CONTROL OF A NON-HOLONOMIC MOBILE ROBOT

NOOR ASYIKIN BINTI SULAIMAN

A project report submitted in partial fulfilment of the requirements for the award of the degree of Master of Electrical Engineering (Mechatronics and Automatic Control)

> Faculty of Electrical Engineering Universiti Teknologi Malaysia

> > MAY 2007

To my beloved parents, husband and son

ACKNOWLEDGEMENT

Firstly, I would like to thank my supervisor, Assoc. Prof. Dr. Mohamad Noh, for all his teachings and guidance, his criticism on me and my work, and his help on this project. I would also like to thank all my colleagues and friends for their help, discussions and information sharing. Finally I would express my special thanks to my loving and caring husband, my adorable son and my loving parents for all their love, sacrifice, understanding and support. Without them, I could never be succeeded.

ABSTRACT

Non-holonomic system is a mechanical system that is subject to nonholonomic constraints. They are the constraints on the velocity of the system which can not be integrated into position constraints that can be used to reduce the number of generalized coordinates. Mobile robots constitute a typical example of nonholonomic systems. In this project, the application of two different types of kinematics controller are examined and analysed. Both of the controllers are using Lyapunov method which is the simplest and successful method in kinematics stabilization. The first controller guarantees to be global asymptotically stable tracking control and the second controller guarantees to be asymptotically stable tracking control. Both controllers are able to control a non-holonomic mobile robot to track the desired trajectory. All simulations are performed using SIMULINK/MATLAB.

ABSTRAK

Sistem tidak berholonomi adalah sejenis mekanikal sistem yg mempunyai sekatan tidak berholonomi. Ia adalah sekatan terhadap halaju sistem yang tidak boleh disatukan dengan sekatan kedudukan untuk mengurangkan jumlah koordinat sesuatu sistem. Robot bergerak adalah salah satu contoh sistem tidak berholonomi. Di dalam projek ini, penggunaan dua jenis pengawal kinematik yang berlainan diuji dan dianalisis. Kedua-dua pengawal ini menggunakan kaedah Lyapunov. Pengawal jenis ini adalah kaedah yang paling mudah dan berjaya digunakan di dalam penstabilan kinematik. Kedua-dua pengawal tersebut mampu mengawal robot bergerak tidak berholonomi untuk menjejaki laluan yang dikehendaki. Semua simulasi dilakukan dengan menggunakan SIMULINK/MATLAB

TABLE OF CONTENTS

CHAPTER	TITLE	PAGE
	DECLARATION	ii
	DEDICATION	iii
	ACKNOWLEDGEMENT	iv
	ABSTRACT	V
	ABSTRAK	vi
	TABLE OF CONTENTS	vii
	LIST OF TABLES	Х
	LIST OF FIGURES	xi
	LIST OF SYMBOLS	xiii
1	INRODUCTION	1
	1.1 Project Introduction	1
	1.2 Objectives	3
	1.3 Scopes of Project	3
	1.4 Methodology	4
	1.5 Thesis Outline	5
2	LITERATURE REVIEW	6
_	2.1 Introduction	6
	2.2 Mobile Robot	6
	2.3 Non-Holonomic System	7
	2.4 Control Techniques	8
	2.4.1 Kinematics Control	8
	2.4.2 Dynamic Control	9
	-	

	2.4.3 Adaptive Control	10
	2.4.4 Intelligent Control	11
	2.4.5 Robust Control	12
	2.4.6 Motion Planning	12
	2.5 Chapter Summary	13
3	MATHEMATICAL MODELLING OF	14
	NON-HOLONOMIC MOBILE ROBOT	
	3.1 Introduction	14
	3.2 Non-Holonomic Mobile Robot	15
	3.3 Vehicle Kinematics	16
	3.4 Chapter Summary	18
4	CONTROL OF A NON-HOLONOMIC	19
	WHEELED MOBILE ROBOT	
	4.1 Introduction	19
	4.2 Globally Asymptotically Stable Tracking	19
	Control	
	4.2.1 Architecture of Tracking Control	19
	4.2.2 Error Posture Block	20
	4.2.3 Control Rule Block and	23
	Its Stability	
	4.2.4 Effects of Control Parameters	29
	4.2.5 Maximum Velocity Limiting	33
	4.3 Asymptotically Stable Tracking Control	34
	4.4 Chapter Summary	37
5	SIMULATION RESULTS AND ANALYSIS	38
	5.1 Introduction	38
	5.2 MATLAB and SIMULINK	38
	5.3 SIMULINK Model	40
	5.4 Simulation Result	44
	5.4.1 Circular Input	44
	5.4.2 Straight Line Input	48

	5.4.3 Ramp Input	51
	5.5 Chapter Summary	55
6	CONCLUSION	56
	6.1 Introduction	56
	6.2 Conclusion	56
	6.3 Future Works	57

REFERENCES

59

LIST OF TABLES

TABLE NO.	TITLE	PAGE
4.1	Routh-Hurwitz table for globally asymptotically	27
	stable controller	
4.2	Routh-Hurwitz table for asymptotically stable	34
	controller	
5.1	Inputs for simulation	38
6.1	Table of summary	54

LIST OF FIGURES

FIGURE NO. TITLE

PAGE

1.1	ASIMO, a humanoid robot manufactured by Honda 2	
1.2	Methodology of the project	4
3.1	Non-holonomic mobile robot	15
4.1	Architecture of tracking control	20
4.2	Reference and current posture	21
4.3	Concept of error posture	21
4.4	Various damping response	32
5.1	Simulation model using MATLAB/SIMULINK	41
5.2	Error block	42
5.3	Control block by Kim's controller	42
5.4	Control block by Kanayama's controller	43
5.5	Kinematics block	43
5.6	Circular trajectory	45
5.7	Position error - y_e	45
5.8	Position error - x_e	46
5.9	Position error - θ_e	46
5.10	Linear velocity	47
5.11	Angular velocity	47
5.12	Straight line trajectory	48
5.13	Position error - y_e	49
5.14	Position error - x_e	49
5.15	Position error - θ_e	50
5.16	Linear velocity	50

5.17	Angular velocity	51
5.18	Ramp trajectory	52
5.19	Position error - y_e	52
5.20	Position error - x_e	53
5.21	Position error - θ_e	53
5.22	Linear velocity	54
5.23	Angular velocity	54

LIST OF SYMBOLS

V	-	Linear velocity
ω	-	Angular velocity
θ	-	Heading angle
ζ	-	Damping ratio
\mathcal{O}_n	-	Natural frequency
Vr	-	Reference velocity

CHAPTER 1

INTRODUCTION

1.1 Project Introduction

Mobile robots are mechanical devices that are equipped with an on-board power source, computational resources, sensors and actuators. They are able to move autonomously and freely to perform their task. These mobile vehicles can be operated in large buildings (such as shopping centre, hospital and warehouse), nuclear waste facility, security and defence industry, transportation sector, inspection process and planetary exploration. The interest in investigating and developing mobile robots has become increasingly relevant and beneficial to human society and industry. There has been active and rapid development in this area pertaining to its research and implementation. Recent advances in computer and sensor technologies have made it feasible and practical to design and develop new and innovative mobile robots that can effectively serve as utility vehicles and material transporters.

Figure 1.1: ASIMO, a humanoid robot manufactured by Honda

One of the important aspects of the mobile robot systems is related to its motion or navigation control. The issue of control problem is not only dependent on the kinematics and dynamics of the mobile robot system but also the actual individual elements of the control itself. Without a good control system, a mobile robot is practically useless and ineffective. Therefore, the development of a mobile robot is significantly influenced by the proper design of the control system. A variety of theoretical and applied control problems of mobile robot system have been studied and proposed such as kinematics control, dynamic control, intelligent control, adaptive control, and robust control.

Meanwhile, substantial research has been devoted to motion planning. The motion planning objective is to transfer a system from a specified initial state to a specified final state while motion control is to solve the three basic navigation problems; tracking a reference trajectory, path following and stabilization about a desired posture.

In this thesis, a study on kinematics modelling and a design of two stable tracking controllers of non-holonomic wheeled mobile robot using Lyapunov, which capable to track a reference trajectory will be presented. Then both controllers will be discussed in terms of their advantages and disadvantages.

1.2 Objectives

The objective of this project is to design two different stable tracking controllers to control the non-holonomic mobile robot to track a reference trajectory. Then, the simulation will be performed using MATLAB/SIMULINK.

1.3 Scopes of Project

This project was carried out within the following frame of work;

- The non-holonomic mobile robot considered in this project is a tricycle-type mobile robot.
- (ii) This project considered only kinematics model.
- (iii) It is assumed that there is no slipping between the wheels and the floor and mobile robot travels at low speed.

(iv) All simulation works are to be conducted using MATLAB/SIMULINK software.

1.4 Methodology

Generally, the method used to accomplish this project is described in Figure 1.1. First of all, understanding on nonholonomic wheeled mobile robot is crucial to start the project. Therefore, the first step is to study on nonholonomic wheeled mobile robot system. Secondly, study on mathematical modelling of the robot. Then, the designs of the tracking controller based on two different types of controller and perform the simulation using MATLAB/SIMULINK. Last but not least, the actual output response is compared with the desired output response.

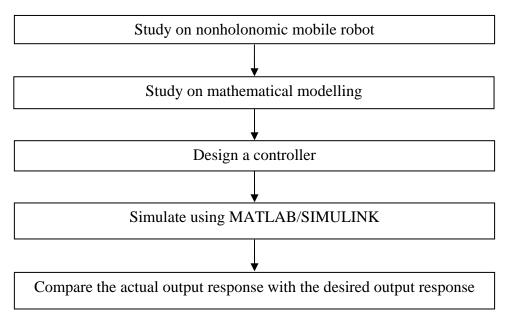


Figure 1.2: Methodology of the project

1.5 Thesis Outline

This thesis consists of six chapters. Chapter I provides some background of the project, the objectives, the scope of studies and the methodologies. Chapter II contains the literature review on non-holonomic system and also on a number of control techniques applied to the mobile robot that were proposed by some researchers. Chapter III entails the kinematic modeling of the nonholonomic wheeled mobile robot system. Chapter IV follows with the design of a stable tracking control using Lyapunov. Simulation results, analysis and discussion of the performance of both the techniques are presented in Chapter V. The work is then concluded in Chapter VI with some suggestions and future works.

REFERENCES

- 1. Braunl, T. Embedded Robotic: Mobile Robot Design and Applications with Embedded Systems. Springer. 2003.
- Kanayama, Y., Kimura, Y., Miyazaki, F., and Noguchi, T. A Stable Tracking Control Method for an Autonomous Mobile Robot. *Proceeding of IEEE International Conference on Robotics and Automation*. 1990.
- Kim, D. -H. and Oh, J. -H. Global Asymptotically Stable Tracking Control of Mobile Robots. *Proceeding of IEEE International Conference on Control Applications*. 1998.
- Fiero, R. and Lewis, F. L. Control of a Nonholonomic Mobile Robot: Backstepping Kinematics into Dynamics. *Proceeding IEEE of the 34th Conference on Decision & Control*. 1995.
- Colbaugh, R., Barany, E. and Glass, K. Adaptive Stabilization of Nonholonomic Mechanical System. *Proceeding of the 36th Conference on Decision and Control*. 1997.
- Fukao, T., Nakagawa, H., and Adachi, N. Adaptive Tracking Control of a Nonholonomic Mobile Robot. *IEEE Transaction on Robotics and Automation*. 2000.
- Hu, T., Yang, S. X., Wang, F., and Mittal, G., S. A Neural Network Controller for a Nonholonomic Mobile Robot with Unknown Robot Parameters. *Proceeding* of IEEE International Symposium on Computational Intelligent in Robotics and Automation. 2002.
- Wang, X. and Yang, S. X. A Neuro-Fuzzy Approach to Obstacle Avoidance of a Nonholonomic Mobile Robot. *Proceeding of IEEE International Conference on Advance Intelligent Mechatronics*. 2003.

- Yang, J. -M., Choi, I. -H., and Kim, J. -H. Sliding Mode Control of a Nonholonomic Wheeled Mobile Robot for Trajectory Tracking. *Proceeding of IEEE International Conference on Robotics and Automation*. 1998.
- Lin, S. and Goldenberg, A. Robust Damping Control of Wheeled Mobile Robots. *Proceeding of IEEE International Conference on Robotics and Automation*. 2000.
- Kolmanovsky, I. and McClamroch, N. H. Developments in Nonholonomic Control Problems. *IEEE Control System Magazine*. 1995.
- 12. Li, Z. and Canny, J. F. Nonholonomic Motion Planning. Kluwer. 1993.
- Fernandes, C., Gurvits, L. and Li, Z. X. A Variation Approach to Optimal Nonholonomic Motion Planning. *Proceeding of IEEE International Conference* on Robotics and Automation. 1991.
- 14. Lee, T. -C., Song, K. -T., Lee, C. -H., and Teng, C. –C. Tracking Control of a Unicycle-Modeled Mobile Robots Using a Saturation Feedback Controller. *IEEE Transaction Control System Technology*. 2001.
- 15. Slotine J.-J. E. and Li W. *Applied Nonlinear Control*. Englewood Cliffs, New Jersey: Prentice Hall. 1991.