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ABSTRACT 
 

 

 

In this study, poly (styrene-divinylbenzene) (PS-DVB) adsorbents were 

synthesized by using suspension polymerization method. The modifications on 

highly cross-linked porous PS-DVB resin consisted of (i) Friedel-Crafts acylation 

reaction using stearoyl chloride as an acylation agent to produce PS-DVB heptadecyl 

ketone, (ii) Chloromethylation reaction to produce chloromethyl PS-DVB in the 

presence of chloromethyl styrene, and (iii) Williamson ether reaction using sodium 

metal and octadecanol as reaction agents to produce octadecoxy methyl PS-DVB. 

The synthesized adsorbents were characterized by Fourier transform infrared (FTIR), 

scanning electron microscopy (SEM), nitrogen adsorption analysis and 

thermogravimetric analysis (TGA). Solid phase extraction (SPE) studies of selected 

organic test compounds, namely nitrobenzene, 2-chlorophenol, benzaldehyde, 

butyrophenone, and p-cresol were carried out using SPE tubes packed with the 

synthesized adsorbents. Commercial SPE adsorbents were also used for comparison. 

The recoveries obtained for the home-made PS-DVB were in the range of 7% to 72% 

with relative standard deviations of 1% to 10%. Increased percentages of recovery 

(35%-83%) with the relative standard deviations of 2%-7% were obtained using PS-

DVB heptadecyl ketone. Highest recovery percentages (67%-100%) were obtained 

using commercial C18-silica adsorbent. Breakthrough volume determinations for the 

various adsorbents showed that highest breakthrough volume was achieved for PS-

DVB heptadecyl ketone adsorbent, i.e. 30.60 mL of 20 ppm nitrobenzene and 20.47 

mL of 20 ppm 2-chlorophenol. Lowest breakthrough volume was obtained for 

octadecoxy methyl PS-DVB adsorbent (1.03 mL of 20 ppm nitrobenzene and 1.00 

mL of 20 ppm 2-chlorophenol). PS-DVB heptadecyl ketone has been proven suitable 

to be used as SPE adsorbent in the future.  

 

 



 
 
 

 
 

 
ABSTRAK 

 

 
Dalam kajian ini, bahan penjerap poli(stirena-divinilbenzena) PS-DVB 

disintesis melalui kaedah pempolimeran ampaian. Pengubahsuaian dilakukan 

terhadap liang poros resin PS-DVB melalui kaedah (i) Tindak balas pengasilan 

Friedel-Crafts menggunakan stearoil klorida sebagai agen pengasilan untuk 

menghasilkan PS-DVB heptadekil keton, (ii) Tindak balas pengklorometilan  untuk 

menghasilkan klorometil PS-DVB dengan kehadiran klorometil stirena, dan (iii) 

Tindak balas eter Williamson menggunakan logam natrium dan oktadekanol sebagai 

agen tindak balas eter untuk menghasilkan oktadekoksi metil PS-DVB. Penjerap 

yang telah disintesis itu dilakukan pencirian menggunakan spektroskopi inframerah 

transformasi fourier (FTIR), molekul imbas elektron (SEM), analisis penjerap 

nitrogen and analisis termogravimetri (TGA).  Kajian pengekstrakan fasa pepejal 

(SPE) bagi beberapa sebatian organik terpilih seperti nitrobenzena, 2-klorofenol, 

benzaldehid, butirofenon dan p-kresol dijalankan dengan menggunakan tiub SPE 

yang dipadatkan dengan penjerap yang disintesis. Bahan penjerap SPE komersial 

juga digunakan untuk perbandingan di dalam kajian ini. Perolehan semula yang 

dihasilkan untuk PS-DVB sintesis di dalam julat 7%-72% dengan nilai sisihan piawai 

relatif 1%-10%. Pertambahan peratus perolehan semula (35%-83%) dengan sisihan 

piawai relatif 2%-7% dihasilkan dengan menggunakan PS-DVB heptadekil keton. 

Peratus perolehan semula yang tertinggi (67%-100%) dihasilkan oleh bahan penjerap 

C18-silika komersial. Penentuan kemunculan isipadu untuk beberapa bahan penjerap 

menunjukkan bahawa kemunculan isipadu yang tertinggi dihasilkan oleh PS-DVB 

heptadekil keton, iaitu  30.60 mL untuk nitrobenzena 20 ppm dan 20.47 mL untuk 2-

klorofenol 20 ppm. Kemunculan isipadu yang terendah dihasilkan oleh bahan 

penjerap oktadekoksi metil PS-DVB (1.03 mL untuk nitrobenzena 20 ppm dan 1.00 

mL untuk 2-klorofenol 20 ppm. PS-DVB heptadekil keton terbukti sesuai digunakan 

sebagai bahan penjerap SPE di masa hadapan.  
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CHAPTER 1 
 

 

 

 

INTRODUCTION 
 

 

 

 

 

1.1 General Background 

 

Thousands of polymers have been synthesized and more are likely to be 

produced in the future.  Functionalized polymers have found various applications as 

supports in solid phase synthesis, such as chromatographic packing, polymer 

supported catalysts and starting materials for the synthesis of ion exchange resins. 

The suspension copolymerization of styrene with divinylbenzene has been developed 

by Kun and Kunin [1] to produce poly(styrene-divinyl benzene) (PS-DVB).  This 

material has been widely used as a stationary phase for high performance liquid 

chromatography (HPLC) and matrices of a great number of ion exchangers. 

 

Previous workers [2] have found that macro-porous PS-DVB is prepared as a 

result of phase separation during the copolymerization in the presence of inert 

diluents.  The inert diluents are extracted after copolymerization and porous structure 

is obtained.  Polymers, solvents or non-solvents of polystyrene or mixture of them 

may be used as diluents giving various types of pore size distribution.  

 

 

 



PS-DVB copolymers have a hydrophobic surface and overcome many of the 

limitations of bonded silicas, especially those related to the limited pH stability in the 

presence of the silanol group [3]. PS-DVB is often used as sorbents in reversed-

phase (RP) liquid chromatography [4].  Usually, porous PS-DVB packing materials 

are employed because they provide a large surface area. Commercially available 

porous PS-DVB packing includes Amberlite XAD-2, PLRP-S, and PRP-1.  While 

PS-DVB packing has many advantages, such as chemical stability at high and low 

pH and the absence of residual silanol groups, they suffer from the disadvantage of 

yielding lower chromatographic efficiencies than silica-based octadecylsilyl bonded 

phase packing of the same particle size.  

 

Since 1990s, chemically modified resins have been developed and applied to 

the trace enrichment of polar substances. These sorbents have excellent 

hydrophobicity and yield higher recoveries than unmodified ones and have found 

great applications in solid phase extraction (SPE) for sample preparation in 

environmental analysis [5].  One of the possible chemical modifications of resin is by 

using Williamson ether reaction.  The Williamson ether reaction was named after 

Alexander William Williamson (1824-1904).  The Williamson ether synthesis is an 

example of a nucleophilic substitution reaction.  The nucleophile is an alkoxide 

anion, which displaces a halide ion, typically chloride or bromide, from a primary 

haloalkane.  The alkoxide can be generated by addition of metallic sodium to the 

corresponding alcohol.  Although the Williamson ether synthesis is a general method 

for the laboratory production of ethers, there are some limitations to its use. Since the 

alkoxide ion is a strong base, their use is limited to primary unhindered alkylating 

agents.  Otherwise, elimination competes strongly with the nucleophilic substitution 

for the reactant molecules.  Sometimes, the reaction is run in a solvent, which fosters 

the SN2 process [6-7]. 

 

Solid-phase extraction has recently come into the focus of interest and offers 

a viable alternative to the conventional sample preparation methods [5, 8, 9].  SPE 

has evolved to be a powerful tool for isolation and concentration of trace analytes in 

a variety of sample matrices.  Nowadays, the most frequently used design in off-line 

SPE is the cartridge or the syringe barrel.  They are usually made of polypropylene 

or polyethylene and filled with packing material having different functional groups. 



The solid sorbent is contained between two 20-µm polypropylene frits. Cartridges 

vary from as little as 100 mg to 1 g or more.  Syringe barrels range in size from 1 to 

25 mL and packing weights from 50 mg to 10 g.  Solvent reservoirs may be used at 

the top of the syringe barrels to increase the total volume (50-1000 mL) [8].  

 

The breakthrough volumes can describe the characteristics of adsorbents.  To 

record a breakthrough curve, after proper equilibration of the SPE cartridge, a 

solution of analyte is pumped directly to the detector (cartridge in the bypass 

position) to determine its absorbance signal.  The cartridge is switched in-line 

causing the UV signal to drop to baseline level because the analyte is retained on the 

cartridge.  Upon breakthrough, the UV signal will rise back to its initial level. The 

volume of analyte solution that can flow through the cartridge before breakthrough 

occurs is the “breakthrough volume” and is used as the measure of the extraction 

capacity [10]. 

  

This study was set to explore the methods of preparing of PS-DVB stationary 

phases, their modification, characterization, as well as application in analytical 

separation.  PS-DVB beads were synthesized based on suspension polymerization 

from its monomers, styrene, and divinyl-benzene.  A new PS-DVB modification 

method was carried out by introducing octadecoxy group (C18H37-0-) onto the PS-

DVB back bone.  

 

 

 

1.2 Problem Background  

 

The beginning of the era of synthetic polymers for ion exchange is generally 

attributed to the work of B. A. Adams and E. L. Holmes at the Chemical Research 

Laboratory, Teddington, England [11].  Although the phenomenon of water softening 

by ion-exchange was known at the time of their collaboration, the deionization of 

water required stable materials capable of performing both cation and anion 

exchange.  

 



A polymer is a chemical species of high molecular weight.  It is made up of 

repeating low-molecular weight units.  These repeating units are termed monomers 

and the compounds are reacted to form a polymer.  There are two types of polymers 

namely, natural and synthetic polymers [12].  The PS-DVB polymers are 

manufactured as general sorbents and they are often chosen for SPE works because 

the loading properties of organic carbon are superior to those of silica-based 

adsorbent [13].  Leon-Gonzalez and co-workers [3] have found that the chemically 

modified PS-DVB resin can adsorbed wide variety of organic analytes efficiently.  

They have a higher sorption capacity for the more polar compounds than their 

unmodified analogues do. 

  

Balakhrisnan and Ford [14] have found that the suspension polymerization is 

widely used in polymerization of styrene.  The major factors controlling the particle 

size are surface tension, densities of aqueous and monomer phases, viscosities of 

aqueous and monomer phases, diameters of stirrer and kettle, and stirring speed.  

Their research on particle size effects in polymer supported organic synthesis and 

polymer supported phase transfer catalysis requires cross linked polystyrenes of a 

wide range of sizes with chloromethyl group that can be converted easily to polymer 

bound.  

 

Masque et al. [5] described the application of unmodified and modified PS-

DVB to the analysis of group of polar phenolic compounds. They have used on-line 

and the off-line SPE to determine pollutants in environmental waters. The 

advantages of on-line SPE are the higher sensitivity, absence of organic solvents and 

less manipulation of the samples, which leads to greater precision, and makes it 

easier for it to be automated.  The functional polymer networks have gained great 

importance in many fields of scientific research as well as for industrial applications. 

The interest stems from the variety of possible modifications of their chemical and 

physical properties. Claudio et al. [15] said that increasing environmental concerns in 

waste water treatment has lead to the use of organic ligands anchored to solid 

supports in order to remove and recover important metal ions from aqueous solution. 

 

 



The use of polymeric resins in reversed-phase high performance liquid 

chromatography (RP-HPLC) has grown dramatically, since an increasing number of 

polymeric columns are commercially available.  The application of silica-based 

supports is limited by the low stability of silica at alkaline pH values and by the 

unwanted interactions between polar solutes and remaining free silanol groups not 

covered by the hydrophobic ligands. In particular, PS-DVB-based resins show a high 

stability over the pH range 1-14 and provide excellent separations.  Additionally, PS-

DVB particles permit the introduction of numerous functional groups that change 

their surface chemistry and hence the chromatographic selectivity [16].  

 

Porous PS-DVB based resins have proven to be very effective for SPE of a 

wide variety of organic compounds from predominantly aqueous samples. Their 

effectiveness is enhanced by chemical introduction of polar groups, such as acetyl, 

and sulfonic acid [17].  However, these modified PS-DVB resins were poorly 

extracted small toward polar organic compounds such as alcohols, aldehydes, 

ketones and carboxilyc acids.  Consequently, when SPE is carried out in extremely 

acidic or basic media, reversed-phase polymeric sorbents (generally based on PS-

DVB) are used.  The PS-DVB has much lower backgrounds due to improvements in 

manufacturing processes.  The PS-DVB was used as an adsorbent material has 

demonstrated to provide improved recoveries for phenolic compounds as compared 

to the traditional and more commonly applied C18 material [17]. 

 

Silica based packing materials are widely used in high performance liquid 

chromatography (HPLC) because of their mechanical stability and wide variety of 

derivatizations, as well as their relatively higher column efficiency.  Unfortunately, 

silica based supports also possess a series of drawbacks.  One is their inherent low 

chemical stability at pH above 8 and below 2.  This drawback can cause dissolution 

of the silica support and loss of the bonded phase.  In general, ideal ion-exchange 

packing materials for HPLC are mechanically stable, chemically inert, hydrophilic 

with no irreversible adsorption, and highly efficient.  To overcome the stability 

problem of silica, researchers have turned their attention to polymeric supports.  PS-

DVB-based supports have been studied and utilized the most, due to their chemical 

stability in both strong base and acid.  Recently, HPLC ion exchange stationary 

phase have been developed from the PS-DVB matrix by applying a hydrophilic 



coating on the surface.  However, the column efficiency could not match that of most 

silica-based column [18].  It is of interest, therefore, to explore new techniques to 

treat the surface of PS-DVB beads in order to obtain more variable absorbent.     
 
 
 
 
1.3 Aim and Objectives  

 

1.3.1 Aim of Study 

  

The aim of this study is to develop a new chemically modified PS-DVB resin 

by introducing octadecoxy group (C18H37-O-) onto the PS-DVB backbone.  The new 

modified PS-DVB is compared with unmodified PS-DVB and other modified PS-

DVB and these phases are applied as adsorbents in solid phase extraction.  

 

 

1.3.2 Objectives of Study 

 

The objectives of this study are:  

a) To synthesize PS-DVB adsorbent using suspension polymerization technique. 

b) To produce modified PS-DVB adsorbents by Friedel-Crafts acylation reaction,  

chloromethylation, and Williamson ether reaction. 

c) To characterize and study the performance of the adsorbents. 

d) To apply the developed modified PS-DVB resins to SPE analysis. 

 

 

 

1.4 Scope of Study 

 

The following are the scopes of study: 

a. Preparation PS-DVB and modification of PS-DVB via 

i. Friedel-Crafts acylation 

ii. Chloromethylation 

iii. Williamson ether reaction 



b. Study of the physical characteristics of PS-DVB and modified PS-DVB by using:  

i.  Fourier transform infrared spectrophotometry (FTIR) 

ii. Scanning electron microscopy (SEM) 

iii. Thermogravimetric analysis (TGA) 

iv. Nitrogen adsorption analysis (NA) 

 

c. Study of the chemical characteristics of PS-DVB and modified PS-DVB by 

using:  

i. Solid phase extraction (SPE)  

ii. Gas chromatography (GC) 

 
 
 

 
1.5 Outline of the Thesis  

 

This thesis consists of six chapters. Chapter 1 presents general background of 

this study, research aim, research objectives and scope.  Chapter 2 compiles the 

literature reviews and theoretical background on PS-DVB, modification of PS-DVB 

and its application as an adsorbent for chemical analysis.  The procedures for 

characterization and application of the synthesized materials are presented in Chapter 

3. Chapter 4 reports the results and discusses the preparation of PS-DVB, and 

modified PS-DVB.  Chapter 5 describes the characterization and application of 

unmodified and modified PS-DVB as an adsorbent in the chromatographic analysis. 

The concluding Chapter 6 summarizes this thesis by presenting the overall 

conclusions and suggestions for future study. 

 
 
 
 
 
 
 
 
 
 
 
 
 



studies.  Higher breakthrough volume for modified PS-DVB or PS-DVB polymeric 

resins are well expected by using the recommended elution solvents. 
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