Distribution of The CPU Time of a Reservoir Simulator

Dr. Marivamni Awang
Jabatan Kejuruteraan Petroleum

Abstract

The aims of this investigation was to obtain the time consuming computations in a reservoir
simulator. A fully implicit oil-gas model was tested. The Newton-Raphson technique and the Gaussian
elimination method were used in the simulation, To reduce the overall CPU time, the results showed that
small simulators need efficient table Iook-up methods, while large stmulators need efficient matrix solvers.

Introduction

In programming a mathematical modei, an important consideration is the computer time that is
required to run the program. The choice of algorithms is often an optimisation of efficiency and accuracy.

The CPU time needed by a reservoir simulator may be reduced substantially, using fully implicit
models [Aziz and Settari {1979)] and high perfomance or parallel computers [Awang (1991)]. More CPU
lime can be saved by moedifying or optimizing subroutines that are time consuming.

The objective of this study was to identify the high CPU usage areas in a typical reservoir
simulator using the debugging program.

Measurement were made using IBM 4831 and the reservoir model tested was a to-dimensional two-
phase black oil simulator. The program was written in FORTRAN,

Description of am Qil-Gas Reservoir Simulator

The formulation of different types of simulators are described in detail by Aziz and Settari (1979)
and Peaceman (1977). The model programmed for this work was a two-dimensional fully implicit oil-gas
model. The following assumptions were applied in this work:

1. The oii phase. gas phase and the rocks are compressible
2. The models are an areal, two-dimensional model.

3. Capillary and gravitational effects are not included.

4. Absolute permeability is constant.

The Newton-Raphson technique was used to solve equations and, as a result, a block pentadiagonal
matrix was formed. The matrix was solved was solved by Gaussian elimination. The algorithm of the
program and the function of each subroutine are given in the appendix.

Description of the debugging Software

The computer used in this work has a timing subprogram. The accuracy of the timing subprogram
is not adequate for short execuation times due to the layers of subprograms between the hardware level clock
and the timing subprogram. Better measurement may be obtained by specialized timing methods,

59

The procedure that is available on most IBM mainframes is a debugging option, and is referred to
as a ‘hotspotting’ option. Among other capabilities. ‘hotspotting’ indicates the percentage of CPU time that
is spent in each subroutine during excecution. The CPU time is not measured directly. but is deduced from
sampling measurements. At every ten microsecond interval, a sample is taken from each subroutine. The
number of samples that has been taken is reported as a percentage at the end of the execution. Since the
length of time that is spent ir a subroutine is related to the number of samples taken, the percentage is a
measure of the CPU time. The subroutines that are hotspots’ or bottlenecks would give higher percentage
than other subroutines. The percentage profile does not indicate the absolute CPU time. Therefore, a
comparison of execution time of differen test is not possible.

Result

The advantage of using the debugging program is that the number of samples taken from every
subroutine during execution is automatically recorded. The alternative of using timing subprograms would
involve placing CALL statements before and after every subrouting, which is tedious and inaccurate. Test
were made using 10X10, 20X20, and 30X30 grid block models.

High CPU usage areas

From the 10X 10 grid block test, 46.63 percent of a CPU time was spent on looking up data and
20.65 percent of the CPU time was spent on solving the matrix. Efficient table look-up methods and fast

matrix sobvers should reduce this bottlenecks.

Other time consuming area were found to be the calculation of the derivatives of the fluid
properties and the derivatives of the transmissivities. The evaluation of the derivatives involves finding the
gradient of the properties at the desired pressure or saturation. This means searching at least two values of
each property and dividing by either the pressure change or the saturation change. Efficient table look-up
methods will reduce this portion of CPU time. The calculation time of the transmissivities and their
derivaties can be reduced by vectorising. Also, the use of COMMON biocks in the program will result in
less calculation since no recalculation will be necessary. Since transmissivities and the derivaties of
transmissivities are dependent on fluid properties and their derivatives, greater saving can be achieved by
hastening tTuid property calculations.

Effect of Grid Blocks

A comparison of the CPU times of the 10X10. 20X20 and 30X30 grid block models is given in
Figure 1. The matrix generation step, which included table look-up, formed only 28.00 percent of the total
CPU time for the 30X30 grid block model. In compaarison. the 10X10 grid block model used 63.50
percent of the CPU time to generate the matrix and 22,00 percent of the CPU time 1o solve it. This means
that the dominant step changed as the number of grid biocks increased. Therefore, for a2 30X30 grid block
and larger models. a more efficient matrix solver must be used in order to reduce the overall computation

time.

Fig. 1 Effects of Gnd Blocks
on Fercent CFU Time

Mamix Generation
— —- — Marrix Soludon
60
&
& 40 —
=
&
(&
=
8
20 — — — =
[aB8
0

10x10 20x20 30x30
Number of Grid Blocks

Conclusions

1. For a 10X10 grid model, 1he tabie look-up step was dominani. A more efficient table look-up
method would reduce the CPU time.

Z. For a 30X 30 grid block model. the matrix solver was the most time consuming subroutine. A
miore efficient matrix solver must be used for large models.

3 The debugging program allowed 2 simple way of identfving the areas thai controlled the overaii,
computation me of a program.

References

i. M. Awang (1991), Application of Parallel Programming to Reservoir Simutation, PhD thesis.
Stanford University.

2, K. Aziz and A. Seuari (1979), Pewroleum Reservoir Simulation, Applied Science Publishers,
London.

3 D. W, Peacement (1977), Fundamentals of Numerical Reservoir Simulation, Elsevier Scientific

Pub. Company, Amsterdam.

61

APPENDIX
The aigorithm of the simulator is as follows:

Initialization: Input data. such as fluid properties and initial condisions, were read,

The fluid properties, ransmissivities and their derivatives were calculated for each block.

The elements of the matrix were calculated,

The mainix was solved for the pressure and saturation of each biock.

Convergence test: [f true, the calculation proceeded 1o the next time siep, else the calculations
were repeated for the next iteration. Repetition began at step (2).

LI, S O Y B -

Table Al. Funcuons of Subroutines in a Simulator

STEP SUBPROGRAM FUNCTION
- Using bisectonal
Table Jook up search o get
index
Q1il, gas, relative Interpolation of
permeabilites dara using index
bianmc‘n: ioh Derivatives, Evaluation of
b Tansmussivices derivatves,
ransmissivities
Jacobian, Evaluagon of
residuals mAarix eiements
Storage of arrays
Marrix Siore as vecior
] Iver
!) ! Reduedon, - Soluton of
: Inversion martrix

62

