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DEVELOPMENT OF ZEOLITE CATALYST FOR THE CONVERSION OF 

NATURAL GAS TO ULTRACLEAN LIQUID FUEL 

 

ABSTRACT 

 

 

The use of crude oil as the feedstock for gasoline production has a major drawback 

due to depleting oil deposits.  On the contrary, natural gas is available in abundance; 

therefore, it is considered to be a more attractive alternative source for gasoline 

production.  Extensive research efforts have been devoted to the direct conversion of 

methane to higher hydrocarbons and aromatics.  The transformation of methane to 

higher hydrocarbons and aromatics has been studied under oxidative and non-

oxidative conditions.  The chemical equilibrium compositions of methane oxidation 

to higher hydrocarbons have been calculated using the minimum total Gibbs energy 

approach.  The results showed that the conversion of methane increased with oxygen 

concentration and reaction temperature, but decreased with pressure.  In term of 

catalyst development, it was found that the W-H2SO4/HZSM-5 catalyst prepared 

with acidic solution showed the highest activity for the conversion of methane to 

gasoline in the absence and presence of oxygen.  The performance of the Li modified 

W/HZSM-5 catalyst was improved which was attributed to the suitable amount of 

Brönsted acid sites in the catalyst.  The dual reactor system which consisted of OCM 

and oligomerization reactors was also investigated.  The result yielded liquid fuels 

comprising of C5-C10 aromatics and aliphatics hydrocarbons.  In another approach 

dual bed system was studied and it was found that Ni/H-ZSM-5 was a suitable 

catalyst for the conversion of methane to gasoline products.  Kinetic studies on 

methane conversion in the presence of co-feeds ethylene and methanol to produce 

higher hydrocarbons in gasoline range was performed.  The reaction rate increased 

when methane concentration in the feed mixture decreased.  The correlation between 

experimental and calculated reaction rate indicates that the model fits the data well. 
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ABSTRAK 

 

 

 Penggunaan minyak mentah sebagai bahan mentah dalam penghasilan 

gasolin mempunyai satu kelemahan kerana pengurangan deposit minyak.  

Sebaliknya, gas asli terdapat dalam jumlah yang banyak; oleh itu, ia menjadi satu 

sumber alternatif yang menarik bagi penghasilan gasolin.  Usaha penyelidikan yang 

meluas telah ditumpukan kepada penukaran secara langsung metana kepada 

hidrokarbon tinggi dan aromatik.  Penukaran metana kepada hidrokarbon tinggi dan 

aromatik telah dikaji di bawah keadaan beroksigen dan tanpa oksigen.  Komposisi 

kesetaraan kimia pengoksidaan metana kepada hidrokarbon dikira menggunakan 

pendekatan minimum jumlah tenaga Gibbs.  Keputusan menunjukkan penukaran 

metana meningkat dengan peningkatan kepekatan oksigen dan suhu tindakbalas, 

tetapi menyusut dengan tekanan.  Dalam pembangunan katalis, didapati bahawa 

katalis W-H2SO4/HZSM-5 yang disediakan dengan larutan berasid menunjukkan 

aktiviti tertinggi bagi penukaran metana kepada gasolin dalam kehadiran dan 

ketiadaan oksigen.  Prestasi katalis W/HZSM-5 terubahsuai Li telah diperbaiki yang 

mana telah menyumbang kepada jumlah tapak aktif Brönsted yang sesuai di dalam 

mangkin.  Sistem dwi-reaktor yang mengandungi OCM dan reaktor pengoligomeran 

juga dikaji.  Keputusan memberikan hasil larutan bahan api yang terdiri daripada 

hidrokarbon alifatik dan aromatik C5 – C10.  Dalam pendekatan yang lain, sistem dwi 

lapisan telah dikaji dan didapati bahawa Ni/H-ZSM-5 merupakan mangkin yang 

sesuai bagi penukaran metana kepada produk gasolin.  Kajian kinetik bagi penukaran 

metana dalam kehadiran bahan mentah sokongan etelena dan metanol untuk 

menghasilkan hidrokarbon tinggi dalam julat gasolin telah dijalankan.  Kadar 

tindakbalas meningkat apabila kepekatan metana dalam campuran bahan mentah 

berkurang.  Kaitan antara eksperimental dan kadar tindakbalas yang telah dikira 

menunjukkan bahawa model adalah menepati data.  
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CHAPTER 1 

 

 

 

DUAL EFFECTS OF SUPPORTED W CATALYSTS FOR 

DEHYDROAROMATIZATION OF METHANE IN THE ABSENCE OF 

OXYGEN  

 

 

 

Abstract 

 

 

 The screening of a series of W-based catalysts on different supports i.e. 

HZSM-5, Hβ, USY and Al2O3 for the dehydroaromatization of methane (DHAM) 

revealed that HZSM-5 emerged as the best support.  Next, the performance of 

W/HZSM-5 and W-H2SO4/HZSM-5 catalysts for the DHAM reaction was compared 

to study the effect of acidic treatment in the impregnation method.  The results 

showed that the optimum activity of W-H2SO4/HZSM-5 catalyst exceeded that of 

W/HZSM-5 catalyst.  Finally, the influence of Si/Al ratio in the W-H2SO4/HZSM-5 

catalyst was studied and the catalyst with Si/Al ratio=30 was found to be the most 

promising for the DHAM reaction.  The remarkable activity of the catalyst is 

attributed to the presence of dual effects: suitable content of octahedral polymeric 

and tetrahedral monomeric tungstate species accompanied by proper amount and 

strength of acid sites in the catalyst. 

 

Keywords: DHAM, W-based catalyst, dual effects 
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1.1 Introduction 

 

 

 DHAM to aromatics have received considerable attentions [1-18] in the study 

of catalytic reactions.  The most common catalysts reported to be promising for 

DHAM are HZSM-5 supported Mo and also W catalysts [2-18].  Some of the 

characteristics of an active DHAM catalyst include a highly dispersed active metal 

species on the surface and also a proper amount of acidity for the support [1-12].  

Mo-based catalysts supported on HZSM-5 have been used for catalytic reaction of 

DHAM in the absence of oxygen.  By using in situ FT-IR pyridine technique the acid 

sites of Mo/HZSM-5 and the interaction between Mo species and HZSM-5 were 

investigated [2].  By combining FT-IR study with catalytic evaluation, it was 

concluded that Mo/HZSM-5, which had a 60% remaining number of original 

Brönsted acid sites exhibited a good catalytic performance.  In addition, Naccache et 

al. (2002) [3] reported that the formation of Mo2C species in Mo/HZSM-5 under 

methane stream was responsible for the formation of aromatics.  The reaction 

mechanism for the production of aromatics proceeded via the formation of acetylene 

from methane on Mo2C and the acetylene subsequently oligomerized into aromatics.  
27Al and 29Si MAS NMR were employed to investigate the interaction between Mo 

species and HZSM-5 [13].  The results revealed that strong interaction occurred 

between the metal species and HZSM-5 on Mo/HZSM-5 with relatively higher 

amount of Mo species and caused the framework aluminum to be extracted into the 

extra framework.  As a consequence, the catalytic activity dropped dramatically.   

  

 

 Recently, many authors reported that the activity and stability of a HZSM-5 

supported W catalyst for DHAM increased at a relatively high temperature [4-7, 14].  

Improved active and heat-resisting catalysts for DHAM have also been developed by 

the incorporation of Zn (or Mn, La, Zr) into W/HZSM-5 [4-6].  The present work 

studies the dehydroaromatization of methane over a series of 3 wt %W based 

catalysts prepared with different supports, under different preparation conditions and 

several Si/Al ratios.  The relationship between the nature of tungsten species and the 

acidic sites of the catalysts with the catalytic activity is reported.  



 3
1.2 Experimental Procedure 

 

 

1.2.1 Catalyst preparation 

 

 

 A series of 3 % W-based catalysts with different supports were prepared by 

aqueous impregnation of support materials (HZSM-5 ; Hβ ; USY ; Al2O3) with 

ammonium meta tungsten ((NH4)6W12O40.H2O) solution, followed by drying at 393 

K for 2 h and calcining at 773 K for 5 h. Another set of a series of 3 % W-

H2SO4/HZSM-5 catalysts with different Si/Al ratios were prepared by impregnating 

HZSM-5 with ((NH4)6W12O40.H2O) and H2SO4 solution (pH =2-3 ) followed by 

drying and calcining at the same previous conditions.  All the catalysts were pressed, 

crushed, and sieved to a size of 30-60 mesh.  

 

 

 

 

1.2.2 Catalyst Characterization 

  

 

 The BET surface area and the pore volume of the samples were obtained by 

means of nitrogen adsorption determined at 77 K in a Thermo Finnigan surface area 

analyzer. The acidity of the catalysts was measured by means of TPD-ammonia 

using a Micromeritics TPD/TPR/O analyzer. The samples were pretreated in flowing 

nitrogen at 15 K/min. up to 873 K and then cooled to 383 K.  Next, the samples were 

saturated with pure ammonia followed by flushing the physically adsorbed ammonia 

in helium stream at 373 K for 1 h. Finally, the sample was heated up to 873 K in a 

heating rate of 15 K/min. The recorded spectra represent the number and strength of 

the catalyst acidity. The nature of W species on the catalysts was determined by 

means of UV diffuse reflectance spectra. UV DRS spectra were performed on a 

Perkin-Elmer Lamda-900 spectrometer.  The scanning wavelength range was 198-

500 nm and the scan speed was 120 nm/min.  



 4
1.2.3 Catalyst Evaluation 

 

 

 The catalyst test was conducted in a micro fixed-bed quartz reactor with 

internal diameter of 9 mm and length of 300 mm under atmospheric condition.  In 

each run, the catalyst charge was 1 g.  Prior to the catalytic testing, the catalysts were 

pretreated in nitrogen stream for 1 h at 823 K.  Feed gas containing CH4+ 10 % N2 

were passed through over the catalyst bed at WHSV of 1800 ml.g-1.h-1.  Nitrogen was 

used as an internal standard for calculating the methane conversion and selectivity of 

the reaction products.  The reaction products were analyzed by a Hewlett-Packard 

5890 on-line GC equipped with TCD using Porapak Q, molecular sieve 5A, UCW 

982, and DC 200 columns.   

 

 

 

 

1.3 Results and discussion 

  

 

 1.3.1 Catalytic performance of supported W catalysts 

 

 

 Figures 1.1 (A)-(C) show the methane conversion and product selectivity as a 

function of time on stream over W/USY, W/Al2O3, W/Hβ, W/HZSM-5 and W-

H2SO4/HZSM-5 catalysts.  It can be seen that methane conversion decrease gradually 

with increasing time on stream over all the catalysts.  Without considering the 

acidified effect of W supported on HZSM-5 catalyst, the data on conversion reveal 

that W/HZSM-5 catalyst, prepared using a neutral solution in the impregnation 

method, is the most active.  The effect of preparation condition using H2SO4 solution 

with pH=2 – 4 for the impregnation method was studied by comparing the activities 

of W/HZSM-5 and W-H2SO4/HZSM-5.  The result shows that W-H2SO4/HZSM-5 

gives higher methane conversion than W/HZSM-5 catalyst at the initial time on 

stream (within 100 min) and exhibits a maximum value of 9.59 % at 973 K and 



 5
GHSV =1800 ml/g.h., but decreases very rapidly beyond that.  The rapid 

deactivation observed for W-H2SO4/HZSM-5 catalyst after reaching its maximum 

conversion at temperature of 1073 K, pressure of 0.1 MPa, and GHSV of 1500 

ml/h.g-cat, respectively is similar to the work reported by Zeng et al. [4].  Figure 1.1 

(B) exhibits the corresponding aromatics selectivity for DHAM over 3 % W-based 

catalysts with different supports.  Obviously, the aromatics selectivity over all the 

catalysts decreases steadily with time on stream after reaching maximum.  Over the 

whole time on stream, it can be seen that W-H2SO4/HZSM-5 displays the highest 

aromatics selectivity having maximum at 99.5 % whereas the lowest aromatics 

selectivity on stream is observed over W/Al2O3 catalyst.  

 
 

 
 
 
 
 
 
 
 
               
 
 
 
 
 
          
 
 
 
 
 
 
 
 
 
 
 
Figure 1.1(A-C): Methane conversion and product selectivities over the 3 wt.%-loading W 

catalysts with various supports for DHAM at 973 K , GHSV=1800 ml/g.h , Feed Gas = CH4 

+ 10% N2, 1 atm. Catalysts: ( )W-H2SO4/HZSM-5 (Si/Al=30); ( )W/HZSM-5 (Si/Al=30 ; 

( )W/Hβ(Si/Al=25); ( )W/USY(Si/Al=5.1); ( )W/Al2O3.
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In addition to aromatics, the products also contain C2 hydrocarbons, but to a lesser 

extent.  The selectivity of C2-hydrocarbons (C2H4 and C2H6) over the 3 wt. %-

loading W catalysts with various supports is given in Figure 1.1 (C).  As can be seen, 

considerable amount of C2 is produced over W/Al2O3 catalyst compared with other 

W supported catalysts.  Between the W/HZSM-5 and W-H2SO4/HZSM-5 catalysts, 

the C2-hydrocarbons selectivity is higher over the latter than that the former.  

Meanwhile, the selectivity of C2-hydrocarbons over W/Hβ and W/USY catalysts are 

lower than that over the W-H2SO4/HZSM-5 and W/Al2O3 catalysts.

      

 

   Next, the effect of Si/Al ratio in the acidified W based catalyst using HZSM-

5 as a support was determined.  Several W-H2SO4//HZSM-5 catalysts with different 

Si/Al ratios were prepared by the impregnation method in acidic solution with pH 2-

3.  The variation of methane conversion over 3% wt. W-H2SO4/HZSM-5 with 

different Si/Al ratios is presented in Figures 1.2(A).  The results indicate that 

methane conversion is dependent on the Si/Al ratio of the HZSM-5 support.  The 

higher is the Si/Al ratio, the lower the methane conversion will be.  A methane 

conversion over 3 wt.% W-H2SO4/HZSM-5 catalyst with Si/Al =30 approaches a 

maximum at 22.08 %, and further increases in the Si/Al ratio leads to a decline in the 

methane conversion.  Meanwhile, the selectivity of aromatics over 3 wt. % W-

H2SO4/HZSM-5 with different Si/Al ratios is presented in Figure 1.2 (B).  A 

maximum in the aromatics selectivity of 97.49 % is achieved over the 3% W-

H2SO4/HZSM-5 (Si/Al ratio=30) catalyst.  On the other hand, the C2 selectivity over 

3% W-H2SO4/HZSM-5 with various Si/Al ratios increase with an increase in the 

time on stream, as seen in Figure 1.2 (C).  A gradual but significant increment in the 

on stream C2 selectivity from 2.69 % to 12.19 % was observed over the 3% W-

H2SO4/HZSM-5 catalyst with Si/Al=30.   
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Figure 1.2 (A-C): Effect of Si/Al ratio on the methane conversion and product 

selectivities over 3 wt.% W-H2SO4/HZSM-5 catalysts for dehydroaromatization of 

methane at 1073 K , GHSV=1800 ml/g.h Feed Gas = CH4 + 10% N2, 1 atm. 

Catalysts : ( )W-H2SO4/HZSM-5 (Si/Al=30); (  )W-H2SO4/HZSM-5 (Si/Al=50); 

( ) W-H2SO4/HZSM-5 (Si/Al=80). 

 

 

Further investigation was carried out to study the effect of GHSV on the 

catalytic activity over W-H2SO4/HZSM-5 catalysts with different Si/Al ratios.  The 

results are presented in Figures 1.3 (A), (B), (C) for the dependence of GHSV on 

methane conversion, aromatic selectivity and C2-hydrocarbons, respectively.  The 

influence of GHSV on the catalysts activity for non oxidative DHAM reaction has 

been studied in various range of the GHSV [6, 18].  In the present work, GHSV in 

the range of 3000 – 9000 ml/g/h was applied.  The results show that methane 

conversion and aromatic selectivity decrease significantly, while C2 hydrocarbons 

selectivity increase obviously with increasing GHSV  
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Figure 1.3 (A-C): Effect of GHSV on: (A) methane conversion, (B) aromatics 

selectivity and (C) C2 hydrocarbons.  Catalysts: (  ) W-H2SO4/HZSM-5 (Si/Al=30); 

(  ) W-H2SO4/HZSM-5 (Si/Al=50); ( ) W-H2SO4/HZSM-5 (Si/Al=80). Reaction 

conditions: 1073 K, feed gas: CH4 + N2, 1 atm, the data taken at 1 h after the 

reaction starts. 
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As can be seen in Figure 1.3, the decreasing activity with time on stream over all 

the 3 % W-H2SO4/HZSM-5 catalysts with different Si/Al ratios exhibits a similar 

trend indicating that GHSV is unfavorable to methane conversion and formation of 

aromatics product.  A similar observation has been confirmed previously [6].  

Furthermore, from Figure 1.3 it can be seen the rapid decline in methane conversion 

and selectivity of aromatics of 3 %W-H2SO4/HZSM- 5 catalyst with Si/Al =30, 

while, a gradual decrease over both the catalysts with Si/Al = 50 and 80 are 

observed.  The trend could be attributed to coke formation.  In addition, study on the 

effect of adding O2 into methane feed gas for DHAM reaction over 3W-

H2SO4/HZSM-5 (Si/Al=30) catalyst was performed to enhance the catalyst activity.   

 

 

The result in Figure 1.4 shows that the activity of catalyst is improved 

significantly after introducing 2 % O2 in methane feed.  It has been reported by 

several authors [1, 6,8,17,19] that the addition a suitable amount of oxidants such as 

CO, CO2 and O2 into methane feed resulted in remarkable enhancement in the 

catalyst activity and stability due to suppression of coke deposited in the catalyst.  In 

the oxidative condition, the aromatics and C2-hydrocarbons products accompanied 

by COx (CO and CO2) as side-products were detected.  Meanwhile, in the non 

oxidative condition, the aromatic and C2-hydrocarbons were detected with negligible 

amount of COx.  The results of activity testing reveal that, in the presence of O2 in 

methane feed, methane conversion decreases by 40.1 % of its initial value (17.59 %) 

and the corresponding selectivity to aromatics decrease slightly from 85.29 % to 

63.25 % within 360 minute time on stream.  In the non oxidative condition, the 

reduction of methane conversion is 81.75 % of its initial value (15.46 %) 

accompanied by a quick decline in the aromatic selectivity from 75.94 % to 16.27 % 

after 360 minute of reaction.  On the contrary, the C2-hydrocarbons increase with 

increasing time on stream from 3.67 to 11.74 % for the oxidative condition.  In the 

presence of oxygen, C2-hydrocarbons, initially, increase then decrease with 

increasing time probably due to deposition of coke leading to diminishing C2 

hydrocarbons selectivity. 
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Figure 1.4: Comparison between oxidative and non oxidative of DHAM reaction

3 %W-H2SO4/HZSM-5. (Si/Al=30) at 1073 K, GHSV=3000 ml/g/h, 1 atm. 
 

3.2 Correlation between activity and characterization of supported W  

catalysts 

 The different activities and stabilities exhibited by a series of the 3 % W-

sed catalysts with different supports in the DHAM suggest that the physico-

emical properties of the catalyst support affect the performance of the catalysts.  

ZSM-5 possesses two-dimensional pore structure with a 10-membered ring.  Its 

re system consists of a straight channel with pore diameter of 5.3 x 5.6 Å.  Hβ has 

two-dimensional pore structure which consists of 12-membered rings with diameter 

 7.6 x 6.4 whilst USY is a large-pore zeolite, with a three-dimensional straight 

annel with supercage pore system [15].  

 

 

The BET surface area and micropore volume of supported W based catalysts 

e given in Table 1.1.  It can be seen that the BET surface area decrease in the 

llowing order W/USY>W/Hβ>W/HZSM-5>WAl2O3 while the micropore volume 
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of the catalysts decrease in the sequence of W/USY>W/Hβ>WAl2O3>W/HZSM-5.  

The BET surface area and micropore volume of the 3%W/HZSM-5 catalyst is 

slightly larger than the 3 % W-H2SO4/HZSM-5 catalyst.  The results may be 

attributed to the difference in the nature of W species present over the catalysts as a 

consequence of the acidic treatment used for the impregnation method.  Meanwhile, 

the BET surface area and micropore volume do not change significantly with 

increasing Si/Al ratio. 

 

 

Table 1.1 BET surface areas and micropore volumes of W supported catalysts 

Catalyst BET surface area 
(m2/g) 

Micropore volume  
(cm3/g) 

W/Hβ  484 0.319 
W/USY  611 0.596 
W/Al2O3  124 0.283 
W/HZSM-5 363 0.232 
W-H2SO4/HZSM-5 (Si/Al=30)  321 0.195 
W-H2SO4/HZSM-5 (Si/Al=50) 356 0.201 
W-H2SO4/HZSM-5 (Si/Al=80)  358 0.186 
 

 

 The performances of the W/USY, W/HZSM-5, and W/ Hβ catalysts all 

prepared with neutral impregnation solution are slightly different at the initial stage 

of the reaction.  Among them, the activities of the W/HZSM-5 and W/Hβ are 

relatively more stable with time on stream than W/USY.  Moreover, HZSM-5 was 

found to be the best support as evident from the highest activity displayed while 

USY relatively had the lowest stability.  The high activity of a catalyst may be 

related to its pore diameter which is shape selective to the diameter of a benzene 

molecule.  In contrast, a catalyst exhibiting relatively low performance is associated 

to aromatics type carbon condensed ring deposited on the catalyst surface.  The 

carbon is easily formed over the large pore zeolite which has three-dimensional 

structure and cages such as USY. Therefore, the channel is blocked rapidly leading to 

low aromatics selectivity [15]. This is evident from the aromatics selectivity results 

over the W/USY catalyst which is shown to decrease significantly whereas the C2-

hydrocarbons selectivity increased rapidly with time on stream.  The lowest 

aromatics selectivity is displayed over the W/Al2O3 catalyst.  If the acidified effect of 
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W/HZSM-5 is not considered, the highest C2 hydrocarbons selectivity is exhibited 

over the W/Al2O3 catalyst indicating that Al2O3 is less selective toward aromatics 

molecule. 

 

 

The relationship between the acidity of the supports and the activity of the catalysts 

for DHAM is investigated further.  The amount and the strength of the catalysts 

acidity were determined by means of TPD-ammonia.  The number of acid sites of the 

supports and W supported on HZSM-5 catalysts are given in Table 1.2, while the 

NH3- TPD curves of the catalysts supports, i.e. USY, Hβ, HZSM-5 (Si/Al =30), and 

Al2O3 are shown in Figure 1.5.   
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Figure 1.5: Ammonia-TPD profile of catalyst supports used in the present study: 

(a) USY (b) Hβ (c) HZSM-5 (Si/Al =30) (d) Al2O3. 
The amount of desorbed ammonia and desorption temperature are directly 

sociated to the amount and strength of catalyst acidity, respectively.  The NH3-
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TPD curve of HZSM-5, exhibits two separate peaks at 523 K and 743 K attributed 

to weak and strong acid sites.  The existence of the peaks has been reported for the 

acid characterization of HZSM-5 by the NH3-TPD method [16, 17].  Unlike HZSM-

5, the TPD curves of Hβ and USY show a major peak at temperature 523 K and a 

shoulder peak at temperature around 623 K and 653 K for Hβ and USY, respectively.  

The major peak at lower temperature can be assigned to weak acidity, while a 

shoulder peak can be attributed to medium acidity.  Both Hβ and USY possess 

relatively high amount of total acid sites, as presented in Table 1.2. The highest 

amount of ammonia-desorbed shown on USY zeolite is probably due to its high 

specific surface area.  Meanwhile, the TPD-peak of W/Al2O3 mainly shows at low 

temperature indicating the absence of medium and strong acid sites.  And also, as 

seen in Table 1.2, it has low amount of acid sites.  Furthermore, the number of acid 

sites of W supported on HZSM-5 catalysts is also presented in Table 1.2.  As can be 

seen, the amount of acid sites on W-H2SO4/HZSM-5 catalysts prepared with the 

addition of H2SO4 in the impregnation solution is reduced compared with the 

W/HZSM-5 catalyst prepared with neutral solution in the impregnation method.  The 

results in Table 1.2 show that the amount of acid sites on W-H2SO4/HZSM-5 

decreases with increase in Si/Al ratio of HZSM-5.  

 

 

Table 1.2: The number of weak (peak L) and strong (peak H) acid sites of the 

supports and HZSM - 5-supported W catalysts. Peak L at T ∼523 K; Peak H at T 

∼743 K. 

Amount of NH3-desorbed 
(mmol/g.cat) Catalyst 
Peak L Peak H 

Total number of acid
 sites (mmol/g.cat) 

Hβ 1.311 *(L+M) - 1.311 
USY 2.329 ** (L+M) - 2.329 
Al2O3 0.348 - 0.348 
HZSM-5 0.844 0.407 1.251 
W/HZSM-5 (Si/Al=30) 0.698 0.363 1.062 
W-H2SO4/HZSM-5 (Si/Al=30) 0.614 0.240 0.854 
W-H2SO4/HZSM-5 (Si/Al=50) 0.561 0.127 0.687 
W-H2SO4/HZSM-5 (Si/Al=80) 0.356 0.111 0.467 
* (L+M) = Peak L at T∼523 K and peak M at T∼623 K associated to weak and medium acid sites, respectively. 

** (L+M) = Peak L at T∼523 K and peak M at T∼653 K associated to weak and medium acid sites, respectively. 
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Based on the activity results, it is found that 3% W-H2SO4/HZSM-5 (Si/Al=30) 

exhibits a maximum aromatics selectivity which decrease significantly with time on 

stream as presented in Figure 1.2(B).  Moreover, the effect of GHSV ranging from 

1800 – 9000 ml/g.h on the activity of 3 %W-H2SO4/HZSM-5 catalysts with different 

Si/Al ratios indicates that the maximum activity appears on the catalyst with Si/Al 

=30 as shown in Figure 1.3(A) and Figure 1.3(B) for methane conversion and 

aromatics selectivity, respectively.  It seems that in addition to the pore structures 

being shape selective, the strength of the acid sites in the HZSM-5 catalyst also 

contribute to achieving optimum catalyst activity in DHAM reaction as has been 

reported by several authors [1-12, 16].  The decrease in aromatic selectivity after 

reaching a maximum value suggested the event of coke deposition in the catalyst.  

This fact might be due to the presence of extensive amount of strong Brönsted acid 

sites in the 3% W-H2SO4/HZSM-5 (Si/Al=30) catalyst.  It has been reported that 

Brönsted acid sites on the catalyst were responsible for the formation of aromatics, 

however, an excess of the Brönsted acid sites led to severe coke formation [2].  The 

deactivation of the catalyst yielded the decreased in the selectivity for aromatics, 

whereas the C2 selectivity increased markedly as evident from the results illustrated 

in Figure 1.2(B) and Figure 1.2(C).  This result suggests that the coke formation in 

the catalyst could reduce the amount of Brönsted acid sites and the catalyst pore size 

which may lead to the suppression of C2-hydrocarbons oligomerization to form 

benzene.  Meanwhile, a low amount of acid sites and the absence of strong acid sites 

on W/Al2O3 lead to a low DHAM activity.  Likewise, Figure 1.3(C) displays the 

increase in the C2 hydrocarbons selectivity with increase in GHSV.  Similar result 

has been reported [6], indicating C2- species as the primary intermediates which are 

oligomerized subsequently to aromatics.  In order to improve the activity and 

stability of 3 %W/HZSM-5 (Si/Al=30) catalyst, 2 % O2 was added into the methane 

feed, in this case GHSV of 3000 ml/(g.h) was applied.  The activity of the catalysts 

enhance significantly with the presence of oxygen in methane feed as can be seen in 

Figure 1.4.  The same effect are observed on Mo/HZSM-5, Re/MCM-22, and 

W/HZSM-5 catalysts as has been reported by previous authors for DHAM reaction 

with co-feed such as CO, CO2, and O2 in the methane feed [1, 5, 7, 8, 17-19].  The 

enhancement of the catalyst activity in the presence of oxidant is due to the partial 

removal of coke in the catalyst.      
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The UV-DRS method was performed to investigate the nature of tungsten species 

in different supports and the results are shown in Figure 1.6.  The wavelengths for 

the supported W species are reported to be at 220 nm, between 250-325 nm, and 

between 375-400 nm which could be assigned to tetrahedral monomeric tungstate 

species, octahedral polymeric tungstate species and WO3 crystallites, respectively 

[20-22].  As portrayed in Figure 1.6(A), the UV-DRS spectra of W loaded on 

different supports show a major band at 220 nm and a shoulder at 275 nm for zeolites 

as supports.  In contrast, the W/Al2O3 catalyst shows a band at 220nm only and the 

results are consistent with the work reported for Al2O3 supported catalyst [20]. 
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Figure 1.6(A): UV-DRS of 3 % W based catalyst on different supports: (a) Al2O3; 

(b) USY; (c) Hβ ; (d) HZSM-5 (Si/Al=30).  

 

 

The different behavior exhibited by the W/HZSM-5 and W-H2SO4/HZSM-5 (Si/Al 

=30) catalyst was probably due to the change in the nature of W species caused by the 

different preparation conditions employed in the impregnation of W on the HZSM-5.  The 

UV-DRS characterization was carried out to provide the evidence for the existence of 

different kinds of tungsten species and the result is shown in Figure 1.6(B).  The UV-DRS 

spectrum of W-H2SO4/HZSM-5 consists of two major bands at around 220 nm and 310 nm 
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which correspond to the presence of tetrahedral monomeric and octahedral 

polymeric tungstate species, respectively.  Meanwhile, a major band at 220 nm and a 

shoulder at 275 nm appear on W/HZSM-5 indicating that tetrahedral monomeric tungstate 

species are predominant while octahedral polymeric tungstate species exist in a minor 

extent.  The addition of H2SO4 in the impregnation solution can enhance the formation of 

polytungstate in the precursor which is in accordance with the work reported by several 

authors [15, 20-22].  As reported in the literatures the structure of aqueous tungstate anions 

exist in two forms: a tetrahedrally coordinated WO4
2- anion and an octahedrally coordinated 

W12O42
12

.  The equilibrium between these two species is described by: 

 

  12WO4
2- + 12 H+    ⇔  W12O42

12-   + 6 H2O 

 

 Based on the reaction above, the polymeric tungstate species is the 

predominant species in acidic pH due to the shift of equilibrium to the right.  In 

contrast, the tungstate monomer is predominant in the neutral or alkali solution.  

Thus, the catalyst prepared with the addition of H2SO4 in the impregnation solution 

exhibited considerable amount of polymeric tungstate present in the W supported 

catalyst whereas the catalyst prepared in neutral solution had polymeric tungstate in 

minor amount.  The higher activity obtained over the W-H2SO4/HZSM-5 catalyst 

than the W/HZSM-5 catalyst can be attributed to the existence of a considerable 

amount of octahedral polymeric tungstate species which promote the activity of the 

W-H2SO4/HZSM-5 catalyst.  This result seems to be in good agreement with the 

results reported by Zeng et al. [4] who observed that octahedral polymeric tungstate 

species promoted the reducibility of W-H2SO4/HZSM-5 and as a consequence led to 

a high DHAM activity.  

  

 

 However, the rapid decreased in the methane conversion and aromatic 

selectivity over W-H2SO4/HZSM-5 (Si/Al of HZSM-5=30) as appeared in Figure 1.2 

may be attributed to the heavily deposited carbon that covered the acidic and metal 

active sites which led to the deactivation of the catalyst.  Coke deposition also caused 

a severe drop in the selectivity to aromatics and at the same time the selectivity of C2 

increased substantially.  Moreover as shown in Figure 1.2, it was demonstrated that 



 17
methane conversion and aromatic selectivity over the W-H2SO4/HZSM-5 catalyst 

were higher than that over W/HZSM-5 at the initial reaction stage.  However, the 

activity of the W-H2SO4/HZSM-5 catalyst decreased quickly with time on stream. 
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Figure 1.6(B): UV- DRS of (a) 3 % W-H2SO4/HZSM-5 (Si/Al=30) and (b) 3 % 

W/HZSM-5 (Si/Al=30). 
 

 

 

 

 The effect of Si/Al ratio on the W-H2SO4/HZSM-5 catalysts is to elucidate 

the correlation between the acidity of HZSM-5 and the nature of W species on the 

catalytic performance of the catalysts.  The NH3-TPD results reveal that as the Si/Al 

ratio increases, the amount and the strength of the acid sites on the catalysts decrease 

which can be seen in Table 1.2.  Meanwhile, the UV-DRS spectra demonstrated that 

all the samples show two kinds of bands at 220 nm and 310 nm associated to 

tetrahedral monomeric and octahedral polymeric W species respectively as shown in 

Figure 1.6(C).  The increase in Si/Al ratio for HZSM-5 has not affected the 

monomeric and polymeric concentration ratio of W species as indicated by the ratio 

in Figure 1.7.  The ratio implies a considerable amount of active polymeric W 

species are present over the three catalysts.  However, the results of the activity 
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testing shown in Figure 1.2 and Figure 1.3 indicate that as the Si/Al ratio 

increases, the acidic strength weakens and the activity of the catalyst decreases.  The 

same observation was confirmed in a previous study that correlated the activity of 

benzene formation in methane aromatization with the Brönsted acid sites for the 

Mo/HZSM-5 catalyst [10].  It was found that benzene formation on the Mo/HZSM-5 

is substantially dependent on the SiO2/Al2O3 ratios of the HZSM-5 used.  Among the 

Mo/HZSM-5 catalysts series, the one having SiO2/Al2O3 ratio between 30-45 

contains maximum Brönsted acid sites and corresponds to maximum benzene 

formation.  
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Figure 1.6(C): UV-DRS of 3 %W-H2SO4/HZSM-5 with different Si/Al ratios: 

(a) 30; (b) 50; (c) 80. 
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Figure 1.7: Effect of Si/Al ratio of HZSM-5 on A220 and A310 ratio attributed to monomeric  

  and polymeric concentration of tungsten species 

 

 

This result of the activity testing for the catalysts with different Si/Al ratios indicates 

that the activity of W-H2SO4/HZSM-5 catalysts is not only affected by the existence 

of octahedral polymeric W species, but also by the catalyst acidity. Moreover, the 

result concludes that the optimum activity of W based catalysts for DHAM are 

dependent on the balanced amount between the two active sites in the catalyst, i.e. 

acidity and existence of octahedral polymeric and tetrahedral monomeric tungstate 

species.  

 

 

 

 

1.4 Conclusions 

  

 

 Dehydroaromatization of methane (DHAM) was studied over a series of 3 

wt% W based catalysts prepared with different supports (HZSM-5, USY, Hβ, and 

Al2O3), under different preparation conditions and a variety of Si/Al ratios. HZSM-5 
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catalyst was found to be the best catalyst support.  The W-H2SO4/HZSM-5 catalyst 

prepared by acid treatment emerged as the most promising catalyst by exhibiting the 

maximum catalytic activity which is higher than that over W/HZSM-5 prepared by 

impregnating the HZSM-5 precursor with a neutral solution of ammonium tungstate.  

Further investigation on the activity of W-H2SO4/HZSM-5 with different Si/Al ratios 

revealed that W-H2SO4/HZSM 5 catalyst with Si/Al =30 showed an optimum 

methane conversion and aromatic selectivity.  However, a significant decrease in the 

activity of the 3 %W-H2SO4/HZSM-5 (Si/Al=30) catalyst was observed with 

increasing time on stream and GHSV suggesting the deposition of coke in the 

catalyst.  The activity and stability of 3 %W-H2SO4/HZSM-5 (Si/Al=30) catalyst 

improved after introducing 2 % O2 into the methane feed.  The relationship between 

the activity and the characteristics of the catalyst revealed that suitable content of 

octahedral polymeric and tetrahedral monomeric tungstate species accompanied by 

proper amount and strength of acid sites in the catalyst contributed to the highest 

catalytic performance for DHAM 

 



 

 

 

CHAPTER 2 

 

 

 

CONVERSION OF METHANE TO GASOLINE RANGE HYDROCARBONS OVER 

W/HZSM-5 CATALYST: EFFECT OF CO-FEEDING  

 

 

 

Abstract 

 

 

The conversion of methane in the presence of co-feedings into hydrocarbons 

in gasoline range over W/HZSM-5 catalyst has been studied in a fixed bed reactor at 

atmospheric pressure.  The effect of CH4/C2H4 ratio in the methane and ethylene feed 

shows that the fraction of gasoline hydrocarbon (C5
+ aliphatics and aromatics) in the 

product distributions increased with high ethylene concentration.  The effect of 

loading W into HZSM-5 catalyst for the conversion of methane and ethylene (ratio 

CH4/C2H4=86/14) shows that W/HZSM-5 has higher conversion and higher 

resistance towards deactivation than HZSM-5.  The influence of temperatures (250-

450 °C) on the conversion of methane and ethylene feed shows that increasing 

temperature, the selectivity to aromatic products increased.  In addition, the 

conversion of methane with co-feeding of methanol and mixtures of ethylene and 

methanol were also studied.  The result shows that the production of C5
+ aliphatics 

increase with the introduction of ethylene and methanol into the methane feed. 

 

 

Keywords: methane, gasoline, W/HZSM-5 catalysts, co-feeding 
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2.1. Introduction 

 

 

The catalytic activation of methane, the main component of natural gas is 

important since it can be converted into higher hydrocarbons.  The formation of 

synfuels from natural gas appears to be interesting.  Current process available is by 

indirect process in a large commercial scale [23]  The first is the trans-formation of 

natural gas into synthesis gas (CO + H2), by a steam reforming process, autothermal 

reforming or partial oxidation.  The synthesis gas undergoes a Fischer–Tropsch 

reaction, forming hydrocarbons in the diesel and petrochemical naphtha range, in a 

route known as traditional gas-to-liquid (GTL), as it transforms gas into liquid 

derivatives.  The second is the transformation of natural gas into synthesis gas, as in 

the previous example, but this, however, reacts to form other gases, i.e. methanol.  

Then methanol is transformed to gasoline by using a methanol-to-gasoline (MTG).  

The MTG process yields high octane gasoline that is rich in aromatics [28].  

 

 

A few studies have been reported on the direct conversion of methane into 

higher hydrocarbons or motor fuels.  The direct conversion transformation of 

methane to aromatics has attracted increasing attention.  However, the process has 

limitation due to serious coke formation leading to deactivation of the catalyst at a 

temperature as high as 973 K and under non oxidative condition [30].  Conversion of 

methane in the presence of small amounts of light hydrocarbons into higher 

hydrocarbons rich in aromatics under non-oxidizing conditions over Mo-zeolite at 

low pressures (1–2 atm) has been reported by Pierella et al. (1997) [29].  In the 

previous study, Alkhawaldeh et al. (2003) [24] converted methane into higher 

molecular weight hydrocarbons.  Methane is first converted into acetylene.  

Acetylene is then either mixed with methane and converted directly into higher 

molecular weight hydrocarbons over metal-loaded zeolites or hydrogenated into 

ethylene over HZSM-5 where ethylene in a feed mixture comprising methane is then 

reacted over a catalyst to produce higher molecular weight hydrocarbons.  
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In the present study, the conversion of methane in the presence of ethylene and 

methanol respectively was investigated for the production of higher hydrocarbon 

products in the gasoline range.  The introduction of co-feeding methanol and 

ethylene into the methane feed is also reported. 

 

 

 

 

2.2.  Experimental Procedure 

 

 

2.2.1. Catalyst preparation 

 

 

The 2 wt. % W/HZSM-5 catalyst was prepared by impregnation method.  The 

HZSM-5 zeolite (SiO2/Al2O3=30) (commercially available from Zeolyst international 

Co. Ltd) was impregnated with a calculated amount of the aqueous solution of 

ammonium tungstate (NH4)5H5[H2(WO4)6].H2O (A. R.).  The sample was dried at 

110 oC overnight and calcined at 550 oC for 5 h.  The catalyst was crushed and 

sieved into the size of 35-60 mesh for catalytic testing. 

 

 

 

 

2.2.2 Catalytic activity 

 

 

The catalytic reaction was carried out in a fixed bed continuous-flow system. 

The schematic diagram of the experimental setup is shown in Figure 1.  The reactor 

was 15 cm long, 9 mm internal diameter made up of stainless steel.  The reactor was 

heated up by means of an electric furnace at the temperature range between 250 and 

450 oC at p=101 kPa.  The catalyst was placed in the middle of the reactor and 

supported by quartz wool.  Prior to the catalytic reaction, the catalyst was preheated 
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in situ in a flow of nitrogen for one hour at reaction temperature to activate the 

catalyst.  A feed consisting of methane and ethylene mixtures was flowed into the 

reactor at a GHSV of 1200 ml/g h with a CH4/C2H4 molar ratio of 80/20 and 14/86, 

respectively.  In the case of methanol as co-feed, the methanol was added at a flow 

rate of 5 ml/h into methane-ethylene feed by using a syringe pump (model A-99 EZ 

Razel Scientific Instrument, Inc.).  In another case, the reaction was carried out using 

methane and methanol as a feed.  The GHSV of methane was 1200 ml/g.h and flow 

rate of methanol was 5 ml/h.  The gases leaving the reactor were cooled in a water 

bath.  The uncondensed gaseous products were analyzed by means of an on-line gas 

chromatograph (GC) type HP 5890 series II using a TCD.  The GC equipped with 

two columns Porapak Q and molecular sieve 5A for separation of N2, CH4, C2H4, 

while UCW 982 12 % and DC 200 26 % columns were used to separate the lower 

hydrocarbons including C3-C5 hydrocarbons.  The liquid products which 

accumulated over a reaction time comprising of C5
+ aliphatics and aromatics 

hydrocarbons were analyzed on a flame ionization detector (FID) chromatograph 

using HP-1 capillary column. 
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Figure 2.1: Experimental rig set up 
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2.3. Results and Discussion 

 

 

Table 2.1 shows a comparison of products distribution obtained from reacting 

methane and ethylene in the feed at high ethylene concentration (molar ratio 

CH4/C2H4 :10/80) and low ethylene concentration (86/14), respectively over 

W/HZSM-5 catalysts at 400 oC and atmospheric pressure.  As can be seen, the 

products reaction consisted of C2-C4 alkanes (ethane, propane, butane,); C2-C4 

alkenes (ethylene, propylene); C5
+ aliphatics and aromatics including benzene, 

toluene, ethyl benzene, trimethyl benzene, isopropyl benzene, and xylene. 
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Table 2.1: Conversion and hydrocarbon distribution at two different CH4/C2H4  

molar ratios: 10/80 and 86/14, respectively 
Compound CH4 : C2H4= 10:80 (v/v) CH4 : C2H4 = 86:14 

(v/v) 

Conversion, ethylene % 96.6 97.5 

C2-C4 alkanes 24.1 33.01 

C2-C4 alkenes 5.7 19.2 

C5
+ aliphatics 49.67 7.31 

Aromatics 20.53 40.3 

eaction condition: T=400 oC, 1 atm, GHSV= 1200 ml/g.h.

 

 

The effect of CH4/C2H4 ratio on the distribution of products shows that a 

ecrease of ethylene concentration in the feed decreases the fraction of higher 

ydrocarbons (C5
+ and aromatics) content in the product.  When high ethylene 

oncentration (CH4/C2H4 ratio of 10/80) was fed, the percentage of higher 

ydrocarbons (C5
+ and aromatics) and lighter hydrocarbons (C2-C4 alkenes and 

lkanes) products were 70.20 % and 29.8 %, respectively.  At low ethylene 

oncentration in the feed (CH4/C2H4 molar ratio=86/14), the percentage of higher 

ydrocarbons was lower to 47.61 % while the lighter products increased to 52.9 %. 

he result is in agreement with the results reported by Anunziata et al. (1999) [25].  
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They reported the C1 + LPG conversion to higher hydrocarbon and aromatic 

products over Zn-ZSM-11 at GHSV (LPG) = 810 ml/g h and 450 and 550 oC, 

respectively.  The results of the reaction of methane and methanol over W/HZSM-5 

catalyst are summarized in Table 2.2.   
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Table 2.2  Conversion and hydrocarbon distribution for methane+ethylene,  

methane+methanol, and methane+ethylene+methanol feed 
ompound CH4 :C2H4 = 
86:14(v/v) 

CH4 / CH3OH* CH4 /C2H4 / 
CH3OH**  

onversion, ethylene 
 

97.5 - 98.5 

2-C4 alkanes 33.01 25.4 26.2 
2-C4 alkenes 19.2 6.7 15.9 
5

+ aliphatics 7.31 12.3 20.7 
romatics 40.3 55.6 37.2 

 
Reaction condition: T=400 oC, 1 atm , GHSV (CH4+C2H4)= 1200 ml/g.h, *GHSV CH4=1200 ml/g.h + CH3OH = 5
ml/h, ** GHSV (CH4+C2H4)= 1200 ml/g.h + CH3OH = 5 ml/h. 
As can be seen from Table 2.2, the gasoline range hydrocarbon, aromatics 

ere the major products from the conversion of methane and methanol.  In the 

resence of ethylene, the heavy hydrocarbons of 47.61 % were obtained while the 

ntroduction of methanol to the feed increased the fraction of heavy hydrocarbons 

67.9 %).  The fraction of C5
+ aliphatics (12.3 %) was observed from the reaction of 

ethane and methanol, with the presence of ethylene in the methane feed, the 

raction of C5
+ aliphatics was lower (7.31 %). 

 

 

The proposed mechanism of the transformation of methane and methanol to 

asoline boiling range might be explained by the following mechanisms.  Methanol 

s first dehydrated to dimethyl ether (DME) which is then converted to light olefins 

31].  Then, methane and light olefins react to form C2
+ carbenium ions which 

ndergo the formation of higher hydrocarbons as has been proposed by Pierella et al 

1997) [29].  The reaction of ethylene with methane yielded propylene which is an 
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intermediate molecule for the production of higher hydrocarbons as suggested by 

Baba and Abe (2003) [26]. 

 

 

The percentage of C5
+ aliphatics of 20.7% was observed with the adding of 

methanol to methane and ethylene feed.  When methane and ethylene was used as 

feed, C5
+ aliphatics was 12.3 %.  This results suggest that the introduction of 

methanol to the mixture of methane and ethylene is intend to generate the carbenium 

ions which help to initiate the reaction and produce heavier components that is in 

accordance with the result reported by Alkhawaldeh et al. (2003) [24]. 

The influence of temperature on the products distribution at GHSV (CH4+C2H4) 

=1200 ml/g h and a molar ratio of CH4: C2H4 in the feed = 86:14 (v/v), over 

W/HZSM-5 is shown in Figure 2.2.  The C2H6, C4H10 and C5
+aliphatics selectivity 

remained very low with the temperature increase whereas the C3H8 and aromatics 

selectivity increased.  The C2H4 and C4H8 decreased with increasing temperature.  

Higher hydrocarbons product in the gasoline range mainly contains aromatic 

hydrocarbons in the whole range of the temperature studied.  The activation of 

methane with LPG using zinc-loaded ZSM-11 zeolite has been studied over Zn-

ZSM-11 [25].  The influence of temperature on the products distribution at GHSV 

(LPG) = 810 ml/g h and LPG molar fraction in the feed LPG/ (LPG + C1) = 0.15 

showed that the C2 and C5–C6 yield remained very low with the temperature increase 

whereas the C=2 and aromatic hydrocarbons yield increased.  Aromatic 

hydrocarbons were the main products in the whole range of temperatures studied, 

reaching a total of 12 % at 550 oC. 
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 Figure 2.2: Hydrocarbons products 

with methane and ethylene as a feed

molar ratio=86:14.  

 

 

 

 

 Figure 2.3 shows the compar

time on stream for the HZSM-5 and W

The W/HZSM-5 shows relatively pro

hour the ethylene conversion was alm

this number decreased to 75.91 % fo

loaded HZSM-5 shows a high conve

then it decreases gradually to reach 45

5 catalyst shows increased resistan

HZSM-5 catalyst.  Among the cat

performance in terms of the product

loaded and non-loaded HZSM-5 catal

 

 

 

 

 

Temperature, ºC
distribution as a function of reaction temperature 

. GHSV(CH4+C2H4) =1200 ml/g h, CH4:C2H4 

ison of the conversion of dilute ethylene over 

/HZSM-5 catalysts at T = 400 oC, P = 1 atm.  

longed time of high conversion.  For the first 2 

ost 100 % over W/HZSM-5 catalyst, whereas 

r W-loaded ZSM-5.  On the other hand non-

rsion (100 %) at the second hour of operation 

.4 % at the end of the reaction.  The W/HZSM-

ce towards deactivation as compared to the 

alysts used, Pd/ZSM-5 showed an improved 

 distribution and conversion over all the other 

ysts [24]. 
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Figure 2.3  Ethylene conversion with time on stream for the reaction of methane 

and ethylene over W/HZSM-5 and HZSM-5 catalysts. Reaction condition : 

T=400 oC, GHSV(CH4+C2H4) =1200 ml/g h, CH4:C2H4 molar ratio=86:14 
 aromatic content over the HZSM-5 catalyst was 14.93 mol % and 

 catalyst results in an increase in aromatic content up to 36.5 mol % as 

 in Figure 2.4.  As can be seen in Figure 2.4, C5
+ production is observed 

SM-5 and HZSM-5 catalysts.  The production of C5
+ liquid from CH4 

containing ZSM-5 catalyst has been reported by Han et al. (1994) [27].  

sted that the C5
+ could be produced from methane and O2 via an MTG 

  They proposed mechanisms for the C5
+ production from CH4 are as 

 methane is first converted to CH3OH which is further transformed to 

initiation for the C5
+ production. 
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Figure 2.4:  Product

over HZSM-5 and W

=1200 ml/g h, CH4:C

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.4. Conclusions 

 

 

Methane contai

higher hydrocarbons in
oC.  Ethylene or metha

to form higher hydroc

products obtained from

respectively.  The effec

a decrease in ethylene

hydrocarbons (C5
+ and

feeding methanol to 

hydrocarbons was al

significantly with the 

feed.  The influence o

increasing temperature

of methane and ethyle
 
 distribution for the reaction of methane and ethylene 

/HZSM-5 catalysts, T = 400 ◦C, and GHSV(CH4+C2H4) 

2H4 molar ratio=86:14. 

ning ethylene or methanol, respectively, can be converted to 

 the gasoline boiling range at low temperatures of 250 - 450 

nol, respectively, was used as co-feeding to activate methane 

arbons.  The aromatic hydrocarbons are the main reaction 

 the reaction of methane-ethylene and methane-methanol, 

t of CH4/C2H4 ratio on the distribution of products shows that 

 concentration in the feed decreases the fraction of higher 

 aromatics) content in the product.  The effect of adding co-

the methane and ethylene feed on the distribution of 

so studied.  The production of C5
+ aliphatics increase 

introduction co-feeding methanol to methane and ethylene 

f temperature on the products distribution shows that with 

, the selectivity to aromatic products increased.  The reaction 

ne was also studied over the parent HZSM-5 and W/HZSM-5 
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catalysts.  As compared to HZSM-5, W/HZSM-5 has an improved performance in 

terms of the product distribution and conversion.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

CHAPTER 3 

 

 

 

PRODUCTION OF GASOLINE RANGE HYDROCARBONS FROM 

CATALYTIC REACTION OF METHANE IN THE PRESENCE OF 

ETHYLENE OVER W/HZSM-5  

 

 

 

Abstract 

 

 

 The catalytic conversion of a methane and ethylene mixture to gasoline range 

hydrocarbons has been studied over W /HZSM-5 catalyst.  The effect of process 

variables such as temperature, % vol. of ethylene in the methane stream, and catalyst 

loading on the distribution of hydrocarbons was studied.  The reaction was 

conducted in fixed-bed quartz - micro reactor with i.d 9 mm in the temperature range 

of 300 to 500 oC using % vol. of ethylene in methane stream between 25 – 75 % and 

catalyst loading of 0.2 – 0.4 gram.  The catalyst showed good catalytic performance 

yielding hydrocarbons consisting of gaseous products along with gasoline range 

liquid products.  The mixed feed stream can be converted to higher hydrocarbons 

containing a high liquid gasoline product selectivity (>42%).  Non-aromatics C5 - 

C10 hydrocarbons selectivity in the range of 12 – 53% was observed at the operating 

conditions studied.  Design of experiment was employed to determine the optimum 

conditions for maximum liquid hydrocarbon products.  The distribution of the 

gasoline range hydrocarbons (C5-C10 non-aromatics and aromatics hydrocarbons) 

was also determined for the optimum conditions.   
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3.1 Introduction 
 

 

 An excess consumption of petroleum resources has become significantly 

critical problems that may lead to acute energy crisis.  Utilization of natural gas and 

coal has been considered as an effective way to reduce the dependence on liquid oil 

consumption.  The transformation of methane (the main component of natural gas) to 

useful higher hydrocarbons and fuel can be performed by indirect and direct process, 

which proceeds with and without passing through the syngas formation, respectively.  

Recently, the manufacture of synfuels from natural gas is available for large scale as 

demonstrated by the MTG plant and the Fischer–Tropsch (FT) by using indirect 

process technologies.  Nevertheless, many attempts are being made to covert natural 

gas into liquid hydrocarbons by the direct method without passing through the 

intermediate syngas formation [32].  The direct conversion of methane to C2 

hydrocarbons via OCM has attracted the academic and industrial interests due to 

their potential as an effective method to utilize natural gas for industrial feedstock. 

However, the usefulness of this process has been limited so far as it has low methane 

conversion and/or low hydrocarbons selectivity [33].  An approach to overcome the 

limitation of OCM process was reported and it consisted of a two-step process [34].  

In the first step, methane or natural gas is converted into lower olefin which is 

transformed directly into gasoline range hydrocarbons over a pentasil zeolite 

catalyst. More recently, Alkhawaldeh et al. [24] reported the conversion of methane 

into higher molecular weight hydrocarbons.  In their study, methane is first 

converted into acetylene which is followed by hydrogenation into ethylene.  Then, 

the ethylene in a feed mixture comprising of methane was reacted over a catalyst to 

produce higher molecular weight hydrocarbons.  It is therefore of great practical 

interest to convert dilute ethylene without it being separated from the methane 

streams into a much less volatile product(s) such as gasoline hydrocarbons.  In 

another development, the conversion of methane to higher hydrocarbons in the 

presence of ethylene proceeded over silver cations-loaded H-ZSM-5 (Ag/H-ZSM-5) 

[26].  Due to the increasing interest in the production of sulfur-free transportation 

fuels via lower olefins oligomerization, the optimization study on oligomerization of 

feed mixture containing methane and ethylene to produce higher hydrocarbons in the 
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gasoline range over W/HZSM-5 is reported in this paper.  The effect of process 

variables such as temperature, % vol. of ethylene in the methane stream, and catalyst 

loading on the distribution of hydrocarbons was studied according to statistic method 

with the application of design of experiment utilizing the STATISTICA software 

(version 6.0; Statsoft Inc). 

 

 

 

 

3.2 Experimental Procedure 

 

 

3.2.1 Catalyst preparation  

 

 

 The 2 wt. % W/HZSM-5 catalyst was prepared by impregnation method. 

NH4ZSM-5 (SiO2/Al2O3=30; Zeolyst international Co. Ltd.) was converted to 

HZSM-5 by calcinations at 500 oC for 4 h.  It was then impregnated with calculated 

amount of the aqueous solution of ammonium tungstate (NH4)5H5[H2(WO4)6]·H2O 

(A. R.).  The sample was dried at 110 oC overnight and calcined at 550 oC for 5 h.  

The catalyst was crushed and sieved into the size of 35-60 mesh for catalytic testing. 

 

 

Table 3.1 Properties of HZSM-5 zeolite and W/HZSM-5 catalysts. 

Properties  HZSM-5 W/HZSM-5 

Si/Al ratio 30 30 

BET surface area (m2/g) 400 372 

Pore size (nm) 0.53 x 0.56  

Acidity (mmol NH3/g) 1.251 1.164 
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3.2.2 Activity testing 

 

 

 Catalytic testing was carried out at atmospheric pressure in a fixed-bed 

continuous flow system with a quartz reactor of 9 mm i.d. and length of 300 mm. 

Before reaction, the catalyst was pretreated in a flow of nitrogen at 100 ml. min−1 for 

1 h at 550◦C.  A gas mixture comprised of CH4, C2H4 and N2 (N2 was used as internal 

standard), was introduced into the reactor containing the catalyst.  Catalytic reactions 

were performed with different reaction variables based on Central Composite Design 

(CCD) method.  The gaseous products was analyzed by an on-line HP 5890 series II 

GC-TCD equipped with Porapak Q and molecular sieve 5A columns for separation 

of N2, CH4, C2H4, while UCW 982 12 % and DC 200 26 % columns were used to 

separate the lower hydrocarbons including C3-C5 hydrocarbons.  The liquid products 

comprised of C5+ non aromatics and aromatics hydrocarbons were analyzed on flame 

ionization chromatograph equipped with HP-1 capillary column. 

 

 

 

 

3.3. Results and discussion 

 

 

 The study was performed based on design of experiment (DOE) method.  

The statistical method of factorial DOE eliminates the systematic errors with an 

estimate of the experimental error and minimizes the number of experiments [35, 

36].  A central composite design (CCD) with three process variables was used.  Each 

variable consists of three different levels from low (−1), to medium (0) and to high 

(1). According to the CCD, the total number of experiments conducted was 16 

experiments including a 23 of the two-level factorial design, central points, and star 

points [37].  The independent variables used in the statistical study were 

temperature, ethylene concentration in the feed mixture containing methane and 

ethylene, and catalyst loading. Table 3.2 presents the independent variables with the 
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operating range of each variable.  The levels of the independent variables were 

chosen based on a previous study reported in the literature [26].  

 

 

Table 3.2 Independent variables with the operating range of each variable. 

 

Independent Variables  -α -1 0 +1 +α 

Temperature ( ºC)  X1 271 300 400 500 529 

Ethylene concentration in  

a Methane-Ethylene 

Mixture 

X2 0.19 0.25 0.50 0.75 0.82 

Catalyst loading  X3 0.17 0.2 0.3 0.4 0.43 

 

The reaction of methane and ethylene mixture over W/HZSM-5 catalyst 

produced liquid hydrocarbons with high selectivity to gasoline range.  The outlet 

reactor stream comprised of gaseous products (C3-C5) and liquid products including 

C5-C10 non-aromatics and aromatics in addition to heavy hydrocarbons (C11
+).  The 

compositions of aromatics were benzene, toluene, ethylbenzene, xylene, tri-methyl 

benzene, tri-ethyl benzene.  A series of statistically designed studies were performed 

to investigate the effect of independent variable i.e. temperature, ethylene 

concentration in a methane – ethylene mixture, and catalyst loading to optimize the 

liquid hydrocarbons, C5-C10 non-aromatics hydrocarbons, and aromatics products.  

In this study, a full central composite design (CCD) with six star points and two 

replicates at the center point was used.  Based on CCD with a 2 3 design, 16 sets of 

experiments were performed.  Table 3.3 shows the experimental design and the 

results (observed and predicted values) of the three observed responses. 
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Table 3.3: An experimental plan based on CCD and the three responses. 

Variables 
Run 

X1 X2 X3 Y, SC5+ Y, SC5-10 non-

aromatics

Y, Saromatics

1 300 0.25 0.20 63.62 20.63 17.97 

2 300 0.25 0.40 65.89 25.54 18.06 

3 300 0.75 0.20 80.13 57.15 19.86 

4 300 0.75 0.40 75.53 54.35 18.42 

5 500 0.25 0.20 45.60 12.57 20.21 

6 500 0.25 0.40 42.60 14.79 24.58 

7 500 0.75 0.20 43.80 24.57 18.12 

8 500 0.75 0.40 49.10 29.77 19.90 

9 271 0.50 0.30 85.70 59.53 29.57 

10 529 0.50 0.30 70.40 12.59 47.54 

11 400 0.18 0.30 60.31 20.73 11.34 

12 400 0.82 0.30 70.67 49.67 20.53 

13 400 0.50 0.17 66.62 31.99 22.49 

14 400 0.50 0.43 76.69 39.70 25.54 

15 400 0.50 0.30 83.60 53.25 30.26 

16 400 0.50 0.30 83.60 53.32 30.27 

X1= Temperature (ºC), X2= Ethylene concentration in a methane-ethylene mixture, X3= Catalyst loading, SC5+ = Sel. of C5+ 

hydrocarbons, SC5-10 non-aromatics= Sel. of non aromatics (NA), Saromatics = Sel. of aromatics. 
 

 

 The relationship between the independent variables and response variable 

was estimated by using regression analysis program.  A central composite is 

designed to estimate the coefficients of a quadratic model.  Eq. (3.1) presents a 

quadratic model for predicting the optimal point for the selectivity of C5
+ liquid 

hydrocarbons.  

 

 

Y1= –105.330 + 0.326 X1 + 257.391 X2 + 515.267 X3 – 201.014 X2
2 – 884.270 X3

2 –  

           0.107 X1X2 + 0.058 X1X3 + 7.150 X2X3             (3.1) 
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The regression equation (Eq. (3.2)) for the selectivity of C5-C10 non-aromatics 

hydrocarbons is expressed as follows: 

 

 

Y2= -163.783 + 0.498 X1 + 246.383 X2 + 417.049 X3 – 0.001 X1
2 – 116.781 X2

2 –  

         690.965 X3
2 –0. 912 X1X2 + 0.066 X1X3 – 23.650 X2X3            (3.2) 

 

 

The regression equation obtained for the selectivity of aromatics hydrocarbons is: 

 

 

Y3 = – 12.271   –  0.268 X1 + 187.086 X2 + 288.98 X3 – 0.045 X1X2 + 0.094 X1X3 –  

             20.600 X2X3  –160.282 X2
2 – 514.11 X3

2            (3.3) 

 

 

where Y1,Y2, Y3  are the response variables corresponding to selectivity of C5
+ liquid 

hydrocarbons,  C5-C10 non-aromatics, and aromatics, respectively and X1, X2, and 

X3, represent the temperature, concentration of ethylene in a mixture methane-

ethylene in the feed and catalyst loading, respectively as independent variables. 

 

 

 Table 3.4 shows the analysis of variance (ANOVA) to check the significance 

of the second-order model equation.  The statistical significance of the second-order 

model equation was determined by F-value.  Generally, the calculated F-value 

should be several times the tabulated value, if the model is good predictor of the 

experimental results [38].  The calculated F-value which is higher than the tabulated 

F-value (F0.05 (9, 6) = 4.10) provides evidence that the model fit the experimental 

data adequately.   
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Table 3.4: ANOVA for the second order model equations. 

 

 Sum of 
squares 

Degree 
of 
freedom 

Mean 
square 

F 
value 

F 0.05 
(table)  

R2

C5
+ hydrocarbon 

selectivity  

     

SS regression 3033.92 9 337.10 10.29 4.10 0.9392 

SS error 196.374 6 32.73    

SS total 3230.28 15     

C5-C10 non-aromatics  

selectivity 

     

SS regression 4158.53 9 462.06 10.16 4.10 0.9384 

SS error 272.79 6 45.47    

SS total 4431.32 15     

Aromatics  selectivity      

SS regression 887.83 9 98.65 4.44 4.10 0.8694 

SS error 133.35 6 22.22    

SS total 1021.18 15     

 

 Figure 3.1 shows the comparison between the observed values with the 

predicted values.  The value of R2 was determined to evaluate the correlation 

between experimental and predicted value which yield 0.9392; 0.9384; 0.8694 for 

the selectivity of C5
+ liquid hydrocarbons, C5-C10 non-aromatics (NA), and aromatics 

hydrocarbons, respectively.  These results indicated that the predicted values show a 

good agreement with the experimental results. 
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                                   (a)     (b) 

Figure 3.1. Correlation of the observed and predicted value for (a) selectivity of  

C5-C10 non-aromatics hydrocarbons (b) selectivity of aromatics hydrocarbons.  

 

 

 

 
 

Figure 3.2 Response surface methodology for the C5-10 non-aromatics hydrocarbons   

selectivity. 

 

 

 Finally, a Response Surface Methodology (RSM) was performed to optimize 

the operating conditions and maximize the selectivity to C5-10 hydrocarbons.  The 

three-dimensional graph obtained from the calculated response surface is presented 

in Figure 3.2.  Three-dimensional response surface plots of reaction temperature and 

ethylene concentration against C5-10 hydrocarbons can further explain the results of 

the statistical and mathematical analyses [39].  It is evident from the plot that C5-10 
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non-aromatics hydrocarbons selectivity reached its maximum at reaction 

temperature being 268 oC with the concentration of ethylene in the methane-ethylene 

feed being 80.43 % (v/v) and catalyst loading being 0.30 g.  The maximum value for 

the C5-10 non-aromatics hydrocarbons selectivity predicted from the model is 

64.78%. 

 

 

 

 

3.4. Conclusions 

 

 

 The reaction of methane-ethylene feed over W/HZSM-5 produced organic 

liquid product rich in gasoline fraction in the range of C5-C10 non-aromatics and 

aromatics hydrocarbon.  Central composite design coupled with response surface can 

be used to predict the relationship between reaction variables to selectivity of the 

liquid hydrocarbons.  The model equation obtained was statistically checked by 

ANOVA and the second order polynomial equation presents the experimental results 

adequately.  The optimum predicted value for the selectivity to C5-10 non-aromatics 

hydrocarbons was 64.78 % obtained at reaction temperature being 268 oC with the 

concentration of ethylene in the methane-ethylene feed  being 80.43 % (v/v) and 

catalyst loading being 0.30 g. 

 

 

 

 

 

 



 

 

 

CHAPTER 4 

 

 

DIRECT CONVERSION OF METHANE TO HIGHER 

HYDROCARBONS OVER TUNGSTEN MODIFIED HZSM-5 CATALYSTS 

IN THE PRESENCE OF OXYGEN 

 

 

 

Abstract 

 

 

The direct conversion of methane to higher hydrocarbons in the presence of 

oxygen was studied over the tungsten modified HZSM-5 catalysts.  The catalysts 

were characterized by mean of UV-vis diffuse reflectance spectroscopy.  It was 

found that the W-H2SO4/HZSM-5 catalyst, prepared from impregnating HZSM-5 

with a H2SO4-acidified solution of ammonium meta-tungstate (pH = 2-3), showed 

the highest activity compared to W/HZSM-5 and WO3/HZSM-5 catalysts prepared 

from impregnating HZSM-5 with a neutral solution of ammonium meta-tungstate 

and physical-mixture of solid WO3 with HZSM-5 respectively.  UV-vis DRS 

provided evidence for the existence of octahedral polymeric species on the W-

H2SO4/HZSM-5 catalyst.  This result seems to imply that the observed high catalytic 

activity of W-H2SO4/HZSM-5 catalyst was closely correlated with the octahedral 

coordinated tungsten species as catalytically active species.  Over a 2%W-

H2SO4/HZSM-5 catalyst and under reaction conditions of 823ºC, 0.1MPa and F/W 

=1500 ml/g-cat·hr, the average methane conversion reached ≈ 20% with the average 

yield to aromatic at ≈ 9% after 200 minutes of experiment.  In addition, methane 

conversion in nonoxidative condition was also carried out and the results showed that 

the catalytic activity was drastically decreased with time on stream, most probably 

due to severe coking.  Consequently, we concluded that the durability of the catalysts 

was greatly enhanced in the presence of suitable amount of O2.    
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4.1 Introduction 

 

 

 In recent years, the direct conversion of methane to higher hydrocarbons has 

been widely studied in heterogeneous catalysis.  Among them, nonoxidative 

dehydro-aromatization of methane (DHAM) to aromatic over zeolite catalyst has 

drawn great attention.  This process is more energy efficient compare to conventional 

indirect conversion since it circumvent the expensive syngas step.  The aromatic 

hydrocarbons product also can be easily separated from the unconverted methane.  

 

 

 Numerous researchers have studied the DHAM over Mo/HZSM-5-based 

catalysts [3, 30, 40-44].  These catalysts performed reasonably well operating at 

700°C. Thermodynamic calculations showed that an operating temperature as high as 

800°C is required for methane conversion of DHAM to reach 20% [45, 46].  

However, under this temperature, these catalysts are deactivated due to the fouling 

by coke formation and the losing of Mo component by sublimation [4].    

 

 

 Recently, some efforts have been made to add some oxidants into the gas 

feed in order to remove the coke deposit on the catalysts.  Ohnishi et al. [47] reported 

that the addition of a few percent of CO and CO2 to methane feed significantly 

improves the stability of the Mo/HZSM-5 catalyst.  The results of Yuen et al. [19] 

indicated that small amount of O2 in gas feed can improve the durability of the 

catalysts.  In addition, Tan et al. [17] have claimed that there are three reaction zones 

in the catalyst bed for the conversion of methane with O2, namely oxidation, 

reforming and aromatization and the H2 and CO generated in the first two zones are 

responsible for the improvement of the catalyst’s performance.   

 

 

 In an attempt to develop a DHAM catalyst which able to operate at high 

temperature (800ºC or 1073K), Zeng et al [4] have developed highly active and heat-

resisting W/HZSM-5-based catalysts.  They found from the experiments that the W–
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H2SO4/HZSM-5 catalyst prepared from a H2SO4-acidified solution of ammonium 

tungstate (with a pH value at 2–3) displayed high DHAM activity at 1023 K even up 

to 1123 K.  They elucidate that the observed high DHAM activity on the W–

H2SO4/HZSM-5 catalyst was closely correlated with polytungstate ions with 

octahedral coordination as the precursor of catalytically active species.  Later, Xiong 

et al [6] tested the W–H2SO4/HZSM-5-based catalysts with the addition of minor 

amount of CO2 to the feed gas.  Their results showed that addition of CO2 

significantly enhance the activity and coke resistant performance of the catalyst.  

 

 

 Therefore, it is interesting to study the catalytic performance of W/HZSM-5-

based catalysts with the presence of other oxidant besides CO and CO2, such as O2. 

Out previous studies [48, 49] have shown that with the addition of secondary metals, 

the selectivity of the liquid hydrocarbons over tungsten modified HZSM-5 was 

improved significantly.  In this paper, the preparation of tungsten modified zeolite 

constituted of different surface tungsten species was reported and the resulting 

catalysts were tested in the conversion of methane to aromatics using O2 as oxidant. 

 

 

 

 

4.2. Experimental Procedure 

 

 

4.2.1  Catalyst preparation 

 

 

 Ammonium-ZSM-5 zeolite with a SiO2/Al2O3 mole ratio of 30 was supplied 

by Zeolyst International Co., Ltd., Netherlands.  The surface area of the zeolite is 400 

m2/g.  This NH4-formed zeolite was calcined at 500ºC for four hours to get the H-

formed zeolite before any modification and catalytic evaluation were performed.  

The W/HZSM-5 catalyst was prepared by impregnating HZSM- 5 with a desired 

amount of ammonium meta-tungstate in a neutral aqueous solution at room 
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temperature.  The W-H2SO4/HZSM-5 catalyst was prepared with a desired amount 

of ammonium meta-tungstate in a H2SO4-acidified aqueous solution at pH 2-3 [15].  

All impregnated samples (10 ml of solution per gram zeolite) were dried overnight in 

an oven at 120ºC and then calcined at 550ºC for five hours.  Tungsten oxide was 

prepared by directly calcined the ammonium meta-tungstate at 550ºC for five hours. 

 

 

 

 

4.2.2 Catalytic evaluation 

 

 

 The catalytic evaluation was performed in a fixed-bed continuous-flow quartz 

reactor with an inner diameter of 9 mm.  The reaction over the catalysts was carried 

out at 823ºC, F/W of 1500 ml/g-cat·hr and atmospheric pressure. 1 g of catalyst was 

used each time for testing and the catalyst was crushed and sieved to size of 30-60 

mesh before loaded into reactor.  Prior to reaction, the catalyst was flushed with 

nitrogen at reaction temperature for 1 hour.  A feed gas mixture of 80% methane (of 

99.99% purity) and 20% air (with N2 in the air served as internal standard for GC 

analysis) was introduced into the reactor through Alicat volumetric flow controllers. 

The reactor effluent gases were analyzed by an on-line Hewlett Packard Agilent 

2000 GC equipped with TCD and 4 columns (UCW 982, DC 200, Porapak Q and 

Molecular sieve 13A).  The liquid products were collected just after the experiments 

and analyzed using FID and HP-1 capillary column in the same GC. 

   

 

 

 

4.2.3 Catalysts characterization 

 

 

 UV-vis diffuse reflectance spectra (UV-vis DRS) were performed on a Perkin 

Elmer Lambda spectrometer equipped with diffuse reflectance accessory. The 
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scanning wave length range was 190-500 nm and the scan speed was 120 nm per 

min.    

 

 

 

 

4.3. Results and Discussion 

 

 

4.3.1 Results  

  

 

 The UV-vis diffuse reflectance spectra of the 3%W/HZSM-5, 3%W-

H2SO4/HZSM-5 and WO3 are shown in Figure 4.1.  A band at 210 nm can be 

observed for 3%W/HZSM-5 and 3%W-H2SO4/HZSM-5 catalysts.  3%W-

H2SO4/HZSM-5 exhibited an additional band at about 290 nm and a further band at 

about 363 nm is noted for WO3. de Lucas et al. [20] analyzed the spectra of tungsten 

compound with a known geometry, namely sodium tungstate, exclusively constituted 

of tetrahedral tungsten, and ammonium metatungstate and tungsten oxide, both 

mainly constituted by octahedral tungsten (tetrahedral species are also present as 

terminal tungsten atoms).  By comparing these with the spectra in Figure 4.1, it can 

be concluded that the band at 210 nm could be assigned to the tetrahedral W (VI) 

species while the other bands at about 290 nm and 363 nm could be assigned to 

octahedral W (IV) species: polytungstate and WO3 crystallites respectively.    
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Figure 4.1: UV-vis diffuse reflectance spectra of (a) 3%W/HZSM-5; (b) 3%W-  

H2SO4/HZSM-5; (c) WO3.   

 

 

 The reaction of CH4 and O2 over tungsten modified HZSM-5 catalysts led to 

the formation of CO, H2, C2H4, C2H6 and aromatics.  Table 4.1 shows the methane 

conversion and product yields for the W/HZSM-5-based catalysts, together with the 

results collected in a non-catalytic reaction using quartz-sand bed and HZSM-5.  

 

 

 In Table 4.1, one can observe that the contribution of the homogeneous 

reaction could not be neglected in the experimental condition used in this work, since 

CH4 conversion as high as 4.5% was obtained with the blank experiment.  Likewise, 

unmodified HZSM-5 zeolite showed a great activity in the oxidation of methane 

leading to the formation of CO and C2 hydrocarbons.  However, HZSM-5 showed 

only little DHAM activity in the same experiment.  
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Table 4.1: Methane conversion and product yields over different tungsten 

modified HZSM-5 catalysts. 

Yield (%) Catalysts CH4 

conversion 

(%) 

COx C2 Aromatics 

Blanka 4.5 3.1 1.4 - 

HZSM-5 12.9 10.7 1.3 0.9 

1%W-H2SO4/HZSM-5 17.9 10.2 0.9 6.8 

2%W-H2SO4/HZSM-5 19.9 10.1 0.6 9.0 

3%W-H2SO4/HZSM-5 17.8 10.2 0.9 6.7 

3%W/HZSM-5 13.6 10.2 1.5 1.9 

3%WO3/HZSM-5b 15.1 10.4 1.5 3.2 

5%W-H2SO4/HZSM-5 17.1 10.3 0.9 6.0 

10%W-H2SO4/HZSM-5 14.6 10.2 0.8 3.6 
a Quartz-sand bed with a length equal to catalyst bed.  
b Physical-mixture of solid WO3 with HZSM-5. 

 

  

 From Table 4.1, it can be seen that the 3%W-H2SO4/HZSM-5 catalysts 

displays rather high DHAM activity in comparison with the 3%W/HZSM-5 and 

3%WO3/HZSM-5.  The effect of amount of tungsten loading on DHAM performance 

of the W-based catalysts was also investigated.  It can be seen that both CH4 

conversion and aromatic yield increased initially with increasing amounts of tungsten 

loading, and reached a maximum at tungsten loading of 2%, whereas it decreased 

slightly up to 10% tungsten content.  These results show that an amount of tungsten 

loading at ≈2% would be appropriate for the modification of HZSM-5.   

 

 

 Illustrated in Figure 4.2 is the result of DHAM reaction activity over 2%W-

H2SO4/HZSM-5 with and without oxidant.  The results showed that the CH4 

conversion, C2 hydrocarbons yield and CO yield for oxidative DHAM reaction were 

higher than that in nonoxidative DHAM reaction.  CO was the only detactable 

oxygen containing product in both cases.  In nonoxidative condition, the aromatics 
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yield reduced drastically from 15.8% at the 40th minute down to 2.6% after 200 

minutes of reaction.  On the other hand, the aromatic yield in oxidative DHAM 

reaction was lower than that obtain in nonoxidative reaction but it tended toward 

stable level after 80 minutes of reactions.  The catalysts could retain an aromatics 

yield more than 8.1% for even more than 200 minutes in oxidative condition.  

 

 
Figure 4.2: Methane conversion activity over 2%W-H2SO4/HZSM-5 at 823ºC, feed  

gas: (□) 80%CH4 + 20% air; (■) 80%CH4 + 20%N2

 

 

 The aromatics products distribution of 2%W-H2SO4/HZSM-5 in oxidative 

DHAM reaction is shown in Table 4.2.  Besides benzene and toluene, trace C8 

aromatics, including ethylbenzene and xylene (dimethylbenzene), and noticeable C9-

C12 aromatics could be found in the product.  
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Table 4.2: Composition of liquid product collected over 2%W-H2SO4/HZSM-5  

catalysts. 

Composition of Liquid Product % 

Benzene (C6) 41.6 

Toluene (C7) 35.8 

C8 aromatics (ethylbenzene, xylene) 4.7 

C9-C12 aromatics 17.9 

 

 

 

 

4.3.2 Discussion 

 

 

 The UV diffuse reflectance spectra in Figure 4.1 shows that three tungsten 

species were formed in the tungsten modified HZSM-5, although the relative amount 

of each one varies significantly with the modification method.  For 3%W/HZSM-5, 

the monomeric species was predominant.  Owing to their small size (<2Å), the 

presence of tetrahedral species was most likely attributed to the grafting of tungsten 

oxides species with the Brønsted acid sites located inside the pores of HZSM-5 [20].   

 

 

 On the other hand, the peak corresponding to polytungstate species could be 

clearly observed on 3%W-H2SO4/HZSM-5.  This inferred that the addition of H2SO4 

resulting in formation of the polytungstate species in the precursor solution via the 

reactions as follows [4]: 

 

 

6(WO4)2- + 7H+  (HW6O21)5- + 3H2O 

 

or/and 

 

12(WO4)2- + 14H+  (H2W12O42)10- + 6H2O 
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Lowering the pH value of the precursor solution would shift the equilibria of the 

above reactions to the right.  Since the size of this species is about 2nm, which is 

bigger than the size of the HZSM-5 pores, this species was expected to be formed on 

the external surface of the HZSM-5 [20].  

 

 

 The experimental results, together with the UV-vis diffuse reflectance spectra 

indicated that the present of polytungstate species on the catalysts surface of W-

H2SO4/HZSM-5 is crucial for oxidative DHAM.  This observation is consistent with 

the previous work for nonoxidative DHAM over W-H2SO4/HZSM-5 catalysts and 

the observed high DHAM activity have been attributed to the pronounced 

reducibility of polytungstate species on HZSM-5 support [4, 6, 5].  Furthermore, the 

study on W-H2SO4/HZSM-5 by Yang et al. [14] revealed that an induction period 

exists for nonoxidative DHAM reaction and the tungsten species was reduced to 

lower oxidation state, most likely W4+, by methane at 973K.  The appearance of the 

DHAM products after the induction period implying that methane was activated with 

the formation of W4+ oxides.  

 

 

 In contrast, for W/HZSM-5 catalysts, tungsten species existed in form of 

tetrahedral coordination and was difficult to be reduced to W4+ state [4, 20], and thus 

the catalysts had little activity in methane activation.  Likewise, the bulk WO3 on 

WO3/HZSM-5 catalyst is more reducible than the tetrahedral W (VI) species [20], 

and thus had better catalytic performance than W/HZSM-5 catalyst.  However, the 

bulk WO3 might not be dispersed well on the surface of HZSM-5 through physical 

mixing. Therefore, the catalytic performance of WO3/HZSM-5 catalyst was expected 

not as high as W-H2SO4/HZSM-5 catalyst.   

 

 

 The comparison between the catalytic activity of 2%W-H2SO4/HZSM-5 in 

oxidative and nonoxidative condition indicating that deactivation of the catalyst 

occurred in a certain extent in nonoxidative condition.  However, the catalyst was 

relatively more stable in oxidative condition.  This result suggested that the addition 
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of suitable amount of oxygen greatly improve the catalyst durability; agree well 

with the work on Mo/HZSM-5 [19, 17].  

 

 

 Yuen et al. [19] attributed the improvement of Mo/HZSM-5 catalysts in 

oxidative condition to the partial removal of coke deposit on catalysts, and with the 

catalyst being kept as partially carburized MoOxCy/HZSM-5 state.  However, 

according to literature, there was neither reduced metal nor metal carbides formed on 

W/HZSM-5-based catalyst during methane activation [19, 20].  On the contrary, they 

pointed out that the W4+ species, which is derived from W6+ species, is able to 

activate methane at high temperature.  The observed small number of CO in product 

stream in nonoxidative DHAM reaction was most probably derived from the partial 

reduction of W6+ to W4+ by methane.  

 

 

 Therefore, we suggest that the function of O2 in DHAM reaction over 

W/HZSM-5-based catalysts is to keep the oxidation state of tungsten species on 

HZSM-5 as W4+.  This added O2 can partially oxidize the completely reduced 

tungsten species, and accordingly, the tungsten species can be kept in the state of 

W4+ for a longer time than without O2, and the durability of the catalyst is improved.      

 

 

 

 

4.4. Conclusions 

 

 

 The W-H2SO4/HZSM-5 catalyst, which possesses polytungstate species on 

the external surface of HZSM-5, showed better catalytic performance in oxidative 

DHAM reaction compared to W/HZSM-5 and WO3/HZSM-5 catalysts.  The 

optimum aromatic yield was found at 2% of tungsten loading.  The added O2 in the 

reactant stream could maintain the active phase possibly, which results in the 

improvement of the lifetime of the catalyst.  The major aromatic products of 
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oxidative DHAM over 2%W-H2SO4/HZSM-5 catalyst are benzene and toluene, 

and C8-C12 aromatics.      

 

 



 

 

 

CHAPTER 5 

 

 

 

DIRECT CONVERSION OF METHANE TO LIQUID HYDROCARBONS IN 

A DUAL-BED CATALYTIC SYSTEM: PARAMETER STUDIES 

 

 

 

Abstract 

  

 

 A dual-bed catalytic system is proposed for the direct conversion of methane 

to liquid hydrocarbons.  In this system, methane is converted in the first stage to 

Oxidative Coupling of Methane (OCM) products by selective catalytic oxidation 

with oxygen over La supported MgO catalyst.  The second bed, comprises of HZSM-

5 zeolite catalyst, is for the oligomerization of OCM light hydrocarbon products to 

liquid hydrocarbons.  The effects of the temperature (650-800 0C), methane to 

oxygen ratio (4-10) and SiO2/Al2O3 ratio of the HZSM-5 zeolite catalyst on the 

process are studied.  At higher reaction temperatures, dealumination of HZSM-5 

becomes considerable and thus its catalytic performance is reduced.  The acidity of 

HZSM-5 in the second bed is responsible for the oligomerization reaction to form 

liquid hydrocarbons.  The activity of the oligomerization sites is unequivocally 

affected by the SiO2/Al2O3 ratio.  The relation between the acidity and the activity of 

HZSM-5 is studied by means of TPD-NH3 techniques.  The rise in oxygen 

concentration is not beneficial for C5+ selectivity where reaction forming carbon 

oxides (CO + CO2) products from combustion of intermediate hydrocarbon products 

rather than oligomerization reaction is dominant.  The dual-bed catalytic system is 

highly potential to convert methane directly to liquid fuels. 
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5.1. Introduction 

 

 

The direct catalytic conversion of methane into desired chemicals or liquid 

fuels is still a great challenge in natural gas utilization.  The two approaches involved 

are direct conversion of methane with the assistance of oxidants and direct 

conversion of methane under non oxidative conditions.  However, existing methane 

conversion methods have proven to be prohibitively expensive and inefficient.  Thus, 

developing a less expensive and more efficient catalytic conversion process is of 

great interest and technological importance.  

 

 

The oxidative coupling of methane into ethylene has been extensively studied 

for the utilization of methane during the past decade.  A wide variety of catalysts, 

mainly metal oxide based catalysts, have been investigated and many types of 

reaction mechanisms have been proposed.  Although significant progress has been 

achieved in the research and development of the oxidative coupling of methane 

(OCM) process [51], the technical and economic hurdles have yet to be overcome.  

One of the more serious limitations of the OCM process is the uneconomical 

separation of low concentration of ethylene in the product stream.  One of the 

alternatives to overcome this limitation is to convert directly the dilute ethylene 

present in the OCM product streams into much less volatile product streams, such as 

aromatics and/or gasoline range hydrocarbons, which can be easily separated.  

Hence, there is a great need for designing a new concept of catalytic reactor system 

useful for converting ethylene at very low concentrations or partial pressures into 

liquid hydrocarbons.  The selectivity and yields of higher liquid hydrocarbons are 

achieved mainly by the development of more selective catalysts, but optimization of 

reaction conditions, reactor design and operation also provide opportunities for 

improved performance of the catalytic process.  

 

 

For that reason, the concept of the double-bed catalytic reactor configuration 

is proposed.  The system comprises of a dual- bed catalytic system for the production 
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of liquid hydrocarbons from methane gas.  In the first bed, methane is converted to 

OCM light hydrocarbons over La/MgO.  Subsequently, the products formed in the 

first bed oligomerized over HZSM-5 to form liquid hydrocarbons without the needs 

to separate the OCM light hydrocarbons from the gaseous stream. 

 

 

The investigation of this type of reactor concept, which combines at least two 

catalyst or process functionalities, has been the subject of considerable attention in 

recent literatures.  The dual-bed reactor concept enhanced reaction and offers high 

potential for process simplification and energy conservation.  For example, Ramirez 

et al. [52] proved that a dual-bed catalytic system, consisting of a deNOx and deN2O 

catalyst bed in series, could operate with high and stable activity for successive 

removal of NO and N2O.  Furthermore, Lee et al. [53] investigated a practical use of 

a Co-zeolite as a deNO catalyst at a lower temperature in dual-bed system, consisting 

of deNO and deNO2 catalyst beds in series.  In addition, syngas has been produced 

from the gasification of various biomasses such as jute stick, bagasse, rice straw, and 

saw dust of cedar wood using a dual-bed gasifier combined with a novel catalyst.  

This concept permits the high technology biomass upgrading systems to gaseous and 

liquid fuels [54].  Recently, Zhu et al. [55] proposed a system with two catalyst beds 

instead of one single metal catalyst bed for catalytic partial oxidation of methane 

(CPOM) to synthesis gas.  The most important advantage of this approach is the 

prevention of any contact between oxygen and the metal catalyst, because oxygen is 

completely converted on the first bed catalyst.  Therefore, metal loss via evaporation 

of oxides can be excluded.  Thus, the previous research on the dual-bed catalytic 

system provides an incentive to develop conceptually this type of catalytic system in 

the present work (see Figure 5.1).   
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Figure 5.1: Simplified reaction scheme for the dual-bed catalytic system over 

La/MgO and HZSM-5 catalysts 

 

 

On the other hand, a number of earlier studies have demonstrated that La 

promoted MgO is a reasonably good catalyst for the OCM reaction [56-63].  

Choudhary et al. [60] reported that La–promoted MgO exhibited remarkable activity 

and high C2 selectivity (towards C2H4+ C2H6) and also high catalyst stability in the 

OCM process.  Their study also indicated that the promotional effect by lanthanum 

doped on MgO was attributed to a large increase in the strong basicity of the catalyst.  

Hence, La-MgO has been chosen as the viable candidate for the catalyst in the first 

bed for the dual-bed catalytic system in this study.  Subsequently, the function of the 

second catalytic bed to oligomerize the OCM light hydrocarbons comprising of 

mainly olefins to higher hydrocarbons is handover to the HZSM-5 catalyst.  Earlier 

studies have demonstrated that acidic HZSM-5 zeolite catalyst is a reasonably good 

oligomerization catalyst for converting C2 products to higher hydrocarbons [64-68].  
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In this work, La-MgO is placed in the first layer whilst HZSM-5 in the second so 

that the affiliation between basicity and acidity of the catalysts could be explored in 

order to attain the maximum selectivity of the liquid hydrocarbons.  The main 

objective of this paper is to carry out a systematic research on the effect of important 

process parameters like the reaction temperature (650-800 0C), CH4/O2 ratio (4-10) 

and the SiO2/Al2O3 ratio of HZSM-5 (SiO2/Al2O3 = 30, 50, 80 and 280) on the 

performance of the dual-bed catalytic system.  The relation between the acidity and 

the activity of HZSM-5 are studied by means of TPD-NH3 techniques.  

 

 

 

 

5.2. Experimental Procedure 

 

 

5.2.1  Catalysts Preparation 

 

 

The La promoted MgO catalyst was prepared by mixing powdered 

magnesium oxide with lanthanum nitrate (La/MgO= 0.1 mol ratio) in deionized 

water just sufficient to form a thick paste and dried at 120 0C for 12 h.  The resulting 

dried mass was then calcined at 800 0C for 10 h in static air.  Four HZSM-5 samples, 

with different SiO2/Al2O3 ratios, were used and designated as HZ (30), HZ (50), HZ 

(80) and HZ (280), where the parenthesises indicate the SiO2/Al2O3 molar ratio.  

ZeolytstTM International supplied all the ZSM-5 zeolite in the ammonium form.  The 

ammonium form was converted to HZSM-5 by calcining at 550 0C for 5 h.  In 

addition, HZSM-5 (SiO/Al2O3=30) were also pretreated at different thermal 

conditions (T=550, 600, 650, 700, 750 and 800 0C) in order to study the effect of 

temperature on the acidity of the HZSM-5.  These zeolites were coded as HZT-(X) 

[HZT-(550), HZT-(600), HZT-(650), HZT-(700), HZT-(750) and HZT-(800)] where 

X refers to the temperature at which thermal treatment was performed. 
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5.2.2 Catalyst Characterization 

 

 

 All the catalysts in this study were characterized using temperature-

programmed desorption of ammonia (TPD- NH3).  The measurements for this TPD- 

NH3 analysis were carried out using a Micromeritics TPD/TPR 2900 Instrument.  

The catalyst utilized was 300 mg for each experiment.  First, the sample was heated 

up to 773 K under a flow of dry nitrogen and kept at that temperature for 1 h in order 

to desorb all traces of desorbed water.  The sample was then cooled down to ambient 

temperature.  Next, the sample was saturated in ammonia gas flow for 30 min, and 

subsequently loosely bound ammonia was removed by purging the catalyst with by 

nitrogen stream at a flow rate of 20 ml/min for 30 min, and finally cooled down to 

room temperature.  The amount of desorbed ammonia was determined by a linear 

heating rate of approximately 15 K/min from 393 K to 823 K while the evolved 

ammonia concentration was monitored using thermal conductivity and mass 

spectrometric detectors. 

 

 

 

 

5.2.3 Catalytic Evaluation 

 

 

The reaction was performed at atmospheric pressure using a conventional 

fixed-bed quartz reactor with dimensions of 10 mm inner diameter and 300 mm 

length (Figure 5.2).  In the dual-bed catalytic system, the feed gas mixture was first 

passed over the La-MgO catalyst in the first bed followed by the HZSM-5 catalyst 

bed.  A plug of glass wool separated the two catalyst beds.  A Carbolite tube furnace 

(Model: MTF 10/15/130) was used to heat up the reactor to the required operating 

temperature.  Inside the reactor tube, a thermocouple was inserted along the axial 

direction to monitor the temperature of the catalyst beds.  The temperatures reported 

were those for the OCM bed; the temperature of the second bed was about 115 0C 
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lower than the OCM bed.  The difference of 115 0C remained constant over the 

OCM bed temperature range between 650 and 800 0C. 

 

 

For catalyst testing, the catalyst was first activated in situ by heating to 550 
0C for 1 h in flowing nitrogen before the flow was switched to the reactant gases.  

The reactant feed gas used in this study were high purity methane (≥99.9% purity) 

and oxygen (≥99.99%).  The inlet volumetric flow rate of each gas was controlled 

using the individual volumetric flow controller (Alicat) with a flow rate range from 

5-512 ml/min.  

 

 

The product stream leaving the reactor was separated into liquid and gas 

fractions using water bath.  The reactor effluent gases were analyzed on-line by 

means of a Hewlett Packard Agilent 6890N gas chromatograph system equipped 

with thermal conductivity detector (TCD) and four series column (UCW 982, DC 

200, Porapak Q and Molecular Sieve 13A).  The fraction of collected liquid products 

was determined by manually injecting the liquid in the same GC.  The liquid was 

then separated by a capillary column and detected by a flame ionization detector 

(FID). The conversion of CH4 and the selectivity of the products were calculated on 

the carbon basis (coke was not taken into account).  

 

 

 

 

 

 

 

 

. 
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Figure 5.2: Dual-bed catalyst reactor set-up 
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5.3. Results and Discussion 

 

 

5.3.1.  Catalysts Characterization 

 

 

5.3.1.1 SiO2/Al2O3 Ratio Effect 

 

 

The NH3-TPD profiles of the HZSM-5 catalysts with different SiO2/Al2O3 

ratios are depicted in Figure 5.3.  All samples exhibit two well resolved desorption 

peaks: the low desorption temperature peak (α) and the high desorption temperature 

peak (β) are in good agreement with other previous reports [69-70].  The α peak is 

assigned to desorption of ammonia from silanol and other weak acidic centers; the β 

peak is assigned to desorption of ammonia from strong acid sites [64, 71-73].  Based 

on the peak intensities, the relative areas of these two peaks (α and β) are 

proportional to the SiO2/Al2O3 ratio.  
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Figure 5.3: Temperature programmed desorption of ammonia from HZSM

different SiO2/Al2O3 ratios 
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Table 5.1: Acidity of HZSM-5 catalysts with different SiO2/Al2O3 ratios by TPD- 

NH3.

Sample 
Total acidity 

(mmol NH3 gcat-

1) 

Weak 
Acidity 

(mmol NH3 gcat-

1) 

Td(K) 
Strong 
Acidity 

(mmol NH3 gcat-1) 
Td(K) 

HZSM-5 

(30)b
1.25 0.41 465 0.84 644 

HZSM-5 (50) 1.17 0.37 475 0.80 648 

HZSM-5 (80) 0.91 0.31 480 0.60 663 
HZSM-5 

(280) 
0.22 0.09 499 0.13 685 

bThe SiO2/Al2O3 ratio of the materials are given in the parentheses 

 

 

The results in Table 5.1 show that the total number of acid sites (the strong 

and the weak acid sites) increases with Al content.  A general decrease of the total 

amount of desorbed ammonia was found for increasing SiO2/Al2O3 ratio, indicating 

an overall decrease in the concentration of the acid sites.  The amount of ammonia 

(Table 5.1) also allows us to evaluate the concentration of accessible weak and 

strong acid sites.  The strong acid sites increase with Al content.  Theoretically, one 

proton should be introduced for each framework Al3+, and therefore the larger the 

number of framework aluminum atoms, the higher the potential number of acid sites 

would be in zeolite [74-75].  Strong acid sites (Brønsted) are generated by 

tetrahedrally coordinated Al atoms forming Al-O(H)-Si bridges [76].  The increase in 

the strong acid sites with Al content implies that most of the Al is tetrahedrally 

coordinated in the framework.  Therefore, it is clear that the total number of Brønsted 

acid sites present in a zeolite catalyst depends on the framework SiO2/Al2O3 ratio, or 

more generally speaking, on the ratio of framework M4+/M3+ cations.  
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5.3.1.2  Thermal treatment analysis of the HZSM-5 samples 

 

 

The thermal analysis was carried out to determine the thermal stability of the 

HZSM-5 (SiO2/Al2O3=30) zeolite and to measure the loss of acidity as a function of 

temperature.  The samples investigated in this work were obtained by heating in air 

the parent HZSM-5 catalyst at different temperatures.  From the intensities of the 

signals in Figure 5.4, it can be deduced that the amount of available acids depends on 

the treatment temperature although the samples possess the same SiO2/Al2O3 ratio.  

The densities of the strong acid sites are significantly reduced, as indicated by the 

height (or the area under curve) and the temperature of the high temperature peaks, 

respectively, as shown in Figure 5.2.  However, the density and strength of weak 

acids do not change as significantly as those of the strong acids.  
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Figure 5.4: NH3-TPD profiles of HZSM-5 catalysts treated at different temperatures 
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On the other hand, HZT-550 possesses the largest amount of available strong and 

weak acid sites among the six samples (Table 5.2).  However, the number of both 

strong and weak acid sites decreases remarkably, when HZSM-5 undergoes heat 

treatment.  Finally the TPD profile of HZSM-5 demonstrates that the heat treatment 

at above 750 0C is more likely to decrease the amount of acid sites where only one 

peak at low temperature (~460 K) is observed, indicating a low acidity.  

 

 

Table 5.2: NH3 sorption capacity of the HZSM-5 samples treated at various 

temperatures. 

 a temperature of thermal treatment analysis  

Sample 
Temperature 

(0C)a

Total acid  

density (mmol/g) 

Loss of strong acid sites 

after thermal  

treatment(%)b

HZT-(550) 550 1.25 - 

HZT-(600) 600 1.03 25.57 

HZT-(650) 650 0.88 71.87 

HZT-(700) 700 0.85 85.68 

HZT-(750) 750 0.66 98.03 

HZT-(800) 800 0.61 100 

b loss of strong acid sites at each temperature calculated  relative to amount of strong acid sites at 

HZT-(550) 
 

 

The trend of the acidity values measured by this technique agrees favorably 

with those obtained by other researchers.  According to Xing et al. [77], the increase 

in calcinations temperature would attribute to the removal of water molecules, 

resulting in the decrease of Brønsted acid sites with constant increase in Lewis acid 

sites.  Additionally, the reduction of acid sites concentration for the higher 

temperature desorption peak is much more remarkable at temperatures above 700 C 

as shown in Table 5.2.

0

  Campbell et al. [28] pointed out that dealumination of zeolite 

lattice occurred at T= 725 0C for HZSM-5 and there would be the breaking of the Si-

H-Al bonds and the formation of extralatice aluminum species. At T≥ 750 0C, Tan et 
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al. [79] observed dealumination and suggested with the partial destruction of the 

HZSM-5 structure and the occupancy of the channels by extralatice aluminum, there 

would be a reduction mainly in the number of strong acid sites.  Similar results are 

also observed in our present study.  Ultimately, these results suggest that the total 

amount of ammonia adsorbed continuously decreased with increasing treatment 

temperature due to the dealumination of framework alumina of the treated HZSM-5 

samples. 

 

 

 

 

5.3.2  Catalytic Performance 

 

 

5.3.2.1 Effect of Temperature 

 

 

Figure 5.5(a) displays the variation in the rate of reaction of methane over the 

dual-bed catalysts and the corresponding product distribution as a function of 

temperature.  A ratio of CH4 to O2 about 10:1 (in volume) was selected, and the 

temperature was varied from 650 0C to 800 0C.  Figure 5.5(a) exhibits the slight 

increase in the conversion of methane obtained when the temperature increased from 

650 0C to 800 0C, but only to a small extent.  It is also noted that by increasing the 

temperature, the ratio of ethylene/ethane ratio increased monotonously.  The 

selectivity of C5+ goes through a maximum for a temperature of 700 0C and then 

decreased dramatically.  At T=800 0C, HZSM-5 (SiO2/Al2O3=30) catalyst 

succumbed and failed to function as a catalyst for oligomerization reaction.  As the 

temperature is increased, the selectivity of C3 remained almost constant.  The 

selectivity of C4 was constant until 750 0C, and then leveled-up significantly at 800 
0C.  The CO2/CO ratio was nearly constant over the temperature range of 650-700 0C 

but increased to a stable value at higher temperatures. 
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Figure 5.5: Influence of reaction parameters on the catalytic activity and product 

distribution (● methane conversion, ○ C2H4 to C2H6 ratio, ∆ selectivity of C3, 

▲ selectivity of C4, □ selectivity of C5+  and  ■ CO to CO2 ratio) 
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The influence of temperature on methane conversion is similar to most of the 

results investigated for OCM catalysts.  With increasing temperature, methane 

conversion passes through a maximum or reaches a plateau.  The temperature of 

maximum conversion of methane is unique for each catalyst and depends on the 

partial pressures of reactants as well as on mixing pattern, which are different in 

various reactor types.  However, in the dual-bed reactor system investigated here, 

numerous simultaneous reactions involved in the complex reaction pathway of 

methane and intermediate/final products transformation can also produce methane, 

decreasing the net conversion of methane [80-81] as the temperature increases.  In 

addition to the heterogeneous reactions, a large number of homogeneous free radical 

reactions [82-85] are also involved, depending upon the process conditions.  Hence, 

the profile of methane conversion as a function of temperature in this study is 

slightly different compared with those for single bed La/MgO catalysts reported in 

the literature [56, 57, 60].  

 

 

The increase in the ethylene/ethane ratio as a function of temperature 

indicates that the conversion of ethane to ethylene is favored at higher temperatures.  

It is expected due to the thermal decomposition of ethyl radicals and thermal 

cracking of ethane at higher temperatures [57].  The increment in the C2 olefin 

selectivity with an increase in temperature can be explained on the basis that an 

increase in temperature increases the rate of dehydrogenation reactions and more C2 

olefins are formed at the expense of C2 paraffins [86]. 

 

 

Ethylene that is produced in the first stage may be reacting with other 

intermediate species, undergoing numerous secondary transformations in the second 

bed catalyst.  Thus, the presence of strong acid sites in the HZSM-5 promotes the 

oligomerization and cyclization reactions in complex mechanism to produce C5+ 

hydrocarbons.  Nevertheless, deactivation of HZSM-5 catalysts at high temperatures 

as proven earlier by TPD-NH3 characterization analysis in this study, affects the 

product distribution and trends in the catalytic reaction.  Thus, a significant change in 

the acidic property at higher temperature causes the HZSM-5 catalyst to be less 
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effective for oligomerization reaction.  This phenomenon exerts more negative 

effect in terms of ethylene oligomerization and it proved that the presence of strong 

acid sites is essential for ethylene oligomerization.  Hence, the ratio of ethylene to 

ethane increased markedly and the selectivity of C5+ decreased drastically above 700 
0C. Based on these inclinations, the effect of thermal deactivation of the HZSM-5 in 

the second bed catalyst demonstrated that the amount of ethylene formed in the first 

catalyst bed was greater than the amount of ethylene consumed at higher temperature 

in the second bed. 

 

 

In the dual-bed catalytic process, the visible increase in selectivity of C4 

products over the investigated La-MgO and HZSM-5 catalysts is displayed only 

when the temperatures is elevated to 800 0C.  The enhancement in C4-hydrocarbon 

selectivity implies that reaction temperature at above 750 0C exert an effect more 

negative on oligomerization reaction than on C2 activation in the second bed, and the 

presence of Brønsted acid sites is essential for oligomerization.  In addition, the 

marked increase of C4-hydrocarbon selectivity coupled with the decrease in the 

amount of acid sites demonstrates that C4-hydrocarbons is an initial product in C2-

hydrocarbon activation in the second bed reaction.  

 

 

On the other hand, the rise of CO2/CO ratio in the whole investigated 

temperature range indicates the formation of CO2 is more favored at higher 

temperature [87].  This implies that reaction steps that lead to the formation of CO2 

increased at a faster rate with temperatures than those that lead to the formation of 

hydrocarbons.  Accordingly, this observation is consistent with the results reported in 

the literature and implies a higher rate of carbon oxidation with an increase in 

temperature and the CO formed is converted to CO2 at higher temperatures [88-89].  
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5.3.2.2 Effect of Oxygen Concentration 

 

 

In the second series of experiments, we studied the effect of varying the 

methane to oxygen (CH4/O2) ratio at a reaction temperature of 700 0C on the 

combination of both La/MgO and HZSM-5 (SiO2/Al2O3 =30) catalysts.  As shown in 

Fig. 5.5(b), with increasing CH4/O2 ratio, the methane conversion and ethylene to 

ethane ratio decrease constantly.  However, the selectivity of C4 and the ratio of 

CO2/CO go through a maximum for a ratio of CH4/O2 about 8 and then decrease 

dramatically.  In contrast, the selectivity of C5+ increases remarkably and the 

selectivity of C3 remains almost constant with increasing CH4/O2 ratio.  

 

 

Chaundary et al. [60] and Davydov et al. [90] have reported that the 

promotional effect of the lanthanum on MgO is attributed to a large increase in the 

strong basicity of the catalyst.  This property is responsible for the La-MgO catalyst 

to exhibit better catalytic performance in the OCM process, giving higher values of 

methane conversion and C2 (C2H4 + C2H6) selectivity.  However, the HZSM-5 

catalyst which is tested as an oligomerization function catalyst was reported to have 

shown lower activities on the methane conversion compared to the OCM catalysts 

[51, 91]. Based on this understanding, it can be concluded that in our dual-bed 

catalytic system, La/MgO catalyst is particularly responsible for the methane 

conversion to produce OCM products at the first stage.  Therefore, discussions about 

the effect on the conversion of methane in dual bed catalytic system as well as about 

the CH4/O2 ratio in the feed will correlate with OCM reactions over the La-MgO 

catalyst.   

 

 

Anshits et al. [93] and Takashi et al. [94] have demonstrated that the presence 

of gas phase oxygen is essential for favorable methane activity in order to achieve a 

high level methane conversion via OCM reaction.  The equilibrium adsorption 

reaction between gas phase O2 and the La-MgO catalyst result in a form of surface 

oxygen that is capable of abstracting a hydrogen atom from methane where methyl 
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radicals formed on the surface coupled in the gas phase to produce ethane [85, 87-

88]. Consequently, oxygen is absolutely required as a key in the formation of methyl 

radicals.  Therefore, the clear correlation between the methane conversion and 

oxygen concentration could be found in Figure 5.3(b), suggesting that the rate of 

methyl radical formation (rate determining step of this reaction) is exclusively related 

to the methane to oxygen ratio, in accordance with previous conclusions drawn from 

the study of the oxidative coupling over alkali earth metal oxides and rare earth metal 

oxide catalysts [58, 59, 95]. 

 

 

It is interesting to note that, at least for the selective route leading to C2 products, 

methane must be activated into methyl radicals released into the gas phase.  Ethylene 

as well as ethane are primary reaction products from methane, but at higher oxygen 

concentration ethylene was predominantly produced from ethane in a secondary 

reaction in accordance with previous studies [51, 88].  The increase in the 

ethylene/ethane ratio with decreasing  CH4/O2 ratio, also observed in the earlier 

studies [57, 60], is most probably due to the availability of oxygen at higher 

concentration for the subsequent gas phase reactions involved in the formation of 

ethyl radicals and ethylene from ethane.  Therefore, the results in this study indicate 

that ethylene formation is not a result of dehydrogenation of ethane and suggests that 

the main production of secondary product ethylene is by oxy-dehydrogenation of the 

primary product, ethane [56, 96].  This phenomenon explains why the profile of the 

ethylene to ethane ratio increased with the decrease of the CH4/O2 ratio as illustrated 

in Fig. 5.5(b).  

 

 

In the presence of oxygen, numerous studies reported the ease of gas phase 

oxidation of ethylene and this is not surprising owing to the fact that the double bond 

in ethylene is much more susceptible to be activated to undergo both catalytic and 

non-catalytic combustion reaction to form COx products [81, 97].  In addition, high 

oxygen concentrations cause some of the intermediate and desired final hydrocarbon 

products to become more combustible and it is also attributed solely to the lost in 

selectivity of the products [87].  Therefore, with an increase in oxygen concentration, 
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the C4 and C5+ formations are curtailed.  These outcomes could be reasonably 

understood by considering that high oxygen concentration improves the storage of 

oxygen capacity on the catalysts surface and gas phase.  As a result, in the high 

oxygen rich environment, the combustion rate increases faster than the 

oligomerization rate which caused marked decrement of C4 and C5+ hydrocarbon 

products.  Therefore, the concentration of oxygen should be kept at low levels to 

minimize the undesired oxidation of ethylene.  

 

 

The dependence of CO2/CO ratio on CH4/O2 ratio clearly indicates 

consecutive oxidation of CO to CO2.  From the experimental results, and also based 

on the data published in the literature, it is possible to make some considerations that 

the availability of higher oxygen favors the conversion of CO to CO2 and formation 

of more CO2 as compared with that of CO in the process under the oxygen-

advantaged conditions.  Conversely, at the higher oxygen concentration (CH4/O2= 4 

and 6), production of both CO and CO2 involves a complex reaction system, with the 

reaction steps occurring in series and parallel.  In such a situation, the response of 

CO and CO2 products to change in CH4/O2 ratio does not necessarily produce any 

definite trends.  Thus, summarizing these experiments, it is clear that a rise in oxygen 

concentration gives a positive effect in terms of methane conversion but is not 

beneficial for C5+ selectivity, which is our main desired product in this study.  

 

 

 

 

5.3.2.3 Effect of Acid Site Concentration  

 

 

The catalytic properties of HZSM-5 materials with different SiO2/Al2O3 

ratios were evaluated for the same reaction conditions at temperature 700 0C and 

CH4/O2 ratio 10.  This study was carried out in an attempt to test the hypothesis that 

the Brønsted acid sites of HZSM-5 participate actively in the oligomerization 

reaction step in the dual-bed catalytic system.  
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It can be seen that the methane conversion and selectivity of C3 hydrocarbon 

(Figure 5.5(c)) remain almost constant for the whole SiO2/Al2O3 range studied.  The 

ratio of ethylene to ethane and selectivity of C4 increase when SiO2/Al2O3 ratio is 

increased from 30 to 80.  Nonetheless, these trends slightly decrease with SiO2/Al2O3 

ratio 280.  Furthermore, increasing SiO2/Al2O3 ratio of HZSM-5 results in a sharp 

decrease in selectivity of C5+ and a gradual increase in the ratio of CO2 to CO.  

 

 

As was presumed, the HZSM-5 catalysts in the second bed are much less 

active toward unreacted methane molecules from the first bed.  Additionally, not 

much variation in the methane conversion was observed even by changing the acid 

properties of the second bed by varying the SiO2/Al2O3 ratio of the HZSM-5 zeolite. 

The results seems to suggest that HZSM-5 used as second bed in this approach is not 

an active phase to alter the methane molecules and thus methane conversion is 

independent of the HZSM-5 catalyst.  Based on the above consideration, it is evident 

from this study that acidic HZSM-5 catalyst applied as second bed is less effective to 

dissociate the C-H bond in methane and the C-H bond activation of methane mainly 

depends on the first bed of La-MgO catalyst.  These results also help us to conclude 

that the La-MgO catalyst is vital to catalyze the methane reaction.  

 

 

On the other hand, the knowledge on the structure of the active centres is of 

prime importance to elucidate the HZSM-5 catalytic activity in the dual bed catalytic 

system. Schwarz and co-workers [73] reported that the structure of Brønsted acid 

centres is responsible for the oligomerization reaction and there is a significant 

change in product distribution with an increase in SiO2/Al2O3 ratio of HZSM-5.  As 

reveal by the TPD-ammonia characterization results, the density of strong acid sites 

is dependent upon the value of the SiO2/Al2O3 ratio, whereby lower SiO2/Al2O3 

relates to higher amount of strong acid sites.  In addition, the literature indicates that 

the chemical uniformity of the Brønsted-type acid sites (framework hydroxyl groups) 

in the HZSM-5 contents has been proven in the oligomerization test, where the 

oligomerizing activity is linearly related to Brønsted acid sites content [73,98-99]. 

Furthermore, Vereshchagin et al.[100] suggested that the reaction of ethylene 
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oligomerization via HZSM-5 catalyst is a sequence of reactions that include a slow 

step of active surface species formation followed by a fast process of chain growth. 

Thus, the Brønsted acid sites of HZSM-5 in the second bed are responsible for 

oligomerizing the initially formed ethylene by the OCM catalyst in the first bed to 

produce C5+ hydrocarbon products in this catalytic system [64, 66, 73, 100].  

 

 

Consequently, one can observe a monotonic increase in C5+ selectivity with a 

decrease in the bulk SiO2/Al2O3 ratio.  This increase becomes more noticeable for the 

HZSM-5 with larger aluminum content, namely HZSM-5 with SiO2/Al2O3 of 30 and 

50.  This trend can be related to the high hydrogen transfer [HT] capability of low 

SiO2/Al2O3 that results in the  increase of the rate of oligomer formation as 

previously reported [98, 100].  Therefore, it is demonstrated that C5+ product 

selectivity in this study depends strongly on the distribution of Brønsted acid sites, 

which is related to the extent of hydrogen transfer reactions.  The linear correlation 

between selectivity of C5+ hydrocarbon products and concentration of Brønsted 

acidic site confirms the crucial role of acid sites in oligomerization reaction.  

Another interesting observation that has been found in this study is the nearly 

opposite variation in selectivity of C4 and C5+ hydrocarbon as a function of 

SiO2/Al2O3 ratio.  The results suggest that the C4 hydrocarbon is produced at the 

initial stage of the oligomerization reaction due to the coupling of ethyl radicals both 

on the catalyst surface and in the gas phase reaction [101-103].  The C4 species 

hydrocarbon which is more reactive than C2 species will oligomerize further to 

produce C5+ hydrocarbon products in the dual-bed catalytic system.  

 

 

One can speculate as to why the ethylene to ethane ratio is quite small at low 

SiO2/Al2O3 ratio.  The most likely hypothesis is that the double bond in ethylene is 

much more susceptible to be activated than the C-H bonds in ethane.  Therefore, 

HZSM-5 with SiO2/Al2O3 of 30 which has high acid density sites will increase the 

rate of ethylene consumption which reflects  the rate of oligomer formation [73,104-

105] and causes the ethylene to ethane ratio to reduce at low SiO2/Al2O3 ratio.  For 

that reason, it can be observed in Figure 5(c) that the increase in the ethylene to 
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ethane ratio in the final products, coupled with the increase in the SiO2/Al2O3 ratio 

of the HZSM-5 demonstrated the limited occurrence of oligomerization reaction for 

the catalyst with a small amount of acid sites. 

 

 

Changing SiO2/Al2O3 ratios in the range of 50-280 and other reaction 

parameters do not signify the selectivity of C3.  Therefore, it is not clear whether C3 

species hydrocarbon play any direct or indirect role in the catalytic oligomerization 

reaction in the second bed HZSM-5 catalyst.  Likewise, HZSM-5 zeolite shows a 

great activity in the oxidation of light hydrocarbons leading to the formation of total 

oxidation products, mainly carbon oxide.  Consequently, the ratio of CO2 to CO 

increases as the SiO2/Al2O3 ratio of HZSM-5 increase.  This result indicates that 

HZSM-5 with relatively strong acidity lead to CO formation as observed previously 

[106].   

 

 

The results in this study clearly suggests that the active sites for 

oligomerization is predominantly affected by the SiO2/Al2O3 ratio thus, reflecting a 

large amount of Brønsted acid sites are mainly responsible for the formation of larger 

hydrocarbons.  HZSM-5 with low SiO2/Al2O3 ratios in the second bed gives higher 

activity and selectivity to the desired C5+ liquid hydrocarbons products.  

 

 

 

 

5.4.  Conclusions 

 

 

The conversion of methane and C5+ selectivity in the dual-bed system were 

strongly dependent on the reaction temperature and oxygen concentration as well as 

were directly proportional to the number of strong acid sites.  The results implied that 

the Brønsted acid sites of HZSM-5 were the active centers responsible for the 

oligomerization of primary ethylene products.  Oxygen was absolutely necessary for 
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the formation of the methyl radicals from methane, but it should be provided at a 

controllable manner in order to avoid undesired oxidation of intermediate OCM 

products.  In addition, the partial destruction and dealumination of HZSM-5 at higher 

temperature had caused the deactivation of the second bed meant for the 

oligomerization reaction.  The activity of the oligomerization sites was unequivocally 

affected by the SiO2/Al2O3 ratio.  This exploration also suggests that the concept of 

the dual-bed catalytic system via direct process is an interesting contender for 

application in the OCM technology that would overcome the separation limitations 

and permits the process to be more viable from the economic point of view. 

 

 

 

 

 

 

 

 



 

 

 

CHAPTER 6 

 

 

 

KINETIC STUDY FOR CATALYTIC CONVERSION OF METHANE IN 

THE PRESENCE OF CO-FEEDS TO GASOLINE OVER W/HZSM-5 

CATALYST 

 

 

 

Abstract 

 

 

 The kinetic of catalytic methane conversion in the presence of co-feeds 

ethylene and methanol over W/HZSM-5 was studied in a fixed-bed micro reactor at 

atmospheric pressure and temperatures between 973 -1073 K.  Methane 

concentration in the feed (methane+ethylene+methanol+N2) was varied from 50% to 

90% v/v at constant ethylene and methanol concentrations.  The kinetic model based 

on Langmuir-Hinshelwood reaction mechanism fitted well with the experimental 

data as the deviations between experimental and simulated data were relatively low.  

Arrhenius and Van’t Hoff equations were used to calculate the kinetic parameters: 

activation energy (Ea), frequency factor (k0), adsorption enthalpy (∆Hads), and 

entropy (∆Sads). 

 

 

Keywords: kinetic, methane, W/HZSM-5 catalysts, co-feeds  
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6.1 Introduction 

 

 

 The use of crude oil as the feedstock for gasoline production has a major 

drawback due to depleting oil deposits.  On the contrary, natural gas is available in 

abundance; therefore, it is considered to be a more attractive alternative source for 

gasoline production.  The current technology to convert methane, the main 

component of natural gas, to desirable chemical products proceeds by indirect 

process.  The first step in the indirect process is the conversion of methane to syngas 

(CO + H2) via steam reforming or partial oxidation.  The second step is the 

conversion of syngas to desirable chemical products either by Fischer Tropsch (FT) 

or Methanol to Gasoline (MTG) routes.  However, the utilization of methane (the 

main constituent of natural gas) to desirable chemical products or liquid fuel has 

limitation due to the stability of methane molecule having four C-H covalent bonds 

[107]. 

 

 

 Extensive research efforts have been devoted to the direct conversion of 

methane to higher hydrocarbons and aromatics.  The transformation of methane to 

higher hydrocarbons and aromatics has been studied under oxidative and non-

oxidative conditions.  The reaction of methane in the presence of O2 has a limitation 

due to the formation of undesirable product, CO2.  The catalytic conversion of 

methane under non-oxidative condition over metal loaded catalyst has attracted 

considerable attention from many researchers [15, 107].  Some metals such as Mo, 

W, and Re supported on HZSM-5, HZSM-11, and MCM-22 zeolites were found to 

be active catalysts for the conversion of methane to higher hydrocarbons and 

aromatics [8, 108].  The correlation between catalytic performance and structure of 

the catalyst has been studied.  Various techniques, such as specific surface area 

(BET), X-ray diffraction (XRD), NH3 temperature-programmed desorption (NH3-

TPD), in situ X-ray photoelectron spectroscopy (XPS), Fourier transform infrared 

spectroscopy (FT-IR), and 27Al and 29Si nuclear magnetic resonance (NMR) have 

been used to characterize the catalysts.  On the basis of these studies the physical 

and chemical structures of the catalysts materials have been reported.  Moreover, the 
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correlation between the structure of the catalyst and the catalytic performance has 

been investigated.  The active sites of the catalyst were found to be responsible in 

the activation of methane to form higher hydrocarbons and aromatics.  

 

 

 Although extensive studies have been devoted to understand the mechanism 

of direct conversion of methane to higher hydrocarbons, there is very little 

information available about the kinetics of methane to higher hydrocarbons in 

particularly gasoline range C5
+ hydrocarbons.  Previously, the kinetic study for the 

reaction of methane to aromatics was carried out over Ru-Mo/HZSM-5 in a 

conventional fixed-bed reactor in the temperature range of 873 to 973 K [113].  The 

present work studies the kinetic of methane conversion in the presence of light 

hydrocarbons as co-feeders to gasoline range hydrocarbons over W/HZSM-5 

catalyst at temperatures between 973 to 1073 K.  The reaction parameters such as 

rate constant, activation energy, and adsorption constants were measured based on 

the proposed model.  

 

 

 

 

6.2 Experimental Procedure 

 

 

6.2.1 Catalyst preparation 

 

 

 The 2 wt. % W/HZSM-5 catalyst was prepared by incipient wetness 

impregnation method as described by Wang et al. [109].  HZSM-5 (SiO2/Al2O3=30; 

Zeolyst International Co. Ltd) was impregnated with a calculated amount of an 

aqueous solution of (NH4)5H5[H2(WO4)6].H2O.  The sample was subsequently dried 

at 383 K overnight and then calcined at 823 K for 5 h.  The catalyst was crushed and 

sieved into the size of 35-60 mesh for catalytic testing. 

 



 81
6.2.2 Reactor system 

 

 

 The kinetic measurements of methane conversion in the presence of co-

feeders ethylene and methanol to gasoline range were carried out in a fixed- bed 

differential reactor.  The schematic diagram of the experimental setup is shown in 

Figure 6.1.  The reactor is a 9 mm internal diameter (i.d) and 15 cm length stainless 

steel tube.  The catalyst particles were held on quartz wool plug which was placed in 

the middle of the reactor.  The flow rates of the gaseous feeds (methane, ethylene, 

nitrogen) were regulated with volumetric flow controllers, while methanol was fed 

using a syringe pump.  The methanol was heated in a heating tape before flowing 

into the reactor.  Five series of runs were carried out at different temperatures i.e, 

973, 998, 1023, 1048, and 1073 K.  At each temperature, the concentration of 

methane was varied from 50 to 90% v/v at a constant ethylene concentration of 

5%v/v.  The total gas hourly space velocity (GHSV) of gaseous feed mixture 

(methane+ethylene+nitrogen) was kept at 1800 ml/g.h.  The flow rate of methanol 

was constant at 5 ml/h.  The total pressure of the reaction was around 1 atm.  

Nitrogen was used as an internal standard for calculating methane conversion and 

selectivity of reaction products.  The products from the reactor were cooled and 

separated into gas and liquid products.  The gaseous products were analyzed on-line 

by means of a Hewlett-Packard 5890 automated equipped with a thermal 

conductivity detector (TCD) while the liquid products were analyzed using a flame 

ionization detector (FID).  
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Figure 6.1:  Schematic diagram of experimental set up and fixed bed reactor system 

 

 

 

 

6.2.3 Reaction mechanism and kinetic model 

 

 

 Many attempts have been devoted to better understand the possible pathways 

of the methane reaction to higher hydrocarbons and aromatics.  Wang et al. [110] 

suggested that the activation of methane over Mo/HZSM-5 zeolite catalyst was 

initiated via the carbenium ion mechanism, with Mo6C species or protonic sites 

acting as hydride acceptor.  Chen et al. [111] proposed that methane conversion was 

catalyzed by the molybdenum species inside the HZSM-5 channels together with the 

strong acid sites of the zeolite.  The process would form CH3 free radicals, which 

could dimerize to form ethane and ethylene easily.  Then the ethylene aromatized to 

benzene with the aid of the protons of HZSM-5 zeolite.  Ohnishi et al. [112] 

proposed the mechanism for the catalytic conversion of methane to higher 
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hydrocarbon and aromatics over Mo/HZSM-5.  The mechanism proceeded 

primarily by methane dissociation on Mo/HZSM-5 catalysts to form surface carbon 

species such as CHx and C2Hy (x, y>0) on the Mo site of Mo carbide, which were 

oligomerized on HZSM-5 support having the proper acidity toward aromatic 

compounds such as benzene and naphthalene.  As described above, the mechanism 

for methane conversion to higher hydrocarbons and aromatic is being explored.  It 

seems that there is an almost common agreement that ethylene, the primary product 

of methane activation, undergoes subsequent oligomerization and cyclization 

reactions on Brönsted acid sites of the zeolite to form non aromatics and aromatics 

higher hydrocarbons, such as paraffin, benzene, naphthalene, and toluene.  It is also 

generally agreed that the dual active sites: metal active sites and zeolite acid sites are 

responsible for the reaction.  Recently, Iliuta et al. [113] proposed the mechanism 

for methane non-oxidative aromatization based on dual-site mechanism with metal 

active sites and acidic active sites, respectively.  Their proposed mechanism was 

arranged using single site mechanism with the assumption that all the active sites 

were identical over the catalyst.  In this study, the mechanism for the conversion of 

methane in the presence of co-feeders to C5
+ hydrocarbons in gasoline range is 

proposed as follows: The presence of co-feeds ethylene and methanol is necessary 

for the formation of active species on the catalyst.  The reaction pathway for the 

conversion of methane containing ethylene and methanol is initiated by the 

formation of C2
+ carbenium ions over W/HZSM-5 catalyst (Eq. 6.1).  The carbenium 

ions are converted to form coke which is deposited in the W/HZSM-5 catalyst (Eq. 

6.2). 

 

 

ionscarbeniumCHZSMWOHCHHC +⇒−++ 2342 5/  ( 6.1 ) 

 

CokeionscarbeniumC ⇒+
2  ( 6.2 ) 

 

5/5/ −−⇒−+ HZSMWCHZSMWCoke  ( 6.3 ) 

 



 84
In this way, C2

+ carbenium ions (Eq. 6.1) would be more easily formed than C1 

carbenium ions.  C2
+ carbenium ions would be more reactive than CH4 molecules 

and would form carbon deposition on the catalyst surface.  The deposited coke over 

the W/HZSM-5 catalyst is the catalyst active sites for the transformation of methane 

to produce C5
+ hydrocarbons in gasoline range [29].  According to previous studies 

[110-112], it is generally agreed that the mechanism of methane conversion to 

aromatics and higher hydrocarbons consists of two main consecutive reactions of 

methane to methyl radicals which could dimerize to form ethane and ethylene easily 

followed by ethylene aromatization to gasoline.  Furthermore, the reactions 

pathways for the production of C5
+ hydrocarbons in gasoline range from methane 

over partially coke deposited on the catalyst (C-W/HZSM-5) is arranged based on 

the above consecutive reactions. [9]. 

 

 

The kinetic model is developed with the following reaction mechanism. A 

sequence of elementary steps for the formation of C5
+ hydrocarbons on the catalyst 

active sites, (C-W/HZSM-5 or S*) is presented in Eqs 6.4 - 6.7 arranged based on 

Langmuir-Hinshelwood kinetic model. 

23
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4 2
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++ ⇔  ( 6.4 ) 
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+⇔  ( 6.7 ) 

 
where S* represents the partially coke catalyst= C-W/HZSM-5. 

 

 

 The sequence steps on the catalyst active sites include adsorption of methane 

from gas phase on catalyst surface, dissociation of methane to form methyl radical, 
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formation of ethylene on the catalyst surface, desorption of ethylene to gas phase. 

The oligomerization of the ethylene to produce C5
+ hydrocarbons [114] then follows.  

The step for the conversion CH3S* species into ethylene CH2S* (Eq. 6.6) is assumed 

to be non equilibrium.  The following assumptions were made to establish the model 

equation: 

 

1. Surface reaction is the rate-limiting step  

 

2. C6H6 represents the C5
+ hydrocarbons products in gasoline range  

 

3. The limitation due to intraparticle diffusion is negligible.   

 

 

To exclude the limitation of intraparticle and external diffusion, the kinetics 

experiments are performed by using small particle sizes and high space velocities.  

The catalyst particle sizes ranged between 259 and 420 µm and the space velocity 

maintained at 1800 ml/g.h.  The size of the particles used was smaller and the space 

velocity was larger than those reported for the reaction kinetics of conversion of 

methane to C5
+ hydrocarbons [113]. 

 

 

 The model has been derived based on the above reaction pathway.  The rates 

for decomposition of methane to methyl radical (Eq. 6.4 of elementary step) is  

 

   ( ) 2/1
21411 3 HCHvCH PkPkr θθ −−=  ( 6.8 ) 

 

 Substitute k-1 with 
1

1
1 K

kk =−  , the rate expression for reaction (4) is defined by  
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θ
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where, 

 

                  
1

1
1

−

=
k
kK  ( 6.10 ) 

 

 

 Methane can be highly activated on coke deposited catalyst. Wang, et al. [12] 

reported that activation of methane reactant occurred on the coke modified Mo2C 

catalyst surface to produce ethylene.  Similarly, Pierella, et al. [29] reported that 

coke deposited on Mo catalyst promoted methane activation.  In the present work, 

the cokes are formed from co-feeder molecules, ethylene and methanol in the 

methane feed.  As a result, excess amount of methyl radicals can be produced before 

the radicals are coupled and oligomerized to higher hydrocarbons.  The surface 

reaction for the conversion of methyl radical to ethylene is considered to be 

irreversible reaction due to the presence of excess amount of methyl radicals on the 

catalyst surface. 

 

 

 The corresponding expression for rate of reaction is (Eq. 6.5 of elementary 

step). 

 

3CHrss kr θ=  ( 6.11 ) 

 

 The corresponding desorption rate of ethylene (6) is defined by  

 

( ) 2/1
422222 HCvCH Pkkr θθ −−=  ( 6.12 ) 

 

Rearrangement,  
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where 
2

2
2

−

=
k
kK          (6.14 ) 

The rate expression for the oligomerization reaction (6.7) is given as follows: 

 

( ) ( ) ( ) 2/1
2

6/1
3

2/1
4233 66 HHCHC PPkPkr −−=  ( 6.15 ) 

 
Rearrangement 
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 For steady state conditions, the rates of each of the reactions (6.9), (6.13) and 

(6.16) are equal to each other, that is r1=rs=r2=r3.  Since rs is the limiting reaction, 

k1, k2, and k3 are very large compared with krs.  Therefore, the rate of methane 

conversion (rs) is obtained: 
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where ⎟
⎠
⎞

⎜
⎝
⎛ ∆
−=

RT
GK 3

3 exp  ( 6.18 ) 

 

 

 The equilibrium constant K3 was calculated using the following relationships 

for the Gibbs free energy, heat, and entropy of ethylene to benzene reaction (Eq. 6.7) 

[113]: 
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333 STHG ∆−∆=∆  ( 6.19 ) 

 
Where 
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6.2.4 Kinetic Parameters Estimation 

 

 

 Non linear regression analysis for Eq. (6.17) using least squares techniques 

determined the unknown parameters i.e., surface rate reaction constant (krs) and 

adsorption equilibrium constants (K1, K2).  The objective function of the residual 

sum squares was minimized (Eq. 6.22) to obtain a mathematical fit for the rate of 

reaction equation (Eq. 6.17): 

 

( )∑ −=
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6.3 Results and discussion 

 

 

6.3.1 Effect of  temperature  and methane concentration 

 

 

The effect of temperature on methane conversion presented in Figure 6.2 reveals 

that methane conversion increases with an increase in temperature from 973 to 1073 

K which is in agreement with the results reported by Weckhuysen et al. [116].  The 

methane conversion percentage increased with increasing temperatures was also 

reported by Shu et al. [8] for the methane dehydrocondensation reaction over 

Re/HMCM-22 at 973, 1023 and 1073 K.  However, the formation rates of benzene 

and naphthalene decreased at temperature as high as 1073 K due to deactivation 

occurring on the Mo/HZSM-5 catalyst [8]. The result shows that higher CH4 

conversion was obtained with decreasing methane concentration in the feed.  The 

lower methane concentration in the feed (more dilution of N2 in the feed) leads to 

mixing and the temperature being distributed more evenly along the catalyst bed.  

This affects the methane conversion.  The presence of inert gas in the methane feed 

that increased methane conversion was also reported by Iliuta et al. [113].   

 

 

The conversion of methane in the presence of lower hydrocarbon to higher 

hydrocarbons has been studied in the presence of C2 and C4 hydrocarbons [29, 117, 

118].  Introduction of a small amount of light hydrocarbons was reported to increase 

methane conversion compared with pure methane as reactant.  The increased 

conversion in the presence of small amount of lower hydrocarbons was due to C2
+ 

additives in the feed which could act as an initiator for the conversion of methane to 

gasoline range hydrocarbons. 
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Figure 6.2: Effect of temperature on methane conversion under different methane 

concentrations. 

 

 

 

 

6.3.2 Kinetic Parameters 

 

 

 Based on the experiments data shown in Fig. 6.3 and regression analysis, 

kinetic and equilibrium constants for the reaction of methane in the presence of co-

feeding to produce gasoline hydrocarbons were obtained. From the regression results 

presented in Table 1, it can be seen that rate constant krs and equilibrium constant K2 

increased with increasing temperature whereas the adsorption constant K1 showed a 

decreasing trend with an increase in temperature.  The same findings were reported 

by Iliuta et al. [113].  The kinetic parameters in Table 6.1 were used to determine the 

activation energy (Ea), the frequency factor (k0), the adsorption enthalpy (∆Hads), 

and entropy (∆Sads) using Arrhenius and Van’t Hoff relationships as plotted in 

Figure 6.4. 
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Figure 6.3: Experimental reaction rate as a function of methane concentration at 

different temperatures. 

 

  

Table 6.1: Estimated Kinetic and Equilibrium Constants krs, K1, and K3 obtained  

from a non linear regression of the model. 

 

Temperature krs, mol/gcat.h.atm K1, atm-1 K2, atm-1/2

973 0.826 1.374 3.300 

998 0.855 1.345 3.379 

1023 0.908 1.275 4.000 

1048 0.941 1.241 4.271 

1073 0.976 1.211 4.728 

 

 The activation energy of the reaction was calculated by using Arrhenius:  

 

⎟
⎠
⎞

⎜
⎝
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RT
Ekk a

rs exp0  ( 6.23 ) 
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From the slope of the rate constant, ln krs against 1/T, the activation energy (Ea) 

and the frequency factor (k0) were calculated to be 141.5 J/mol and 0.959 

mol/g.cat.h, respectively.  The entropy and the enthalpy were predicted by plotting 

ln K1 vs 1/T based on the Van’t Hoff equation: 

 

RT
H

R
SK adsads ∆

−
∆

=1ln  ( 6.24 ) 

 

 The adsorption enthalpy for K1 was -177.16 J/mol, and the corresponding 

adsorption entropy was -1.274 J/mol.K.   

 

 

 
 

Figure 6.4: Van’t Hoff and Arrhenius plots for equilibrium and rate constants. 

 

 

 By substituting the optimized kinetic parameters into equation (6.22), the rate 

of reaction was numerically calculated.  The comparison between calculated and 

experimental reaction rate in Figure 6.5 indicates that simulated values do not 

deviate significantly from the experimental value and that the proposed kinetic 

model can be used to explain the observed data for methane conversion to C5
+ 

hydrocarbons.   
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Figure 6.5: Experimental versus calculated reaction rate. 

 

 

 

 

6.4 Conclusions 

 

 

Kinetic studies of methane conversion in the presence of co-feeds ethylene 

and methanol to produce higher hydrocarbons in gasoline range has been performed 

over W/HZSM-5 catalyst.  The reaction temperature was varied between 973-1073 

K.  The feed mixture consisted of methane-ethylene-methanol-nitrogen at different 

methane concentration.  The reaction rate was strongly dependent on temperature 

and methane concentration.  The reaction rate increased when methane concentration 

in the feed mixture was decreased.  The kinetic model was proposed based on a 

Langmuir-Hinshelwood-Hougen-Watson mechanism for the reaction of methane in 

the presence of co-feeds ethylene and methanol.  Based on the experimental data, the 

kinetic parameters were obtained.  The activation energy (Ea), the frequency factor 

(k0), the adsorption enthalpy (∆Hads), and entropy (∆Sads) were found to be 141.5 

J/mol, 0.959 mol/g.cat.h, -177.16 J/mol, and -1.274 J/mol.K, respectively.  The 

correlation between experimental and calculated reaction rate indicates that the 

model fits the data well.  



 

 

CHAPTER 7 

 

 

A THERMODYNAMIC EQUILIBRIUM ANALYSIS ON OXIDATION OF 

METHANE TO HIGHER HYDROCARBONS 

 

 

Abstract 

 

 

 Thermodynamic chemical equilibrium analysis using total Gibbs energy 

minimization method was carried out for methane oxidation to higher hydrocarbons. For 

a large methane conversion and also a high selectivity to higher hydrocarbons, the 

system temperature and oxygen concentration played a vital role whereas, the system 

pressure only slightly influenced the two variables.  Numerical results showed that the 

conversion of methane increased with oxygen concentration and reaction temperature, 

but decreased with pressure.  Nevertheless, the presence of oxygen suppressed the 

formation of higher hydrocarbons that mostly consisted of aromatics, but enhanced the 

formation of hydrogen.  As the system pressure increased, the aromatics, olefins and 

hydrogen yields diminished, but the paraffin yield improved.  Carbon monoxide seemed 

to be the major oxygen-containing equilibrium product from methane oxidation whilst 

almost no H2O, CH3OH and HCOH were detected although traces amount of carbon 

dioxide were formed at relatively lower temperature and higher pressure.  The total 

Gibbs energy minimization method is useful to theoretically analyze the feasibility of 

methane conversion to higher hydrocarbons and syngas at the selected temperature, 

pressure 

 

Keywords Thermodynamic chemical equilibrium, Gibbs energy minimization,     

                  Methane conversion, higher hydrocarbons  
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7.1   Introduction 

 

 

 Following the oil crisis in the 1970s, there seems to be many efforts focusing on 

synfuel production [119].  Hence, the development of a simple and commercially 

advantageous process for converting methane, the major constituent of natural gas, to 

more valuable and easily transportable chemicals and fuels becomes a great challenge to 

the science of catalysis.  However, methane is the most stable and symmetric organic 

molecule consisting of four C-H covalence bonds with bond energy of 440 kJ/mol [120].  

Thus, effective methods to activate methane are desired.     

 

 

 Thermodynamic constraints on the reactions in which all four C–H bonds of CH4 

are totally destroyed, such as CH4 reforming into synthesis gas is much easier to 

overcome than the reactions in which only one or two of the C–H bonds are broken 

under either oxidative or non-oxidative conditions.  For this reason, only indirect 

conversions of CH4 via synthesis gas into higher hydrocarbons or chemicals are 

currently available for commercialization [46].  Nonetheless, heat management issues 

are common to CH4 reforming.  With steam reforming, large quantities of heat must be 

supplied, whereas, with catalytic partial oxidation, a large amount of heat is released at 

the front end of the catalyst bed as CH4 undergoes total oxidation (CH4 + 2O2 → CO2 + 

2H2O) [28].  

 

 

 Direct conversions of methane to the desired products circumvent the expansive 

syngas step, making it more energy efficient.  These processes are thermodynamically 

more favorable in the oxidative than the non-oxidative conditions. For example, the 

partial oxidation of methane into C1 oxygenates such as methanol and formaldehyde, is 

one such process.  Many studies on the catalytic oxidation of methane to methanol at 

high temperature reported low conversion and selectivity [121-124].  Typically, the 

selectivity of methanol is below 50% while the conversion of methane is below 10% 



 87
[123].  The results indicated that the yield of methanol by direct oxidation of methane 

is too low to be economically attractive.   

 

 

The study on oxidative coupling of methane (OCM) has drawn much attention after the 

pioneering work [125].  Similar to partial oxidation of methane to methanol, after 

intensive efforts from researchers involved with catalysis, no catalysts could achieve a 

C2 yield beyond 25% and a selectivity of C2 higher than 80% [126].  

 

 

 As an alternative approach, transformation of methane to aromatics has also 

attracted great interests from many researchers [127-129].  They reported that only trace 

amount of aromatics could be detected if CH4 reacted with O2 or NO over HZSM-5 

zeolite, and the main products would be COx and H2O.  In an attempt to avoid the use of 

oxygen, several researches tried to transform methane into higher hydrocarbon in the 

absence of oxygen.  Mo supported on HZSM-5 zeolite has been reported as the most 

active catalyst for non-oxidative aromatization of methane [46, 126, 130] but its activity 

and stability are still inadequate for the aromatization process to be commercialized.  

Previous work have also shown that the conversion of methane to liquid fuels is 

promising by using metal modified ZSM-5 (or with MFI structure) zeolite as catalysts 

[131-132].  

 

 

 The study on thermodynamic equilibrium composition has been used in 

investigating the feasibility of many types of reaction e.g. simultaneous partial oxidation 

and steam reforming of natural gas [133-136].  Meanwhile, the minimization of Gibbs 

free energy using Lagrange’s multiplier was applied by Lwin et al. [137], Douvartzides 

et al. [138], Chan and Wang [133, 139], and Liu et al. [140] for solving thermodynamic 

equilibrium analysis of autothermal methanol reformer, solid oxide fuel cells, natural-

gas fuel processing for fuel cell applications, and catalytic combustion of methane, 

respectively.  
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PT,
t n=

The main objective of this paper is to perform a thermodynamic chemical equilibrium 

analysis of possible equilibrium products formed in a methane reaction under oxidative 

and non-oxidative conditions.  In this analysis, the effect of various conditions, i.e. 

temperature, CH4/O2 feed ratio and system pressure, on chemical equilibrium are 

discussed.  The thermodynamics analysis is important to study the feasibility of 

reactions in a reacting system, and also to determine the reaction conditions and the 

range of possible products that can be formed. 

 

 

 

 

7.2  Experimental Procedure 

 

 

The total Gibbs energy of a single-phase system with specified temperature T and 

pressure P, (Gt)T,P is a function of the composition of all gases in the system and can be 

represented as, 

 

      (7.1) ) ,, , , N321 nnn …

 

At equilibrium condition the total Gibbs energy of the system has its minimum 

value.  The set of ni’s which minimizes (Gt)T,P is found using the standard procedure of the 

calculation for gas-phase reactions and is subject to the constraints of the material 

balances.  The procedure, based on the method of Lagrange’s undetermined multipliers, is 

described in detail by Smith et al. [141].  

 

 

In this paper, the gas equilibrium compositions of a system which contains CH4, 

C2H6, C2H4, C3H8, C3H6, C4H10, C4H8, C5H12, C5H10, C6H6, C7H8, C8H10, CO, CO2, H2, 

H2O, CH3OH and HCOH species at 900-1100K, various oxygen/methane mole ratio  and 

1-10 bar are calculated.  These products are chosen as they are likely to be produced from 

g(  )(G
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the reaction between CH4 and O2.  The oxygen/methane mole ratio is set to be 0.04, 

0.05, 0.1 and 0.2.  The condition without oxygen is also simulated.  In the preliminary 

calculations, the compositions of O2 and C6+ aliphatic hydrocarbons are always less than 

1E-10 mol% and for that reason the subsequent calculations only involved the C1-C5 

aliphatic hydrocarbons. 

 

 

By applying Lagrange’s undetermined multipliers method for total Gibbs free 

energy minimization, the following equations need to be solved simultaneously: 

 

     (7.2) 

 

      

(7.3) 

 

 

                             (7.4) 
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Where,  

ika  = the number of atoms of the kth element presents in each molecule of the chemical 

species i.  

kA  = total number of atomic masses of the kth element in the system, as determined by 

the initial constitution of the system.  

°∆G  standard Gibbs energy change of reaction 

fi°∆G  = standard Gibbs-energy change of formation for species i  

PT,
t )(G  = total Gibbs energy of a single-phase system with specified temperature and 

pressure  

P  = system pressure 

°P  = pressure in the standard state, in this case, is 1 bar.  
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R = universal gas constant. 

T = system temperature 

w  = total number of element in  the system 

iy  = mole fraction of species i at equilibrium condition. 

n = total number of moles at equilibrium condition. 

iI  the number of isomers of species i. 

 

 

 Since there are 18 species and three elements (C, H, and O) in the system, a total of 

22 equations (18 equations for Equation (7.2), 3 equations for Equation (7.3) and 1 

equation for Equation (7.4)) are solved simultaneously in order to calculate the 22 

unknowns in the formulae (mole fraction of 18 species, Lagrange multiplier of three 

elements and one total number of mole).  All calculations are performed using Mathcad 

2001i Professional software.  The iterative modified Levenberg-Marquardt method, called 

and applied during the solving process, is taken by Mathcad from the public-domain 

MINPACK algorithms developed and published by the Argonne National Laboratory in 

Argonne, Illinois.  The values of fi°∆G  used in the calculation are obtained from the 

literature [142-145].  The flowchart of the methodology is depicted in Figure 7.1.  
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Figure 7.1: Flow diagram for computation of the equilibrium composition. 
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7.3  Results and Discussion 

 

 

7.3.1 Methane Conversion 

 

 

The methane conversion, based on carbon number basis, and the equilibrium 

compositions, shown in Tables 7.1 and 7.2 increase with system temperature at all 

conditions.  The results are in agreement with the equilibrium conversion of methane 

calculated by Zhang et al. [146] based on reaction (5): 

 

 

     (7.5)  6  64 9H HC6CH +→ 2

 

 

The equilibrium methane conversions at temperatures 973K, 1023K, 1073K, 

1123K and 1173K are reported as 11.3%, 16%, 21%, 27% and 33% respectively but lower 

than the result calculated in this work for non-oxidative conditions since they considered 

only benzene as the hydrocarbon product.  

 

 

Table 7.1: The effect of oxygen/methane mole ratio on methane equilibrium conversions 

at 900K - 1100K and 1 bar.  

CH4 Conversion (%) Temperature 

(K) 0.00* 0.04* 0.05* 0.10* 0.20*

900 6.64 8.21 10.02 19.08 33.74 

1000 14.07 13.65 13.82 20.22 39.41 

1100 25.07 25.29 25.28 26.29 40.24 
* : O2/CH4 ratio 
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Table 7.2: The effect of system pressure on methane equilibrium conversions at 900K 

– 1100K and oxygen/methane mole ratio = 0.1. 

CH4 Conversion (%) Temperature 

(K) 1 bar 2 bar 3 bar 5 bar 10 bar 

900 19.08 17.61 16.35 14.54 12.41 

1000 20.22 19.86 19.72 19.04 17.40 

1100 26.29 22.07 20.83 20.23 19.89 

 

 

The effect of oxygen/methane ratio on methane conversion is tabulated in Table 

7.1.  The conversion of methane is enhanced by increasing the oxygen/methane ratio as 

methane can be easily oxidized to carbon oxides in the presence of oxygen. Nevertheless, 

the methane conversion decreases as the system pressure increased.  By examining the 

calculated equilibrium compositions, it is apparent that the conversions of methane 

involve the following reactions: 

 

 

             (7.6) 1½)  (  2H  CO ½O  CH:Oxidation Partial 224 =+→+ υ

 

 (7.7)   :Total 0)  (   O2H CO  2O CH oxidation 2224 =+→+ υ
 

 (7.8) 

 

 (7.9) 

 

 (7.10) 

 

 

 Except for equations (7.7) and (7.9), Equations (7.6), (7.8) and (7.10) have positive 

υ value.  The increase in the system pressure shifts the reaction with the positive υ to the 

4)  (   6  x , 3)HTo (x  HC   xCH: aromatic 26)-(2xx4 =≥++↔ υ

 ,- :To 2 0) (  2  x 1)H(x HC  xCH4paraffins 2)(2xx ==+↔ + υ

 C:To  1)  (  2  x , xHH xCH4olefins 22xx ==+↔ υ
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left [141], resulting in the decrease of methane equilibrium conversion in consistent 

with the results reported in the literature [140, 147]. 

 

 

 

 

7.3.2 Aromatic Yield 

 

 

  The effects of initial oxygen/methane ratio and system pressure on the equilibrium 

aromatics yield are shown in Tables 7.3 and 7.4, respectively.  As expected, the yield of 

aromatics (benzene, toluene and xylene) at higher temperature exceeds that at lower 

temperature.  Conversely, the increment of oxygen content in the feed suppresses the 

formation of higher hydrocarbons.  Table 7.4 shows that the aromatic yield decreases with 

increasing system pressure as according to Equation (7.8) the increment of the system 

pressure shifts the reaction to the left, and suppresses the formation of aromatics due to the 

positive υ in the stoichiometric reaction.   

 

 

Table 7.3: The effect of oxygen/methane mole ratio on aromatic equilibrium yield at        

900K - 1100K and 1 bar. 

Aromatics yield Temperature 

(K) 0.00* 0.04* 0.05* 0.10* 0.20*

900 6.47 0.0991 0.0158  0.000425 0.000000245

1000 13.8 5.29 3.52 0.0643 0.0000769. 

1100 24.9 16.7 14.6 5.61 0.0455 
* : O2/CH4 ratio 
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Table 7.4: The effect of system pressure on aromatic equilibrium yield at equilibrium 

at 900K - 1100K and oxygen/methane mole ratio = 0.1. 

Aromatics yield Temperature 

(K) 1 bar 2 bar 3 bar 5 bar 10 bar 

900 ≈0 ≈0 ≈0 ≈0 ≈0 

1000 0.0643 0.00456 0.00104 ≈0 ≈0 

1100 5.61 1.55 0.478 0.0776 0.00604 

 

 

 

 

7.3.2 Paraffin and Olefin Yields  

  

 

 The equilibrium calculations indicate that the formations of paraffins and also 

olefins are not favorable in the temperature range between 900K and 1100K and pressure 

between 1 and 10 bar.  Most of the paraffins and olefins formed are C2 hydrocarbons, i.e. 

ethane and ethylene.  Tables 7.5 and 7.6 show that except for the paraffin yield in non-

oxidative condition, the paraffin and olefin yields at higher temperature are always greater 

than the yields at lower temperature.  

 

Table 7.5 and (b):   The effect of oxygen/methane mole ratio on  (a)paraffin and (b)olefin  

equilibrium yields at 900K - 1100K and 1 bar. 

(a) 

Paraffin yield Temperature 

(K) 0.00* 0.04* 0.05* 0.10* 0.20*

900 0.125 0.0074 0.577 0.0245 0.00968 

1000 0.137 0.119 0.113 0.615 0.0184 

1100 0.132 0.122 0.119 0.100 0.0402 

 * : O2/CH4 ratio 
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      (b) 

Olefin yield Temperature 

(K) 0.00* 0.04* 0.05* 0.10* 0.20*

900 0.0784 0.0307 0.0202 0.00516  0.00144 

1000 0.267 0.218 0.199 0.0785 0.015

1100 0.725 0.667 0.633 0.513 0.156
* : O2/CH4 ratio 

 

 

Meanwhile both the paraffin and olefin yields decrease with the increment of 

oxygen.  The equilibrium yields of paraffin and olefin are also affected by the system 

pressure.  The paraffin yield increases with pressure, but the olefin yield decreases as the 

system pressure increases.  The results may be attributed to the positive υ as shown in Eq 

7.10.  Similar trends have also been observed in the literature [147].   

 

Table 7.6:  The effect of system pressure on (a) paraffin and (b) olefin equilibrium  

yields at equilibrium at 900K - 1100K and oxygen/methane mole ratio = 0.1. 

      (a) 

Paraffin yield Temperature 

(K) 1 bar 2 bar 3 bar 5 bar 10 bar 

900 0.0245 0.0283 0.0322 0.0392 0.0531

1000 0.0615 0.0627 0.064 0.0677 0.0792

1100 0.100 0.129 0.139 0.143 0.148

 

      (b) 

Olefin yield Temperature 

(K) 1 bar 2 bar 3 bar 5 bar 10 bar 

900 0.00516 0.00325 0.00267 0.0022 0.00187

1000 0.0785 0.0405 0.0279 0.0183 0.0118

1100 0.513 0.381 0.284 0.175 0.00929
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7.3.4 Hydrogen and Oxygen-containing Product Yields 

  

 

Tables 7.7 and 7.8 show the dependency of hydrogen equilibrium yield, based on 

hydrogen number basis, on oxygen/methane mole ratio and system pressure, respectively.  

It can be clearly seen that hydrogen can be produced at remarkable level even in non-

oxidative condition.  However, the hydrogen yields increases with system temperature and 

oxygen but decreases with the system pressure.  Hydrogen yield up to 40% can be 

achieved at system temperature of 1100K, oxygen/methane mole ratio of 0.2 and pressure 

of 1 bar.  

 

 

Table 7.7: The effect of oxygen/methane mole ratio on hydrogen equilibrium yield at 

900K –1100K and 1 bar. 

Hydrogen yield Temperature 

(K) 0.00* 0.04* 0.05* 0.10* 0.20*

900 4.90 8.06 9.89 18.78 32.04 

1000 10.43 12.08 12.73 20.02 39.14 

1100 18.98 20.75 21.25 24.47 40.05 

 * : O2/CH4 ratio 

 

Table 7.8:  The effect of system pressure on hydrogen equilibrium yields at equilibrium at  

900K - 1100K and oxygen/methane mole ratio = 0.1. 

Hydrogen yield Temperature 

(K) 1 bar 2 bar 3 bar 5 bar 10 bar 

900 18.78 16.88 15.31 13.10 10.22

1000 20.02 19.75 19.48 18.69 16.64

1100 24.47 21.39 20.50 20.08 19.57
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Meanwhile, the reacted oxygen is converted to mostly CO with trace amounts of CO2. 

Yields of CH3OH and HCOH can be neglected for the fact that the yields are below 3.0 x 

10-5 % at the given conditions.  

 

 

Figures 7.2 and 7.3 illustrate the effect of oxygen/methane ratio at T, P constant 

and the effect of system pressure on carbon oxide (COx) yield at fixed T and 

oxygen/methane ratio respectively.  Overall, the total COx yield increase with increasing 

oxygen content in the system as oxygen conversion is 100% in all cases.  As shown in 

Figure 7.3, at methane to oxygen ratio equal to 0.2, some of the oxygen is converted to 

CO2 at 900K causing a slight reduction in the total COx equilibrium yield. The COx yield 

does not seem to be greatly affected by the reaction temperature, except for the conditions 

where the oxygen concentration and the pressure are high.  When the system pressure 

increases, lowering the system temperature would increase the CO2 yield, but the CO and 

overall COx yields would be reduced.  

 

 

Figure 7.2: The effect of oxygen/methane mole ratio at initial unreacted state and 

system temperature on carbon monoxide (■) and carbon dioxide (□) yields. 
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Numerical equilibrium results that methane conversion is greatly enhanced but the 

aromatic yield is suppressed as more oxygen is added.  Nevertheless, a small amount of 

oxygen is still needed to improve the stability of the catalyst.  The study by Tan et al. 

[148] revealed that the addition of appropriate amount of oxygen to methane would 

increase the aromatic yield over Mo/HZSM-5 due to the improved catalyst stability.  

However, they have also shown that further increment in the oxygen concentration 

resulted in a reduced aromatic yield, and that trend is also observed in this work. 

 

Figure 7.3: The effect of system pressure and system temperature on carbon monoxide 

(■) and carbon dioxide (□) yields. Oygen/methane mole ratio =0.2 

 

 

Table 7.9 shows the distribution of products with concentrations > 0.01mol% as a 

function of system temperature and oxygen/methane mole ratio.  It is interesting to note 

that no aromatics are formed when the levels of CO2 and H2O yields became noticeable. 

The observation is consistent with the literature report on methane oxidation over 

Mo/HZSM-5 [148, 149] and La2O3 + Mo3/HZSM-5 [150] catalysts.  The existence of CO2 

and H2O not only suppressed the active carbon surface species on the catalysts, but the 
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aromatics are converted to CO and H2 via steam and carbon dioxide reforming, as 

shown in the following equations: 

 

          (7.11) 226)-(2xx 3)H-(2x   xCO O xH HC +→+

 

               (7.12) 226)-(2x 3)H-(x  2xCO   xCO CxH +→+

 

 

 The results in Table 7.9 clearly reveal that reactions (7.11) and (7.12) are 

thermodynamically favorable at the given conditions and are only retarded when CO2 and 

H2O concentrations are low.  

 

Table 7.9: Distribution of product concentration > 0.01 mole% as a function of system 

temperature and oxygen/methane mole ratio. 

Temperature O2/CH4 Concentration > 0.01 mole% 

900K 0 - - H2 - C2H4 C2H6 Aromatics 

 0.04 CO CO2 H2 H2O - C2H6 - 

 0.05 CO CO2 H2 H2O - C2H6 - 

 0.1 CO CO2 H2 H2O - - - 

 0.2 CO CO2 H2 H2O - - - 

1000K 0 - - H2 - C2H4 C2H6 Aromatics 

 0.04 CO - H2 - C2H4 C2H6 Aromatics 

 0.05 CO - H2 - C2H4 C2H6 Aromatics 

 0.1 CO CO2 H2 H2O C2H4 C2H6 - 

 0.2 CO CO2 H2 H2O - - - 

1100K 0 - - H2 - C2H4 C2H6 Aromatics 

 0.04 CO - H2 - C2H4 C2H6 Aromatics 

 0.05 CO - H2 - C2H4 C2H6 Aromatics 

 0.1 CO - H2 - C2H4 C2H6 Aromatics 

 0.2 CO - H2 H2O C2H4 - - 
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In the study of the equilibrium compositions, the operating temperature needs to be 

kept as large as possible for high conversion and high aromatic yield.  Nevertheless, coke 

formation, which is the main cause of the catalysts deactivation, is unavoidable at high 

temperature.  To test for the presence of coke, the following reaction is considered:  

 

 

(7.13) (g)3H  6C(s)  (g)HC 266 +→
 

 

The equilibrium constant, K for this reaction is: 
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Rearranging, we have 
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 (7.15) 

 

where ac = activity of coke 

66HCp  partial pressure of benzene in system 

2Hp  partial pressure of gas hydrogen in system 

K equilibrium constant  

 

 

 The value for ac is always larger than 1, indicating that coke will be formed in the 

entire operating range considered (900-1100K, oxygen/methane mole ratio of 0–0.2, and 

1-10 atm).  Therefore, it is essential to develop a catalyst not only with high catalytic 

activity, but with high heat and coke resistant as well.  
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From the analysis in this work, it is also shown that syngas is the other major product 

other than aromatics.  The process seems promising as methane can be converted into 

aromatics and syngas in the same reactor. An example of the process is shown in Figure 

7.4.  The aromatic hydrocarbon products and hydrogen can be easily separated from the 

unreacted methane and carbon monoxide by membrane or any other separation methods.  

Methane and carbon monoxide will be good feedstocks for the second 

dehydroaromatization reactor.  With carbon monoxide as the co-feed, benzene formation 

is promoted and the stability of the catalysts is improved [151].  Therefore, a good catalyst 

for this process must fulfill the following criteria: a) heat resistant, b) coke resistant, c) 

high methane oxidation and aromatic formation activity 

 

Figure 7.4: A schematic flow chart of proposed process configuration for methane 

conversion to aromatics and hydrogen. 
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7.4 Conclusions 

 

 

The effects of system pressure, temperature and oxygen/methane mole ratio on the 

methane conversion and product distribution at equilibrium have been studied.  The 

formations of CH3OH, HCOH, CO2, H2O, paraffins and olefins are unfavorable at the 

selected temperature, pressure and oxygen/methane mole ratio.  Meanwhile, CO, H2 and 

aromatics are the major equilibrium products.  In order to achieve high conversion and 

high aromatics yield, the system temperature should be kept as high as possible whilst the 

system pressure and oxygen/methane mole ratio should be low.  The conversion of 

methane to aromatics and syngas is theoretically feasible at the selected temperature, 

pressure, and oxygen/methane ratio.  
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