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1. Introduction

Enantioselective inclusion complexation (EIC)
is a promising technique for chiral resolutions
which, since it is not restricted to proton transfer
interactions, can in principle be used to resolve
compounds with almost any functional group.
However, an outstanding difficulty with EIC is the
separation of enantiomer from the enantioenriched
solid complex, typically performed by distillation.
This limits EIC to enantiomers with appreciable
volatility, and even for these it would be difficult
to operate at large-scale due to high temperature
distillation, with concomitant problematic heat
transfer and vacuum conditions. Here we report for
the first time a novel enantioseparation process
which combines the highly enantioselective nature
of inclusion complexation with the subsequent
separation of enantiomers from a chiral host using
solvent decomplexation and organic solvent nano-
filtration (OSN). 

In our proposed process (Fig. 1), a racemate
is added to a chiral host suspended in a resolu-
tion solvent. The S-enantiomer enantioselectively

co-crystallizes with the chiral host while the
R-enantiomer remains in the liquid (Step A).
Nanofiltration of the resulting resolution suspen-
sion elutes the R-enantiomer (Step B), retaining
the solid chiral host and the solid chiral host-S-
enantiomer complex. A decomplexation solvent
is then added to dissolve and dissociate the com-
plex into S-enantiomer and host (Step C). This
solution is then nanofiltered to elute the S-enanti-
omer, while the soluble host is retained by the
membrane (Step D). The dissolved host is then
returned as a suspension in resolution solvent to
the next cycle of resolution. This is achieved by
exchanging the decomplexation solvent for the
resolution solvent via diafiltration (Step E). Since
chiral hosts are used in stoichiometric quantities,
their recovery and multiple reuse is a further key
advantage of separation by OSN. 

2. Results and discussion

To demonstrate this process, we used a
chiral host with a large Mw to resolve a racemic
of a smaller racemic alcohol. Starmem™ 122
(Starmem™ is a trademark of W. R. Grace &
Co., US) with a nominal molecular weight cutoff*Corresponding author.
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(MWCO) of 220 g mol–1 was used for OSN. The
alcohol was highly permeable in the OSN mem-
brane, and had zero rejection in both resolution
and decomplexation solvents. The chiral host was
retained efficiently by the OSN membrane (>99%
rejection in both solvents). The molecular recog-
nition of the S alcohol enantiomer by the chiral
host employed was investigated by resolving the
X-ray crystal structure of the complex formed.

We show in independent experiments that it
is possible to run the resolution in the presence
of 0–20 vol% decomplexation solvent without
sacrificing the enantiomeric excess (ee), and
so is not required to revert to pure resolution
solvent at the end of each cycle (Step E in
Fig. 1). Similarly, the complete dissociation of
complex into free enantiomers and host happens
for solvent mixtures enriched above 60 vol% in

decomplexation solvent. Therefore, from the
process point of view, it is not necessary to use
either pure resolution solvent (Step A), or pure
decomplexation solvent (Step D in Fig. 1),
avoiding extensive diafiltration.

The feasibility of the process was tested
throughout two resolution-filtration cycles.
Each filtration step was carried out in several
successive batches in a dead-end nanofiltration
cell. Elution profile of resolution-filtration pro-
cess and ee of the permeate stream in each filtra-
tion are shown in Fig. 1 and ee and yields for the
combined streams are resumed in Table 1.

3. Conclusions 

A novel enantioseparation process using
the combination of EIC and OSN has been
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Fig. 1. Process schematic of enantioselective inclusion complexation-solvent decomplexation-organic solvent
nanofiltration.
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demonstrated, showing for the first time that
the use of solvent decomplexation with OSN

allows enantiomer recycling of the chiral host.
The strength of this process is the direct use
of chiral host (without derivatization or immobi-
lization), relatively high operating concentra-
tions, and ambient temperature processing. We
regard the method presented here as having
potential as an alternative technique for prepara-
tive-scale chiral separations, which could extend
the scope of EIC from lab to pilot and industrial
scale.

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

1B1
Filtration numbers

R
 a

nd
 S

 e
na

nt
io

m
er

s 
in

 t
he

 p
er

m
ea

te
 /

 m
m

ol

–100

–80

–60

–40

–20

0

20

40

60

80

100

 e
e 

of
 S

 /
 %

R
S
ee 

FIRST CYCLE

Step B Step D Step B Step D

1B2 1B3 1D1 1D2 2B1 2B2 2B3 2D1 2D2 2D3

SECOND CYCLE

Fig. 2. Elution profile of resolution-filtration process
and ee of the permeate stream in each filtration (indi-
cated in Fig. 1) in two cycles. Step B is the elution of
R and Step D is the elution of S. Positive ee indicates
S-rich permeate. Negative ee indicates R-rich permeate.

Table 1
ee and the yield of permeates

Combined streams 1st Cycle 
(%)

2nd Cycle 
(%)

Step B ee (of R) –46 –34
Yield (of R) 89 80

Step D ee (of S) 80 95
Yield (of S) 31 51


