang asli house  on East Orientation 
 

 

The indoor temperature impinge is above neutral temperature on month of 

March until June on the aperture facing the east orientation.  The temperature of the 

indoor room such as living room is higher than on verandah at the all times 

(figure.4.4).  The PMV incident on living room and verandah showed a similar 

pattern throughout the year for each month.  The PMV ranges between 1.5 until 2.25 

mean that they are warm and unpleasant.  This indicates design of existing orang asli 

house on east orientation had a more impact on increasing the PMV.  The maximum 

PMV achieved is in month of March where the PMV is highest.  However, on month 

of April and June, the PMV are higher than the PMV on the other months.   This is 

because the verandah is having open window, which strongly influenced by outdoor 

condition.  
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Figure 4.4:  The average indoor temperature and PMV of existing orang asli house 
model on monthly data, east orientation 

 

 

d. Existing orang asli house  on West Orientation 
 

 

 The profile of the indoor temperature incident on the room exhibited a steep 

gradient on March, April and June. Hence, when the air temperature is higher value 

(June), the neutral temperature component is more uncomfortable as compared to the 

air temperature which is lower in value.  Thus, this result in average PMV of the 

thermal comfort index incident on house by 1.9 (warm), on west oriented house.   

The profile of the PMV incident on the living room exhibited a higher gradient.  

During June and April, PMV incidents on all rooms are high.  However, on month of 

March, amount of PMV incident on the room is higher.   Further, on the month of 

December, it achieved a minimum PMV value of 1.4 (warm acceptable).   
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Figure 4.5:  The average indoor temperature and PMV of existing orang asli house 
model on monthly data, west orientation 

 

 

 

4.1.2 Government initiated PPRT 

The government initiated PPRT house is tested using four models with 

respective cardinal orientations. Also, the house is kept empty without furniture and 

comprises four rooms (living room, bedroom1, bedroom2 and toilet).  All rooms 

received ventilation with single sided openings. The windows have double sashes, 

which were retrofitted by the occupants. Two sashes windows (1m height, 1.5m 

width, and 1m above the floor) are fixed in the bedroom and living room.  

 

 

 

a. Government initiated PPRT House on North Orientation 
 

 

The fundamental principles remain the same for the temperature into the building, 

where the higher temperature (33.8°C) was indicated during March to April. The 

profile pattern of temperature is low during July to December.  But on the month of 

September, the profile of temperature exhibited more curve than on the other six 

months.  This is mainly due to the impact of solar path on September when solar is at 
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equinox. The indoor temperature of bedroom 2 is higher than the other room, and the 

average difference is 0.5°C. The profile pattern of PMV reduces during October to 

December with the decreasing of air temperature.  It means during month of October 

to December, it is more comfortable than on month of March to June. However, the 

average PMV on government initiated PPRT house on north orientation is 2.25. 

Thus, it is between warm unpleasant until hot uncomfortable. 
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Figure 4.6:  The average indoor temperature and PMV of government initiated 
PPRT model on monthly data, north orientation 

 
 

b. Government initiated PPRT House on South Orientation 

 

 

The profile pattern of indoor temperature reduction in the bedroom and living 

room are having similar pattern for all months.  The lesser curve pattern indicated 

that on month of December, it had more impact in reducing the indoor temperature.  

In month of April, the temperature profile indicates significant increase in bedroom 2 

(figure 4.7) in south orientated house. PMV on the month of March is higher and on 

month of December is lower. The PMV profile is similar except on month of March.  

Generally, the living room is more comfortable than the bedroom as shown with low 

PMV until 2.1 but still considers as warm condition. 
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Figure 4.7:  The average indoor temperature and PMV of government initiated 
PPRT model on monthly data, south orientation 

 

   

c. Government initiated PPRT House on East Orientation 
 

 

The values obtained for indoor temperature on the east orientation indicate a 

higher value on the month of March.  The maximum and minimum temperature 

values obtained on bedroom 2 and living room are 34°C and 31.4°C for east 

orientation.  The profile of the PMV into the space indicates a reduction when the 

temperature is decreased between on the month of April to December.  For PMV 

comparison, the maximum and minimum values of PMV indicate 2.7 (hot 

uncomfortable) on March and 2.15 (warm) on December.     However, the profile 

gradient is high (2.25) on all rooms and monthly conditions, which clearly indicates 

that the government initiated PPRT house is uncomfortable for the east orientation.   
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Figure 4.8:  The average indoor temperature and PMV of government initiated 
PPRT model on monthly data, east orientation 

 
 

d. Government initiated PPRT House on West Orientation 
 

 

The values obtained for indoor temperature on the west orientation indicate a 

higher temperature (34°C) on month of April and June.  The profile of the 

temperature into the space indicated a reduction for living room and on month of 

December. The maximum and minimum temperature values obtained on bare room 

were 34°C and 31°C for west orientation.  However, the PMV profile gradient is 

high on the month of March and June, which clearly indicates the impact of indoor 

temperature on the PMV of the room for the west oriented house. The maximum and 

minimum values of PMV indicated as 2.75 (hot uncomfortable) and 2.1 (warm), on 

the west orientation.      
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Figure 4.9:  The average indoor temperature and PMV of government initiated 
PPRT model on monthly data, west orientation 

 

 

4.1.3 Proposed comfortable PPRT 

 

 

The proposed comfortable PPRT house is modified to reduce the temperature 

into the building.  The house has six rooms (living room, 3 bedroom, kitchen and 

toilet).  The air temperature and PMV index were calculated for the correspondence 

orientations and annual monthly data.  The reference rooms selected were living 

room, bedroom1 and bedroom2.  The evaluation of air temperature is based on the 

target neutral temperature and PMV value for comfort based on thermal index.  The 

correspondence outdoor temperature was also presented for better understanding of 

the relationship between the indoor and outdoor temperature. On proposed 

comfortable PPRT house, each room have open-able window.  

 

 
a. Proposed comfortable PPRT House on North Orientation 

 

 

Figures 4.10 illustrates that the maximum indoor temperature are obtained on month 

of June, when the building is facing towards the north. However, on month of 



 61

December, average indoor temperature indicated a lowest value.  This can be 

explained that in June, the north façade receives higher solar radiation. But on month 

of December, the façade receives lower solar radiation (in south hemisphere); 

therefore the temperature values are low.  This indicates, with the increase of indoor 

temperature, the target neutral temperature levels were not achieved compared to the 

minimum temperature values.  Figure 4.10 shows the maximum and minimum mean 

temperature values on three respective rooms on all month, for the north oriented 

house.  Temperature in bedroom and living room increased to maximum temperature 

by 0.2°C on month of June. The PMV profile also showed a high gradient for the 

target thermal comfort level (0 until 1).  The minimum PMV on north orientation is 

1.3. It means a warm and unpleasant condition.   
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Figure 4.10:  The average indoor temperature and PMV of proposed comfortable 
PPRT model on monthly data, west orientation, north orientation 

 

 

b. Proposed comfortable PPRT House on the South Orientation 

 

Figure 4.11 shows that the average indoor temperature was achieved for each 

correspondence room and the target of neutral temperature (28°C) during all month 

except in month of June (28.5°C), when the proposed comfortable PPRT house is 

facing towards the south.   The indoor bedroom temperature profile indicated lesser 

than the indoor temperature living room profile. Also, the profile of the living room 
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PMV value indicated a higher gradient than bedroom.  This implies that introduction 

of temperature had a significant impact on optimal PMV level at reference room.  

However, in month of June the PMV profile showed more curved pattern than in 

other months.  The average PMV profiles in three selected rooms had a similar 

pattern in reference months. The living room achieved the maximum PMV value 1.6 

(warm acceptable) in month of June and the minimum PMV value 1.3 (slightly 

warm) in month of December.  
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Figure 4.11:  The average indoor temperature and PMV of proposed comfortable 
PPRT model on monthly data, west orientation, south orientation 

 

 

c. Proposed comfortable PPRT House on the East Orientation 

 

 

The maximum and minimum average indoor temperature was obtained in the 

living room and bedroom 2 in month of June and December, when the house is 

facing to the east. The maximum temperature (28.3°C) in month of June was still 

above the minimum target of neutral temperature.  This is mainly due to the highest 

temperature into the building during mid year.  The PMV profiles indicated a similar 

pattern in the bedroom and living room, which means that increase PMV cause more 

uncomfortable condition in the room.  The comparison results between indoor 

temperature values and PMV showed a direct correlation between the two 
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components, where maximum temperature and PMV indicated similar pattern during 

the same month. The results indicated significant similarities between the maximum 

and minimum PMV values obtained in all months and rooms.  The PMV was a 

slightly warm on month of January (minimum) and changed to a warm acceptable on 

month of June (maximuml).  

26

27

28

29

30

31

32

Jan Feb Mar Apr May Jun Jul Augs Sept Oct Nov Dec
month

In
do

or
 te

m
p 

(°
C)

0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00
2.25
2.50
2.75
3.00

P
re

di
ct

ed
 m

ea
n 

vo
te

 

bedroom1-new-east bedroom2-new-east livingroom-new-east
bedroom1-PMV bedroom2-PMV livingroom-PMV

Figure 4.12:  The average indoor temperature and PMV of proposed comfortable 
PPRT model on monthly data, east orientation 

 

 

d. Proposed comfortable PPRT House on the West Orientation 

 

The average indoor temperature of bedroom 1, bedroom2 and living room for 

the west oriented house are shown in figure 4.13.  The maximum indoor temperature 

was obtained in month of June for all rooms.  Results on the average temperature 

were obtained at similar profile of the three rooms. The results showed significant 

difference between average temperature values obtained in month of December 

(26.7°C) was less than 28.3 °C in month of June.  Generally, the PMV in month of 

June had almost higher values in all selected rooms than in the other months.  

Initially, the target PMV level (0 until 1) showed sudden reduction in month of 

January and December and the target PMV profile had more gradient with the 

increase of temperature in month of June.   
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Figure 4.13:  The average indoor temperature and PMV of proposed comfortable 
PPRT model on monthly data, west orientation 

 
 

 

4.1.4 Thermal Comfort Condition on Hourly Data of Selected Days  

 

 

The effects of hourly variations of maximum and minimum peak day on the 

dry bulb temperature were assessed with respect to the three houses design.  This 

enables us to understand the condition of time component on the overall indoor 

temperature and PMV of the building.  The analysis is done based on two days: 6 

July as maximum peak day and 10 March as minimum peak day of the 

correspondence existing , government initiated  and proposed comfortable PPRT 

house. The average indoor temperature and PMV were obtained for each hour on the 

selected days. 

 

 

a. Existing orang asli house 

 

 

Figure 4.14 illustrates that, significant amount of the indoor temperature was 

obtained in the afternoon hours between 14:00 hour and 18:00 hour for the respective 
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rooms. The existing orang asli house at 08:00 hour obtained average air temperature 

(25°C) lower than the average air temperature at 16:00 hour (34°C) of the base case 

room on south orientation. Based on the temperature profiles, indoor temperature of 

living room is higher than verandah on respective day.  This affect the PMV 

conditions, where PMV in verandah lower than the PMV in living room.  Hence, 

decrease of temperature resulted in a deeper gradient PMV profile pattern in 

verandah than in living room. The maximum and minimum PMV at 17:00 hour and 

08:00 hour indicated PMV of 2.7 (hot uncomfortable) and 0.9 (slightly warm) on 

south orientation.  On existing orang asli house, the temperature profile at afternoon 

hour is more than at the morning hour.  The reason is that, increase of air temperature 

at afternoon hour in all rooms added the amount to the PMV significantly. 
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Figure 4.14: The indoor temperature and PMV for maximum (6 July) and minimum 
(10 March) peak day existing orang asli house on hourly data 

 
 

b. Government initiated PPRT house 

 

 

In this study, the indoor temperature pattern is represented by the range of the 

temperature between 31°C until 34.5°C which are read in three selected rooms The 

figure below showed that the different times of the models influenced the air 

temperature pattern inside the room.  The air temperature patterns seem to be 

affected by the time difference. Figure 4.15 shows the comparison of the average air 

temperature pattern of the three rooms.  Air temperature pattern using simulation is 
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detected fluctuating at 16:00 hour until 19:00 hour is higher than 07:00 hour until 

10:00 hour. For example, measurements at 16:00 hour until 19:00 hour, the air 

temperature could reach 2.5°C and decrease at 20:00 hour. Consequently, PMV 

value increases at this time and achieved its maximum at 18:00 hour. Simulation 

tests indicated that most of the PMV pattern within the room model was at the 

transition between warm (PMV value 2) at 08:00 hour to hot condition (PMV value 

2.8) at 18:00 hour.  The PMV inside all rooms at 18:00 hour was higher than the 

other times. This creates higher indoor temperature increases the PMV value inside 

the room and develop into an uncomfortable condition.   
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Figure 4.15:  The indoor temperature and PMV for maximum (6 July) and minimum 
(10 March) peak day government initiated PPRT house on hourly data 

 

 

c. Proposed comfortable PPRT house 

 
 

Figure 4.16 shows the effect of hourly condition on the air temperature 

related with PMV index. It can be seen that increase in the air temperature received 

in the rooms caused an increase in PMV value through the system. This is to be 

expected, because increasing the air temperature into the room increases the PMV 

value. This, in turn, increases the uncomfortable condition. It can be observed from 

figure 4.16 that the uncomfortable thermal condition is independent of the peak air 

temperature time. During the mid day hours the sun is at higher altitudes and the 

amount of solar intensity is high.  Generally, the temperature is lower in the morning 
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(24:00 hour to 08:00 hour).  At living room area, the temperature profile showed a 

lesser gradient than in bedroom 2. The maximum PMV resulted 2.1 (warm) and the 

minimum PMV until 1.4 (warm acceptable) on selected peak DBT days.  
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Figure 4.16:  The indoor temperature and PMV for maximum (6 July) and minimum 
(10 March) peak day proposed comfortable PPRT house on hourly data 

 

 

4.1.5 Impact of House Orientation  

 

 

The air temperature and PMV index through the room are evaluated for all 

models on orientations and times.  This enables us to understand the contribution of 

orientation component on the overall average indoor temperature and PMV into the 

building.  The analysis is done based on the average value of the air temperature and 

PMV reduction obtained from the simulation on the existing , government initiated  

and proposed comfortable PPRT house. 

 

 

a. Existing orang asli house 

 

 

The mean reduction of indoor temperature on respective orientations showed 

that the south received the highest solar than east, north and west orientation.  In 
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comparison, the south indicated more than the north in terms of temperature 

reduction through the living room on monthly data.  On north, south and west 

orientation, they represent the same condition as south orientation except the 

reduction in air temperature pattern. The south orientation illustrated minimum air 

temperature. Figure 4.17 shows that the air temperature in the room, which ranged 

between 26.7°C and 28°C, was close to the neutral temperature. Compared to south 

orientation, the air temperature in the occupant zone of the other orientation was 

higher. Figure 4.17 shows similar PMV pattern inside the living room on north, west 

and east orientation. On south orientation, it represents a reduction of PMV. In 

general, PMV within the living room on south orientation was lower than the other 

orientations. The PMV contour plot indicated that the south orientation could 

maintain the comfortable condition within the occupant zone (compared to the other 

orientations).  

 

26

26.5

27

27.5

28

28.5

29

29.5

30

Jan Feb Mar Apr May Jun Jul Augs Sept Oct Nov Dec

time

In
do

or
 te

m
pe

ra
tu

re
 (°

C
)

0.00

0.50

1.00

1.50

2.00

2.50

3.00

Pr
ed

ic
te

d 
m

ea
n 

vo
te

temp-North temp-South temp-West temp-East 
PMV-North PMV-South PMV-West PMV-East 

Figure 4.17: The average indoor temperature and PMV for tested correspondence 
existing orang asli house orientation on monthly data 

 

 

b. Government initiated PPRT house 

 

 

Figure 4.18 illustrates that significant amount of the indoor temperature was 

obtained in the living room during December and June for the respective 

orientations.  During these months, the sun position in the south and north solstices 

give the significant impact of building orientation and room position of building, the 
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sun is beside the room pane, thus the air temperature was lower related with sun 

position.  East and west orientation illustrated two different profiles of monthly 

average air temperature compared to the north and south orientations.  According to 

figure 4.18, respective orientations obtained constant amount of air temperature for 

considerable month of March and September in the living room.  The air temperature 

on east orientation increased in December. Also, this profile pattern is added on west 

orientation in June. Figure 4.18 illustrates the air temperature profile for the south 

oriented house similar with north orientation for all months.  The results indicated 

that the peak air temperature in living room in month of December when the sun is at 

south solstices. Also, the air temperature is lower on east than west orientation in 

month of June when the sun is at north solstices and when living room is facing north 

orientation. The PMV profile on all respective orientation is similar. The maximum 

PMV (2.5) was obtained during March on north orientation.  These profiles are 

mainly due to the effects of high air temperature.  In comparison, the amount of 

PMV on the south and west received less than the north and east orientation.   

 

31

31.5

32

32.5

33

33.5

34

Jan Feb Mar Apr May Jun Jul Augs Sept Oct Nov Dec

time

In
do

or
 te

m
pe

ra
tu

re
 (°

C)

0.00

0.50

1.00

1.50

2.00

2.50

3.00

Pr
ed

ic
te

d 
m

ea
n 

vo
te

temp-North temp-South temp-West temp-East 
PMV-North PMV-South PMV-West PMV-East  

Figure 4.18:  The average indoor temperature and PMV for tested correspondence 
government initiated PPRT house orientation on monthly data 

 

 

c. Proposed comfortable PPRT house 

 

 

The results showed that influence of the average air temperature is high on 

the east and the north orientations than the west and the south orientation incident on 
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the living room. Although, all orientations received similar air temperature profile 

into November to March compare with April to October. In comparison, east 

orientation indicated a higher value compared to north, south and east south 

orientation. However, the south orientation received lower value than north 

orientation but higher than east orientation for several months.  This indicates that 

the influence of the air temperature incident in room had more effect on the house 

orientation in month of April to October. PMV profile showed that similar profile for 

all respective orientations.  So, orientation is not significant impact to PMV result in 

proposed comfortable PPRT house. 
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Figure 4.19:  The average indoor temperature and PMV for tested correspondence 
proposed comfortable PPRT house orientation on monthly data 

 

 

4.2 Comparison of Thermal Comfort Performance   

 

 

Comparison of the average indoor temperature on three houses model 

indicated that proposed comfortable PPRT obtained the minimum air temperature 

and government initiated PPRT obtained the maximum air temperature.  According 

to figure 4.20, the proposed comfortable PPRT achieve below target of neutral 

temperature for thermal comfort except at 10:00 until 18:00 on maximum peak day 

(6 July). The average air temperature on government initiated PPRT house indicated 

above of neutral temperature for all peak days.  This indicates that the average air 
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temperature can significantly increased the PMV and the air temperature above 

30°C.   However, proposed comfortable PPRT house decreased the average air 

temperature up to 2°C on respective days.  Figure 4.21 shows the average PMV 

values obtained in the existing, government initiated  and proposed comfortable 

PPRT house for the south oriented house and hourly peak days.  The government 

initiated PPRT house indicated the PMV value above comfortable condition.   The 

PMV value range from 2 until 2.5 or the comfort condition is warm and unpleasant.  

At noon hour, the existing orang asli house indicated the PMV above 2, while at 

morning and night times showed the PMV value range between 0.75 until 1.5. The 

constant PMV value is found in the proposed comfortable PPRT house at hourly 

minimum peak day (10 March).  The PMA range about 1.5. Compared with other 

two PPRT models, proposed comfortable PPRT house indicated lower values for day 

times.   
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Figure 4.20:  The average indoor temperature for maximum and minimum peak day 
dry bulb temperature of three houses design on hourly data 
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Figure 4.21:  The average PMV for maximum and minimum peak day dry bulb 
temperature of three houses design on hourly data 

 

Figure 4.22, shows the mean values of indoor temperature obtained for three 

houses model on annual monthly data.  On existing  and proposed comfortable PPRT 

houses, reference rooms experienced average air temperature that is below the 

neutral temperature, for all the months except in month of June.  For reference room 

on government initiated PPRT house, the average air temperature (31°C) above the 

neutral temperature, for all correspondence months are found. Figure 4.23, shows the 

average PMV values obtained for thermal comfort index of the indoor reference 

PPRT house on monthly data on south and east orientations house.   The 

correspondence average PMV were increased between 2 until 2.5 for government 

initiated PPRT house compared to the proposed comfortable PPRT about 1.5 (warm 

acceptable), while the maximum PMV value 2.1 (warm) of existing orang asli house 

on month of March. The average PMV value indicated 1.4 for proposed comfortable 

PPRT on month of January.  

existing – 6 July 
government initiated- 6 July 
proposed comfortable- 6 July 

existing – 10 March 
government initiated- 10 March 
proposed comfortable- 10 March 
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Figure 4.22:  Comparison of the average temperature for tested correspondence 
orientation of three houses design on monthly data 
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Figure 4.23:  Comparison of the average PMV for tested correspondence 

orientation of three houses design on monthly data 
 

 

4.3 Summary 

 

 

The results, analysis and findings of the simulation exercise are done to 

determine the influence of the house design for hourly conditions and orientations in 

term of air temperature and PMV were presented in this chapter.   The analysis of the 

above performance variables were carried out for the existing, government initiated  

and proposed comfortable PPRT model in annual monthly data for east, west, north 

and south orientations.   The results of air temperature and PMV value were plotted 

existing – south 
government initiated- south 
proposed comfortable- south 

existing – east 
government initiated- east  
proposed comfortable- east  

existing – east 
government initiated- east  
proposed comfortable- east  

existing – south 
government initiated- south 
proposed comfortable- south 
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against house model and orientation in the same graph.  Similarly, absolute target 

neutral temperature was also based against house model in the same discussion.   It 

enabled us to understand the influence of house model on the correspondence 

orientations, dates and hours.  The hourly average results of air temperature and 

PMV were also analyzed for the respective orientations.  This gave overall view of 

the influence of different house model and orientation on the patterns of temperature 

and PMV value variation throughout the day.  This chapter has analyzed the results 

obtained for the correspondence house model and house orientation for improved 

thermal comfort.   

 

The proposed comfortable PPRT house provides the optimum thermal 

comfort. It enabled us to understand the influence of PPRT house components on the 

overall thermal comfort.  The results showed that material and room position were 

main contributors on improving thermal comfort.  The results revealed that the use of 

wall material with low U value, the use of open-able windowsand walls, and south 

house orientation were the three important aspects towards building’s thermal 

comfort condition.   



 

 
 
 

CHAPTER 5 
 
 
 
 

CONCLUSION   

 
  

The findings of the research have been presented and discussed in the 

previous chapter. This final chapter will conclude the overall findings of the report. 

The application of the research findings are also discussed in relation to the aims and 

objectives of the report as set in Chapter 1.  Finally, further work related to this study 

will be suggested in this chapter in order to strengthen and compliment this report. 

 
 
 
 
5.1 Review of Study Objectives and Research Questions 
 
 
 
 As stated in Chapter 1, the main aim of this study is to assess and compare 

the comfortable housing model for the goverment initiated PPRT house design for 

orang asli. This objective was achieved by using the IES 5.6 Integrated Environment 

Solution computer simulation program. Other specific objectives of the study are as 

follows: 

- To evaluate thermal comfort performance in PRRT house 

- To develop thermal comfort design  for PRRT house 

 

The hypothesis of the study is that “appropriate” design of PPRT house model for 

orang asli will achieve the following: 

- Decrease temperature inside house or similar with outdoor climate condition.    

- Provide optimum PMV within the range of the thermal comfort requirement 

(0 until 1).   
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 The term “appropriate” refers to the best performance of house model which 

will achieve lower air temperature and PMV index inside the house in order to obtain 

comfortable house.  

 

The following questions are addressed in this study: 

1. Is the the existing orang asli house model comfortable in Malaysian climatic 

condition? 

2. Is the the goverment initiated PPRT house model comfortable in Malaysian 

climatic condition? 

3. Which house models obtain better thermal comfort condition in Malaysia in 

relation with climate condition elements? 

4. Does the the proposed comfortable PPRT house at (Q3) effective to increase 

thermal comfort condition in orang asli house? 

5. What is the limitation of the the proposed comfortable PPRT house model 

towards increasing comfortable house? 

 
 
 

5.2 Research Conclusion 
 

 
This section attempts to conclude the research by summarizing the major 

findings of the research and answering the research questions as stated.  They are as 

follows: 

 
 
5.2.1 Thermal Comfort Performance 
 
 
a. The air temperature in the existing house is higher compare to neutral 

temperature.  The results were compared for all months. June received higher 

than other months.  

 

b. Influence of PMV index on the the existing orang asli house indicated that in 

month of March and June, significant impact on the thermal comfort are 

experienced than in the other months under Malaysian condition. Therefore, it is 
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important to consider the PMV index in existing house especially in the 

afternoon times with respect to outdoor conditions. 

 

c. Simulations of the government initiated PPRT house were developed to predict 

the air temperature in similar condition. Observations on the internal air 

temperature revealed that this house is above the neutral temperature for all 

respectively conditions.  The investigation of the PMV index also showed that 

this house on all correspondence months expperienced the PMV value of an 

uncomfortable condition. Generally, the government initiated PPRT house 

experienced the highest PMV induction. Increase of air temperature on the 

annual month data also impact the increase of PMV values of the  thermal 

comfort.   

 

d. The air temperature values indicated lower value in the the proposed comfortable 

PPRT house compared to another house models.  Considering the material 

attributes to develop this the proposed comfortable PPRT house; therefore the 

study suggest that wall material with low U value is required to achieve 

maximum thermal comfort.   

 

e. The study indicated that the the proposed comfortable PPRT house developed 

having main modification factors achieve the minimum PMV index.   The the 

proposed comfortable PPRT house model performance on different conditions 

determined by the PMV reduction shown positive results.  Hence, it can be 

concluded, that for a comfortable house model, the the proposed comfortable 

PPRT house can be used to develop the appropriate design of PPRT house model 

for orang asli and provide lower than neutral temperature and good PMV index. 

 

f. The simulation results comparing different house models indicate that the the 

proposed comfortable PPRT house provide internal air temperature and PMV 

index lower than the other models on hourly data. This is below the minimum 

neutral temperature for thermal comfort (which is 28°C). In the case of the the 

proposed comfortable PPRT house, the lowest internal air temperature of 24°C 

on minima peak day (10 March) was achieved.  
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g. Also the results of monthly data indicated that average air temperature and PMV 

are lower on propose comfortable PPRT model than government initiated PPRT 

model for all respectively months.   

 
 
 
 
 
5.2.2 Thermal Comfort Design  

 

 

a. Hourly data in comfort condition had more impact on the amount of the air 

temperature and PMV received inside the existing orang asli house.  Hence, the 

results indicated that in the afternoon, the house has uncomfortable air 

temperature and PMV index.   

 

b. The air temperature and PMV index on government initiated PPRT house 

indicated maximum air temperature and PMV in the afternoon time.  Differently, 

it experienced highest maximum air temperature and PMV compared to the other 

models.  Influence of the afternoon time indicated an increase in air temperature 

and has significant impact on the uncomfortable condition.  

 

c. The hourly data of the the proposed comfortable PPRT house howed the 

maximum air temperature and PMV on different peak DBT days.  Increase of air 

temperature on mid day until the afternoon time reduced the air temperature and 

PMV.  The constant air temperature obtained contributes to effective comfortable 

condition on minima peak DBT day.    

 

d. Simulation of the existing house on the south orientation resulted in better air 

temperature performance than on the north, south, east and west orientations.  

This implies that decreasing air temperature had an impact to PMV index 

reduction. These results can be combined to obtain the optimum thermal comfort 

house model.  
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e. The uncomfortable condition on government initiated PPRT house was obtained 

on the east orientation. It showed the highest air temperature and PMV index.  

This indicates that when considering only the indoor air temperature and PMV 

index, the east orientation can become thermally uncomfortable.   

 

f. The relationship between the thermal comfort and the the proposed comfortable 

PPRT house orientation were determined based on the assumptions of the air 

temperature and PMV reduction on the selected orientation. The optimum 

orientation suggested that the maximum temperature and PMV reduction can be 

achieved on south orientations  

 
 
 
5.3 Suggestions for Further Research 

 

 

This research has revealed two significant findings. Firstly, the introduction 

of the proposed comfortable PPRT house is significantly produced thermally 

comfortable house. It can maintain the preferable air temperature and PMV index 

required for thermal comfort (below 28°C and PMV index 1) in all selected rooms. 

Secondly, the existing orang asli and government initiated PPRT house (similar 

cases for PPRT house in the planning guideline) experienced minimum thermal 

comfort inside the rooms. As a result the internal thermal comfort performance of the 

government initiated PPRT house produce warm and hot condition. Some of the area 

even achieved air temperature above 31°C and 2.5 of PMV index. However, the 

introduction of the proposed comfortable PPRT house material and window opening 

at the proposed comfortable PPRT house increases and further improve the thermal 

comfort condition.  

 

 

This study has suggested that how a simple PPRT house strategy can be 

effectively used to reduce the air temperature and increase comfortable condition.  

The the proposed comfortable PPRT house design strategies require simple and 

rational modifications in material of the wall and window openings.  However, 

several areas of study need further investigation, to develop the knowledge of the 
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proposed comfortable PPRT house strategies in Malaysia and regions with design of 

similar climates.  Therefore, it is recommended that future research could look 

further into this area in order to strengthen and compliment this research.  

 

 

The following are some suggestions: 

a. Investigation on the effectiveness of the wall material.  Apart from lower 

U value of wall material, the other factors need to be investigated are; the 

combining between several local material.  

b. Further investigations are required to determine the effects of the the 

proposed comfortable PPRT house strategy on different room size on 

various building forms. 

c. Further studies need to be carried out to develop a method to define 

housing design by considering the total heat transfer.  In hot and humid 

tropics influence of heat gain on thermal effects are significant.  

Therefore, considering the total heat transfer may be an important aspect 

in determining different thermal comfort strategies.  Studies on heat 

transfer properties can be used to develop a design method to determine 

different comfortable housing strategies for the tropics.      

d. Further study and analysis on existing orang asli and government initiated 

PPRT house typology should be carried out to give a better indication on 

the indoor thermal comfort performance. Hence, a better comparison on 

the performance can be carried out. 

 

 

Finally, it can be acknowledged that this work is a small contribution by the 

researcher towards providing comfortable and healthy PPRT house for the hardcore 

poor. It is hoped that it can induce good design solution that is not impossible in term 

of its low cost towards providing better comfort and more beneficial to the user. 
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This prototype model house is about thermally comfortable 
housing model for orang asli in Malaysia. It is an alternative to 
the government initiated designed under JHEOA (The 
Government implemented specific development programmes
for the indigenous community, the Orang Asli, which included 
economic and social programmes that improved their standard 
of living by a special programme called the Hard-core Poor 
Development Programme or PPRT). 

INTRODUCTION

ISSUE

The PPRT house developed by the government is not only 
small but has heat-trapping concrete walls and heat-radiating 
zinc roofs.  This house indicated an uncomfortable indoor 
condition if compared to the original or existing orang asli
house. This is due to the architectural design solutions that do
not permit good passive cooling strategy for achieving thermal 
comfort. This can be illustrated by high indoor temperature 
experienced indoor in the government initiated PPRT house 
(under JHEOA) during day time (through indoor comfort 
computer simulation study).

The New Alternative Proposal for PPRT 
house is designed by adopting traditional 
orang asli house elements as possible 
alternative techniques used for passive 
cooling strategies, and also embracing and 
maintaining their lifestyle. The construction 
uses light modular construction technique 
of mostly timber post and beam and flush 
door panels for the house 

PROPOSITION

When similar indoor comfort computer 
simulation study was performed. The 
proposed PPRT house showed that it 
achieved good  thermal comfort 
performance with reduce air temperature 
(until 2°C) and PMV index (until 1). The 
other significant factor is that it can 
continuously maintain comfortable indoor 
condition even in mid day and regardless 
of the outside climate condition. This 
effect is important toward improving the 
thermal comfort performance in the PPRT 
house for orang asli through the use of 
passive cooling design strategy. 

OUTCOME

Existing House

Existing House

Government Initiated House

Government Initiated House

New Alternative Prototype House

New Alternative Comfortable House Model for PPRT
Principal Researcher: Assoc. Prof. Dr. Mohd Hamdan bin Ahmad, Researcher: Assoc. Prof. Dr. Mohd Zin bin Kandar, Roshida Abd Majid, Research Assistant: Halimah Yahya & Agung Murti

Nugroho
FRGS MOHE VOT 78002 
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METHODOLOGY

DEVELOPMENT OF SIMPLIFIED
PPRT MODEL

The Government PPRT House 
Simulation Model

Climate Climate 
Analysis Peak Days

PPRT House
Primitive, Government, 

Alternative model

Thermal 
Index Neutrally, Predicted Mean Vote

Result

IES 
simulation Validation

THE RESEARCH DESIGN/FLOW

The Primitive House Simulation 
Model

The Proposed New 
alternative PPRT House 
Simulation Model
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Comparison of the dry bulb temperature result between field measurement 
and IES simulation 

THE VALIDATION STUDY
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Comparison of the IES Kuala 
Lumpur weather data with 

Subang Meteorological Station 
weather file data (2000-2003) for 
dry bulb temperature and relative 

humidity (Latitude: 3.120, 
Longitude: +101.550 & Time 

zone: +7) 

Comparison of the monthly data between 
IES Kuala Lumpur and Subang
Meteorological Station weather file data 
(2000-2003) for total global solar 
radiation (Latitude: 3.120, Longitude: 
+101.550 & Time zone: +7)

Comparison of the monthly data between 
IES Kuala Lumpur and Subang

Meteorological Station weather file data 
(2000-2003) for wind speed (Latitude: 

3.120, Longitude: +101.550 & Time zone: 
+7)

CLIMATE DATA

New Alternative Comfortable House Model for PPRT
Principal Researcher: Assoc. Prof. Dr. Mohd Hamdan bin Ahmad, Researcher: Assoc. Prof. Dr. Mohd Zin bin Kandar, Roshida Abd Majid, Research Assistant: Halimah Yahya & Agung Murti
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SIMULATION RESULT
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COMPARISON OF THERMAL COMFORT PERFORMANCE

COMPARISON OF THERMAL COMFORT PERFORMANCE

The average indoor 
temperature for maxima 
and minima peak day 
dry bulb temperature of 
three PPRT house design 
on hourly data

The average PMV for 
maxima and minima 
peak day dry bulb 
temperature of three 
PPRT house design on 
hourly data 

The Primitive House 
Simulation Model

The Proposed New 
alternative PPRT 
House Simulation 
Model

The Government 
PPRT House 
Simulation Model

COMPARISON OF THERMAL COMFORT PERFORMANCE

COMPARISON OF THERMAL COMFORT INDEX

Comparison of the 
average temperature for 
tested correspondence 
orientation of three 
PPRT house design on 
monthly data 

Comparison of the 
average PMV for 
tested 
correspondence 
orientation of 
three PPRT house 
design on monthly 
data 

New Alternative Comfortable House Model for PPRT
Principal Researcher: Assoc. Prof. Dr. Mohd Hamdan bin Ahmad, Researcher: Assoc. Prof. Dr. Mohd Zin bin Kandar, Roshida Abd Majid, Research Assistant: Halimah Yahya & Agung Murti
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DESIGN PROCESS AND IDEA GENERATIONS

IDEA FROM GLENN MURCUTT

IDEA FROM EXISTING DWELLINGS

FINAL DESIGN

New Alternative Comfortable House Model for PPRT
Principal Researcher: Assoc. Prof. Dr. Mohd Hamdan bin Ahmad, Researcher: Assoc. Prof. Dr. Mohd Zin bin Kandar, Roshida Abd Majid, Research Assistant: Halimah Yahya & Agung Murti
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FINAL DESIGN

SHORT SECTION

FLOOR PLAN

LONG SECTION

FRONT VIEW

SIDE VIEW

New Alternative Comfortable House Model for PPRT
Principal Researcher: Assoc. Prof. Dr. Mohd Hamdan bin Ahmad, Researcher: Assoc. Prof. Dr. Mohd Zin bin Kandar, Roshida Abd Majid, Research Assistant: Halimah Yahya & Agung Murti
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