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ABSTRACT 

 

 

 

Adaptation of network weights using Genetic Algorithm (GA) was proposed 

as a mechanism to improve the performance of Artificial Neural Network (ANN) 

inferential estimator.  This is particularly useful for cases involving changing 

operating condition as well as highly nonlinear processes.  As a case study, a fatty 

acid distillation process was considered.  The ANN model trained using GA, 

employed as inferential estimator was successful in providing on- line estimates to a 

reasonable accuracy.  Comparisons were also made to the feedforward network 

model trained using Levenberg-Marquardt (LM) training algorithm as well as Elman 

network.  When implemented on- line, GA-based ANN model was proved to be more 

efficient.  The use of on- line retraining further improved the estimator performances.  

To avoid drastic changes of network weights, a partial network on- line retraining 

strategy was introduced.  In this case, the estimator model did not undergo on- line 

retraining, but a newly introduced bias model, attached to the main estimator was 

used for the fine-tuning purposes.  Significant improvements were obtained 

especially when assessing from the perspective of model generalization.  The results 

obtained in this work confirmed the potential of using model update strategy for 

neural network process estimator. 
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ABSTRAK 
 

 

 

Penyesuaian pemberat rangkaian dengan menggunakan algoritma genetik 

(GA) telah dikemukakan sebagai satu mekanisma untuk memperbaiki prestasi 

penganggar taabir rangkaian saraf buatan (ANN).  Ini adalah amat memanfaatkan 

bagi kes-kes yang melibatkan perubahan keadaan operasi dan juga proses kimia yang 

mempunyai kelakuan tak linear yang tinggi.  Sebagai kes kajian, sebuah proses 

penyulingan asid lemak telah dipertimbangkan.  Model ANN yang dilatih dengan 

kaedah GA telah digunakan sebagai penganggar taabir, dan berjaya memberikan 

keputusan anggaran secara dalam talian dengan kejituan yang memuaskan.  

Perbandingan prestasi turut dibuat antara model rangkaian feedforward dan Elman 

yang dilatih dengan kaedah Levenberg-Marquardt (LM).  Apabila model-model ini 

diapplikasi secara dalam talian, model rangkaian neural yang berasaskan GA telah 

dibuktikan lebih berkesan.  Penggunaan mekanisma latihan semula secara dalam 

talian telah memperbaikikan lagi prestasi anggaran.  Untuk mengelakkan perubahan 

mendadak terhadap pemberat rangkaian, strategi latihan semula separa rangkaian 

telah diperkenalkan.  Dalam kes ini, model anggaran tidak mengalami latihan semula 

secara dalam talian. Sebaliknya, sebuah model sampingan baru yang berhubung 

dengan model anggaran utama telah diperkenalkan untuk tujuan penyelarasan rapi.  

Peningkatan yang nayta tercapai terutamanya dari segi generalisasi model.  

Keputusan yang diperoleh dalam kajian penyelidikan ini telah mengesahkan potensi 

penggunaan strategi pengemaskinian model dalam anggaran proses rangkaian neural. 
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CHAPTER 1 

 

 

 

INTRODUCTION 

 

 

 

1.1 Motivation 

 

Over the years, the application of Artificial Neural Network (ANN) in 

process industries has been growing in acceptance.  This is because ANN is capable 

of capturing process information in a black box manner.  Given sufficient input-

output data, ANN is able to approximate any continuous function to arbitrary 

accuracy.  This has been proven in various fields such as pattern recognition, system 

identification, prediction, signal processing, fault detection and others.  

 

In general, the development of a good ANN model depends on several factors.  

The first factor is related to the data being used.  This is consistent with other black 

box models where model qualities are strongly influenced by the quality of data used.  

The second factor is network architecture or model structure.  Different network 

architecture results in different estimation performance.  Commonly, multilayer 

perceptron and its variances are widely used in process estimation.  The third factor 

is the model size and complexity.  What is required is a parsimonious model.  This is 

because a small network may not able to represent the real situation due to its limited 

capability, while a large network may overfit noise in the training data and fail to 

provide good generalization ability.  Finally, the quality of a process model is also 

strongly dependent on network training.  This stage is essentially an identification of 

model parameters that fits the given data; and is perhaps the most important factor 

among all.  



 

 

2 

This work focuses on the last issue.  The aim is to improve the estimation 

capability of ANN regardless of the network architecture.  Until today, many 

researchers still prefer use gradient search method – Backpropagation (BP) in 

training ANN.  Among all the backpropagation methods, Levenberg-Marquardt (LM) 

algorithms is the most widely used.  Some of the advantages of this gradient-based 

technique include its efficient implementations, good at fine-tuning and faster 

convergence when compared to other methods.  However, these techniques are local 

search methods and when applied to complex nonlinear optimization problems, can 

sometimes result in inconsistent and unpredictable performances.  One of the main 

hindrances due to the fact that searching of optimal weights is strongly dependent on 

initial weights and if they are located near local minima, the algorithm would be 

trapped.  

 

Several different attempts have been proposed by various researchers to 

alleviate this training problem.  These include imposing constraints on the search 

space, restarting training at many random points, adjusting training parameter and 

restructuring the ANN architecture (Sexton et al., 2002).  However, some approaches 

are problem-specific and not well accepted and different researchers tend to prefer 

different methodologies.  Among these, one of the more promising techniques is by 

introducing adaptation of network training using Genetic Algorithm (GA). 

 

Unlike BP, GA is a global search algorithm based on the principle “survival 

of fittest”.  It simultaneously searches for solutions in several regions, thus increasing 

the probability of global convergence.  Furthermore, since it is impossible to 

formulate an a priori exact model of the system, a more practical approach is off- line 

set up a rough model, followed by on- line update of the model using GA.  In this 

way, the merging of GA and ANN will gain adaptability to dynamic environment  

and lead to significantly better intelligent systems than relying on ANN or GA alone.  

In other words, the ANN-GA model developed should be more robust to dynamic 

nonlinearity of the process involved.   

 

In this work, the ANN-GA model is used for inferential estimation and 

control of product composition in a distillation column.  The aim is to address the 
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difficulty in measuring product quality in process plants.  Most quality variables in 

process industries require some kinds of analysis to be carried out.  The use of on-

line analyzer for product quality variables has been limited due to large measurement 

delay, the need for frequent maintenance as well as high capital and operating costs.  

In order to adapt to changing market conditions while maximizing profit, the demand 

for accurate inferential estimators for controlling the product quality variable 

becomes paramount.  For this reason, this work introduces evolution of connection 

weights in ANN using GA as means of improving adaptability of the resulting 

estimators. 

 

 

 

1.2 Objective and Scope of Work 

 

The objective of this work was to develop an accurate and robust ANN based 

estimator by using GA as performance enhancer.  The implementation of inferential 

estimator was extended for chemical product composition control in a fatty acid 

distillation column.  To satisfy the intended objective, the following scope of works 

was carried out. 

 

1. Analysis of open- loop dynamic and process interaction of the selected 

distillation column.  

2. Development of ANN based inferential estimator for product compositions  

using other secondary measurements. 

3. Development of ANN-GA estimator and comparison with ANN model 

trained with conventional method. 

4. Investigation of the issue of training data and its influence on the accuracy 

and robustness of the model. 

5. Application in inferential control of a fatty acid composition and comparison 

with temperature control strategy. 

6. Attempts in improving the robustness of ANN for control application, 

including on- line retraining strategy to gain adaptation feature. 
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1.3 Contribution of This Work 

 

This work has proposed an enhancement to neural network model.  Aiming at 

improving the model robustness, evolution in network connection weights using GA 

was highlighted.  The ANN-GA model was implemented in inferential estimation 

and control scheme for distillate composition.  Investigation on the training data used 

in model development was carried out and its influence on the robustness of the 

model was discussed.  Based on that, on- line retraining to allow automatic update of 

network weights was proposed as a strategy to increase adaptability to dynamic 

environment. 

 

 

 

1.4 Layout of the Thesis 

 

Following this introductory chapter is Chapter 2 that elaborates some of the 

fundamental theory about ANN such as network architecture and training algorithm.  

Literatures on applications of ANN in chemical engineering are also highlighted.  

This is followed by the discussion on GA and the motivation to include evolution in 

ANN modelling using GA.  Lastly, the basic concept of inferential estimation and 

control as well as its application in the process industry is reported. 

 

In Chapter 3, the research methodologies involved are described and the 

background of the case study in this work is also presented.  This is followed by the 

preparatory works for ANN model development such as sensitivity analyses and 

model input selection.  Subsequently, data generation procedure for model 

development is described in detail.  Procedures of ANN model development also 

been discussed in briefly.  The end of this chapter summarizes the method in 

performance evaluation for this project. 

 

 Chapter 4 commences with the discussion on the description of network 

architecture specification and training process.  This is then followed by the 

application of inferential estimation using different types of estimator.  The 

implementation of estimators is extended in the inferential control of product 
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composition.  Results in regulator and servo control problems are displayed and 

discussed. 

 

 Chapter 5 discusses the investigation on model input data when there exist 

environment changing.  On- line retraining strategy is then proposed to improve 

model robustness.  Finally Chapter 6 summarized the thesis and concludes all the 

findings.  To provide guidance for the prospectus researchers, some 

recommendations for future works are also listed.  
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