STATIC SECURITY ASSESSMENT ON POWER SYSTEM USING ARTIFICIAL NEURAL NETWORK

MOHD FADLI BIN RAHMAT

A report submitted in fulfillment of the partial requirement for the award of the Degree of Master of Engineering (Electrical – Power) Faculty of Electrical Engineering Universiti Teknologi Malaysia

MARCH 2005

To my beloved parents, fiancée, brothers, sister and friend for their encouragement

ACKNOWLEDGEMENT

First of all, I am greatly indebted to ALLAH SWT on His blessing to make this project successful.

I would like to express my gratitude to my supervisor, Dr Azhar Bin Khairuddin for his valuable guidance and support throughout the two semesters until this project completes successfully

My thanks are also extended to my fellow colleagues for sharing their ideas and discussions especially Mr. Asrul Izam Bin Azmi and Mr. Nanshah Bin Maliki in guiding to use Matlab 7.0 software. Last but not least, I would like to thank other FKE staffs, my family and my fiancé for their motivation and moral supports.

ABSTRACT

In modern industrialized society, a supply of electric energy is expected to be reliable and continuous since a high availability of secure power system is essential for its' progress. A secure power system is expected to be free from risk or danger and to have the ability to withstand without exception to any one of the pre-selected list of credible contingencies. The objective of this research is to investigate the reliability of the Static Security Assessment (SSA) in determining the security level of power system from serious interference during operation. Therefore, back propagation Artificial Neural Network (ANN) is implemented to classify the security status in the test power system. Offline Newton-Raphson load flow is employed to gather the input data for the ANN. The large dimensionality of input data is scaled down by screening process to reduce the computational time during ANN training process. This method has been tested with 4 bus test system and IEEE 24 bus test system. Bus voltage and thermal line variables are set as a limit to the developed method. It has been discovered that error of trained ANN are within the acceptable range if compared to similar results from published works. The ANN has been found to be faster than the conventional method in predicting the security level of the tested system. It is concluded that the ANN works well in providing status of the current operating point for specific contingency of power system.

ABSTRAK

Dalam masyarakat perindustrian yang moden ini, bekalan tenaga elektrik di harap mempunyai keboleharapan dan keselamatan yang tinggi di mana ianya penting untuk perkembangan sesebuah masyarakat. Sistem kuasa yang selamat seharusnya bebas dari sebarang bahaya atau risiko dan juga mempunyai keupayaan untuk bertahan terhadap mana-mana kontingensi yang boleh dipercayai. Objektif penyelidikan ini adalah untuk mengkaji kebolehpercayaan "Penilaian Keselamatan Statik" (SSA) dalam menentukan keselamatan sistem kuasa dari sebarang gangguan ketika beroperasi. Oleh itu, "back propogation" ANN diguna untuk menentukan status keselamatan sebuah sistem kuasa ujian. Aliran beban Newton-Raphson digunakan untuk mengumpul data masukan ANN. Saiz data masukan telah diperkecilkan skalanya melalui proses "screening" untuk memendekkan tempoh masa semasa proses melatih ANN. Kaedah ini telah diuji terhadap sistem ujian 4 bus dan sistem ujian IEEE 24 bus. Voltan bus dan pembolehubah terma talian ditetapkan sebagai had penyelidikan. Didapati bahawa ANN yang dilatih mempunyai kadar kesilapan yang boleh diterima merujuk kepada sesetengah kerja. ANN didapati lebih pantas bekerja berbanding kaedah konvensional dalam menilai tahap keselamatan sistem ujian. Kesimpulannya ANN berfungsi dengan baik dalam memberi status keselamatan semasa ketika beroperasi untuk kontingensi spesifik bagi sesebuah sistem kuasa.

CONTENTS

CHAPTER TITLE

Ι

Π

PAGE

TITLE	Ξ	i			
DECLARATION					
DEDICATIONS					
ACKN	JOWLEDGEMENT	iv			
ABST	RACT	v			
ABST	RAK	vi			
CONT	ENTS	vii			
LIST (OF TABLES	X			
LIST (OF FIGURES	xi			
LIST (OF SYMBOLS	xiv			
LIST (OF APPENDICES	xvi			
INTR	ODUCTION	1			
1.1	Background	1			
1.2	Significance of Study	2			
1.3	Objectives	3			
1.4	Scope of Study	3			
1.5	Research Methodology	3			
1.6	Result of the Study	4			
1.7	Organization of the Thesis	4			
LITE	RATURE REVIEW	5			
2.1	Introduction	5			
2.2	Quantitative Approach	6			

- 2.2.1Indirect Method62.2.2Direct Method8
- 2.3 Qualitative Approach 11

		2.3.1	Expert System	11	
		2.3.2	Artificial Intelligent Method	13	
			2.3.2.1 Fuzzy Logic Method	13	
			2.3.2.2 Artificial Neural Network Method	14	
	2.4	Proble	em formulations	17	
III	POW	ER SY	STEM SECURITY ASSESSMENT	19	
	3.1	Introd	uction	19	
	3.2	Static	Security Problem	22	
	3.3	The O	perating Space for Static	24	
		Secu	rity Assessment		
	3.4	Back	Propagation Neural Network	26	
		3.4.1	Back -propagation learning	27	
		3.4.2	Choice of Back Propagation Neural	28	
			Network Input Layer		
		3.4.3	Type of Neuron Function	29	
		3.4.4	Choice of Back Propagation Neural	30	
			Network Hidden Layer		
		3.4.5	Choice of Back Propagation Neural	31	
			Network Output Layer		
	3.5	Perfor	mance Evaluation of Neural Network	31	
IV	TEST	TEST SYSTEM AND ANN IMPLEMENTATION			
	4.1	Introd	uction	32	
	4.2	4 Bus	Test System	32	
	4.3	IEEE	24 Bus Test System	33	
	4.4	Load	Flow Implementation	35	
	4.5	Data (Collection	35	
	4.6	Data I	Processing	36	
	4.7	ANN	Implementation	38	
		4.7.1	Levenberg-Marquardt Training	38	
			Algorithm		
		4.7.2	Input Output Vector Of ANN	39	
		4.7.3	ANN Structure	39	

V	RESULTS AND DISCUSSION			43
	5.1	Introdu	uction	43
	5.2	4 Bus	Test System	43
		5.2.1	ANN Simulation Output of 4 Bus	44
			Test System	
	5.3	IEEE 2	24 Bus Test System	45
		5.3.1	ANN Simulation Output of 24 bus	46
			Test System Un-Screening Data	
		5.3.2	ANN Simulation Output of 24 Bus	47
			Test System Screening Data	
	5.4	Discus	ssion	49
	5.5	Summ	ary	56
VI	CONCLUSIONS AND SUGGESTIONS			57
	6.1	Conclu	usions	57
	6.2	Sugge	stions for Future Work	58
REFERENC	ES			60
Appendix A –	G			68 - 96

LIST OF TABLES

TABLE NO.	TITLE	PAGE
Table 5.13	ANN configuration output with minimum simulation error	53
Table A.1	Bus data for 4 bus system	68
Table A.2	Line data for 4 bus system	68
Table B.1	Generating Unit Locations for IEEE 24 bus	69
Table B.2	Generating Unit MVar capability for IEEE 24 bus	70
Table B.3	Voltage correction device for IEEE 24 bus	70
Table B.4	Bus load data for IEEE 24 bus	71
Table B.5	Impedance and rating data for IEEE 24 bus	72
Table D.1	Simulation output of the ANN based of number of	78
	the hidden neuron	
Table E.1	Un-screening simulation output of the ANN based of	82
	number of the hidden neuron	
Table F.1:	Screening simulation output of the ANN based of	86
	number of the hidden neuron	
Table G.1	Computational time of ANN and load flow	90

LIST OF FIGURES

FIGURE NO. TITLE

PAGE

Figure 2.1	Propose neural networks for static security assessment	18
Figure 3.1	Power system operations	20
Figure 3.2	4 bus-5 line linear power systems	25
Figure 3.3	The operating state of the 4-bus-5 lines power system	26
	model	
Figure 3.4	Multilayer perceptron of neural network	27
Figure 3.5	The log sigmoid transfer function	29
Figure 3.6	The linear transfer function	30
Figure 3.7	The tan sigmoid transfer function	30
Figure 4.1	4 Bus test system	33
Figure 4.2	IEEE 24 Bus test system	34
Figure 4.3	Classification of area for IEEE 24 bus test system	37
Figure 4.4	Load flow implementation flow chart	41
Figure 4.5	ANN implementation flow chart	42
Figure 5.1	Percentage of error for simulation test data (E4DT,	44
	E4DT0 and E4DT1) against number of hidden neurons	
	for 4 bus test system	
Figure 5.2	Percentage of error for simulation valid, secure and	45
	insecure data (E4DV, E4P0 and E4P1) against number	
	of hidden neurons for 4 bus test system	
Figure 5.3	Percentage of error for simulation un-screening test data	46
	(EDT, EDT0 and EDT1) against number of hidden neurons	5
	for IEEE 24 bus test system	
Figure 5.4	Percentage of error for simulation un-screening valid,	47
	secure and insecure data (EDV, EP0 and EP1) against	
	number of hidden neurons for IEEE 24 bus test system	

Figure 5.5	Percentage of error of simulation screening test data	48
	(EDT _{sc} , EDT0 _{sc} and EDT1 _{se}) against number of	
	hidden neurons for IEEE 24 bus test system	
Figure 5.6	Percentage of error of simulation screening valid,	48
	secure and insecure data (EDV $_{sc}$, EPO $_{sc}$ and EP1 $_{sc}$)	
	against number of hidden neurons for IEEE 24 bus	
	test system	
Figure 5.7	Percentage of total error of test data (E4DT + E4DT0	49
	+ E4DT1) against number of hidden neurons for 4 bus	
	test system	
Figure 5.8	Percentage of total error of data (E4DT + E4DT0 +	50
	E4DT1 + E4DV + E4P0 + E4P1) against number of	
	hidden neurons for 4 bus test system	
Figure 5.9	Percentage of total error of un-screening test data	50
	(EDT + EDT0 + EDT1) against number of hidden	
	neurons for IEEE 24 bus test system	
Figure 5.10	Percentage of total error of un-screening data (EDT	51
	+ EDT0 + EDT1 + EDV + EP0 + EP1) against number	
	of hidden neurons for IEEE 24 bus test system	
Figure 5.11	Percentage of total error of screening test data (EDT $_{sc}$	51
	+ $EDT0_{sc}$ + $EDT1_{sc}$) against number of hidden neurons	
	for IEEE 24 bus test system	
Figure 5.12	Percentage of total error of screening data (EDT _{sc} +	52
	$EDT0_{sc} + EDT1_{sc} + EDV_{sc} + EP0_{sc} + EP1_{sc}$) against	
	number of hidden neurons for IEEE 24 bus test system	
Figure 5.14	Squared error of output target against number of epoch	53
	for against 12 hidden neuron trained ANN for the 4	
	bus test system	
Figure 5.15	Squared error of output target against number of epoch	54
	for against 11 hidden neuron trained ANN for the 24 bus	
	test system (un-screening data)	
Figure 5.16	Squared error of output target with number of epoch for	54
	with 14 hidden neuron trained ANN for the 24 bus test	
	system (screening data)	

Figure 5.17	Simulation time for the load flow and ANN per cas	es 55

Figure 5.18Comparison of ANN time training between screening55and un-screening data against number of hidden neuron
for the IEEE 24 bus test system55

LIST OF SYMBOLS

ANN -	Artificial Neural Network
SA -	Security Assessment
AI -	Artificial Intelligent
IEEE -	The Institute of Electrical and Electronics Engineers
P_i -	Bus real power injection at bus <i>i</i>
V_i -	Bus reactive power injection at bus <i>i</i>
δ_i -	Angle of the voltage at bus <i>i</i>
G_i -	Real part of the element of the bus admittance
<i>B</i> _{<i>i</i>} -	Imaginary part of the element of the bus admittance
J -	Jacobian matrix
Р -	Probability
F_{K} -	Expected frequency of failure
SOM -	Self organizing map
BP -	Back propagation
RBF -	Radial Basic Function
PLN -	Progressive learning network
KSOM-	Kohonen Self Organizing Map
MVA -	Mega Volt-Ampere
MW -	Mega Watt
<i>yi</i> -	Activation value of the <i>j</i> th neuron
u _i -	Net input to the <i>j</i> th neuron
W _{ij} -	Weight between the <i>j</i> th neuron of the <i>I</i> th layer
	and the <i>i</i> th neuron
Φ -	Sigmoid activation function
Y -	Network parameter
С -	Contingency
Е -	Energy function of neuron

- E4DT Secure and insecure data for 4 bus test system
- E4DT0- Secure data for 4 bus test system
- E4DT1- Insecure data for 4 bus test system
- E4DV Validation data for 4 bus test system
- E4P0 Target secure data for 4 bus test system
- E4P1 Target insecure data for 4 bus test system
- EDT Secure and insecure un-screening data for 24 bus test system
- EDT0 Secure un-screening data for 24 bus test system
- EDT1 Insecure un-screening data for 24 bus test system
- EDV Validation un-screening data for 24 bus test system
- EP0 Target secure un-screening data for 24 bus test system
- EP1 Target insecure un-screening data for 24 bus test system
- EDT_{sc} Secure and insecure screening data for 24 bus test system
- EDT0_{sc}- Insecure screening data for 24 bus test system
- EDV_{sc} Validation screening data for 24 bus test system
- EPO_{sc} Target secure screening data for 24 bus test system
- $EP1_{sc}$ Target insecure screening data for 24 bus test system
- V Voltage
- X Reactive impedance
- Y Admittance
- Z Impedance

LIST OF APPENDICES

APPENDIX PAGE TITLE 4 bus Test System's Data Α 68 IEEE 24 bus Test System's Data В 69 Newton-Raphson Load Flow Program С 74 Simulation data for 4 bus test system D 77 Е Un-Screening Simulation Data for the IEEE 24 81 bus Test System F Screening Simulation Data for the IEEE 24 bus 85 **Test Systems** Load Flow Simulation Data Output G 89

CHAPTER I

INTRODUCTION

1.1 Background

A reliable, continuous supply of electric energy is an essential part of today's complex societies. Due to a combination of increasing energy consumption and impediment of various kinds to extension of existing electric transmission network, these power systems are operated closer to their limit. This situation requires a significantly less conservative power operation and control regime which, in turn, is possible only by monitoring the system state in much more detail than was necessary previously.

Secure power system means freedom from danger or risk. However, power system can never be secure in absolute sense. Accordingly, in power system context, security can only be a qualified absence of risk, specifically or risk of disruption of continued system operation. Thus security has come to means the ability of the system to withstand without consequences any one of a preselected list of "credible contingencies. From a control perspective, the objective of power system operation is to keep the electric power flows and bus voltage magnitudes and angles within acceptable limit, despite changes in load or available resources. In August 2003 [1], power plants separated by hundreds miles in north-east of the US and in Canada were suddenly disconnected by their own safety system from the vast power network that cover those countries. In few minutes the power failed in Cleveland and the light went out in New York and across nine states in the US. It has been found that the blackout happened because of oscillation in the power network could be the echoes from a lightning strike with poorly tuned generator.

A crucial part of power system operation is on-line power system security analysis which, involving monitoring, assessment and control to decide whether the system is currently operating safely, critically or unsafe. The security of the system is evaluated for the actual state as well as for a number of simulated states which are derived from the actual state by assuming one or several line, transformer or generator outages. It is common practice to require that the system remain operational and safe for at least all single component failures or N-1 contingency.

Security Assessment (SA) is analysis performed to determine whether, and what to extend, a power system is reasonably safe from serious interference to its operation. Thus security assessment involves the evaluation of available data to estimate the relative security level of the system in its present state or some nearterm future state. The form of such assessment takes will be function of what types of data are available and of what underlying formulation of the security problem has been adopted.

1.2 Significance of Study

Conventional methods in determining level of power system security involve load flow analysis method which is iterative method. At each iteration, usually a power flow solution is required, which is an iterative method itself. Therefore, the computational time is long. For security assessment, it is vital to reduce computation time, since the security level of power system need to be determined as quick as possible. Artificial Intelligent (AI) is a suitable alternative method. The use of AI especially Artificial Neural Network (ANN) will enhance the speed in calculating the security level since no calculation based on the mathematical model of the power system is required. The ANN will read the value of parameters in the power system and outputs security level. Successful implementation of ANN in determining security will provides another promising means of security assessment of power system.

1.3 Objectives

The objectives of this study are:

- 1. To investigate suitable neural network architecture for static security assessment.
- 2. To develop steady state security assessment of power system using ANN technique.
- 3. To verify the performance of the technique in terms of accuracy and efficiency against conventional technique, i.e. load flow analysis.

1.4 Scope of Study

The scope and limitation of the study are as follow:

- 1. The steady state security assessment is limited by the thermal of transmission lines and bus voltage limit only, since these constraints are generally accepted as security criteria for most work in security assessment.
- 2. The developed ANN technique and conventional technique are developed on the MATLAB platform so as to obtain fair comparison between the methods.

1.5 Research Methodology

The methodology of the study is:

- 1. To determine ANN input output neuron from the load flow analysis using several test run of the conventional load flow analysis on the sample power system that representative of the general power system.
- To develop ANN technique using established input output neuron criteria for the security assessment of the test system i.e. 4-bus system and IEEE Reliability Test System 24-Bus.

3. To verify the accuracy and to justify the efficiency of the ANN developed technique to the conventional security analysis to several test on the 4-bus system and 24-bus IEEE test system.

1.6 Result of the Study

A suitable ANN architecture has been proposed for implementing static security assessment. ANN for static security assessment has been implemented by MATLAB environment and the results justify advantages of ANN technique over conventional method. A well trained ANN based steady state assessment method capable of evaluating (N-1) contingency for a given power system has been tested for various test system.

1.7 Organization of the Thesis

This thesis is divided into six chapters. The first chapter is the significant of the study, followed by Chapter II, which discuss the literature review on the security assessment determination in power system. Chapter III covers the element in security assessment and the ANN configuration. Chapter IV describes about the test system and the ANN implementation methodology. Result and discussion has been placed in Chapter V. The last chapter provides the conclusion of the study and suggestion for the future work.

REFERENCES

[1] Edwards, C. (2003). "Lights out for UK?" IEE Review, Vol. 49, Issue 8, pp: 18 -19.

[2] Balu, N., Bertram, T., Bose, A., Brandwajn, V., Cauley, G., Curtice, D., Fouad,
A., Fink, L., Lauby, M.G., Wollenberg, B.F., Wrubel, J.N. (1992). "On-line power system security analysis". Proceedings of the IEEE, Vol. 80, Issue 2, pp: 262 - 282.

[3] Alves, A.B., Monticelli, A. (1998) "Static security analysis using pipeline decomposition". IEE Proceedings on Generation, Transmission and Distribution, Vol. 145, Issue 2, pp: 105 - 110.

[4] Hang Liu; Bose, A., Venkatasubramanian, V. (1999) "A fast voltage security assessment method using adaptive bounding." Proceedings IEEE International Conference on Power Industry Computer Applications., pp: 325 - 330.

[5] McCalley, J.D., Wang, S., Zhao, Q.-L., Zhou, G.-Z., Treinen, R.T.,Papalexopoulos, A.D. (1997). "Security boundary visualization for systems operation." IEEE Transactions on Power Systems, Vol. 12, Issue 2, pp: 940 - 947.

[6] Ozdemir, A., Jae Yun Lim., Singh, C. (2002). "Line outage simulation by bounded network solution." IEEE Power Engineering Society Winter Meeting, 2002., Vol. 2, pp: 1270 - 1275.

[7] Ping Yan., Sekar, A. (2002). "Study of linear models in steady state load flow analysis of power systems." IEEE Power Engineering Society Winter Meeting, Vol. 1, pp: 666 - 671. [8] Lauby, M.G. (1988). "Evaluation of a local DC load flow screening method for branch contingency selection of overloads." IEEE Transactions on Power Systems, Vol. 3, Issue 3, pp: 923 - 928.

[9] Sauer, P.W., Reinhard, K.E., Overbye, T.J. (2001). "Extended factors for linear contingency analysis." Proceedings of the 34th Annual Hawaii International on System Sciences Conference, pp: 697 - 703.

[10] Baldick, R. (2003). "Variation of distribution factors with loading." IEEE Transactions on Power Systems, Vol. 18, Issue 4, pp: 1316 - 1323.

[11] Yung-Chung Chang., Wei-Tzen Yang., Chun-Chang Liu. (1994). "A new method for calculating loss coefficients of power systems." IEEE Transactions on Power Systems, Vol. 9, Issue 3, pp: 1665 - 1671.

[12] Hur, D., Jong-Keun Park., Kim, B.H., Kwang-Myoung Son. (2001) "Security constrained optimal power flow for the evaluation of transmission capability on Korea electric power system". IEEE Power Engineering Society Summer Meeting, 2001. Vol. 2, pp: 1133 - 1138.

[13] Bijwe, P.R., Nanda, J., Puttabuddhi, K.L. (1991) "Ranking of line outages in an AC-DC system causing overload and voltage problems." IEE Proceedings C on Generation, Transmission and Distribution [see also IEE Proceedings-Generation, Transmission and Distribution], Vol. 138, Issue 3, pp: 207 - 211.

[14] Meliopoulos, A.P.S., Cheng, C.S., Feng Xia. (1994). "Performance evaluation of static security analysis methods." IEEE Transactions on Power Systems, Vol. 9, Issue 3, pp: 1441 - 1449.

[15] Hyungchul Kim., Singh, C. (2002). "Probabilistic security analysis using SOM and Monte Carlo simulation." IEEE Power Engineering Society Winter Meeting, 2002. Vol. 2, pp: 755 - 760.

[16] Fu, C., Bose, A. (1999). "Contingency ranking based on severity indices in dynamic security analysis." IEEE Transactions on Power Systems, Vol. 14, Issue 3, pp: 980 - 985.

[17] Yuan-Yih Hsu., Chien-Chuen Yang., Chung-Ching Su. (1992). "A personal computer based interactive software for power system operation education."IEEE Transactions on Power Systems, Vol. 7, Issue 4, pp: 1591 - 1597.

[18] Muslu, M., Shultz, R.D. (1990). "An expert system for contingency analysis in power systems." Proceedings of the Twenty-Second Annual North American on Power Symposium, pp: 373 - 380.

[19] Bertram, T.J., Demaree, K.D., Dangelmaier, L.C. (1989). "An integrated package for real-time security enhancement." Conference Papers on Power Industry Computer Application Conference, PICA '89, pp: 18 - 24.

[20] Mahadev, P.M., Christie, R.D. (1994). "Envisioning power system data: vulnerability and severity representations for static security assessment." IEEE Transactions on Power Systems, Vol. 9, Issue 4, pp: 1915 - 1920.

[21] Cote, J.W., Liu, C.-C. (1993). "Voltage security assessment using generalized operational planning knowledge." IEEE Transactions on Power Systems, Vol. 8, Issue1, pp: 28 - 34.

[22] Bacher, R. (1995). "Graphical interaction and visualization for the analysis and interpretation of contingency analysis results." Conference Proceedings on Power Industry Computer Application Conference, pp: 128 - 134.

[23] Fujiwara, R., Sakaguchi. (1986). "An intelligent load flow engine for power system planning." IEEE Transactions on Power Systems, pp: 302 - 307.

[24] Yuan-Yih Hsu., Han-Ching, Kuo. (1992). "Fuzzy-set based contingency ranking power system security." IEEE Transactions on Power Systems, Vol. 7, Issue 3, pp: 1189 - 1196.

[25] Vlachogiannis, J.G. (2001) "Fuzzy logic application in load flow studies." IEEProceedings on Generation, Transmission and Distribution, Vol.148, Issue 1, pp: 34 - 40.

[26] Heydeman, J., Reijntjes, R., Babuska, R., Kaymak, U., Van Nauta Lemke, H.R.
(1996) "Fuzzy logic based security assessment of power networks." International Conference on Intelligent Systems Applications to Power Systems, Proceedings, ISAP '96, pp: 405 - 409.

[27] Hathout, I. (1991). "Reliability and security assessment of existing transmission lines using fuzzy set theory". Third International Conference on Probabilistic Methods Applied to Electric Power Systems, 1991, pp: 92 - 96.

[28] Machias, A.V., Souflis, J.L., Dialynas, E.N. (1989) "A fuzzy transient stability index in power system security evaluation". IEEE Transactions on Automatic Control, Vol. 34, Issue 6, pp: 662 - 666.

[29] Ozdemir, A., Singh, C. (2001) "Fuzzy logic based MW contingency ranking against masking problem". IEEE Power Engineering Society Winter Meeting, 2001. Vol. 2, pp: 504 - 509.

[30] Groom, C.G., Chan, K.W., Dunn, R.W., Daniels, A.R. (1996) "Real-time security assessment of electrical power systems". IEEE Transactions on Power Systems, Vol. 11, Issue 2, pp: 1112 - 1117.

[31] Chowdhury, B.H., Wilamowski, B.M. (1991) "Security assessment using neural computing". Proceedings of the First International Forum on Applications Neural Networks to Power Systems, pp: 54 - 58.

[32] Hashemi, R.R., Stafford, N.L. (1993). "A back propagation neural network for risk assessment." Twelfth Annual International Phoenix Conference on Computers and Communications, pp: 565 - 570.

[33] Aggoune, M.E., Atlas, L.E., Cohn, D.A., Damborg, M.J., El-Sharkawi, M.A.,
Marks, R.J., II; (1989). "Artificial neural networks for power system static security assessment." IEEE International Symposium on Circuits and Systems, Vol.1, pp: 490 - 494.

[34] Fischer, D., Szabados, B., Poehlman, S. (2003). "Automatic contingency grouping using partial least squares and feed forward neural network technologies applied to the static security assessment problem." Large Engineering Systems Conference on Power Engineering, pp: 84 - 89.

[35] Emmanuel, P., Kejariwal, M. (1989). "Steady state security assessment of power system using neural networks." International Conference on TENCON '89, Fourth IEEE Region 10, pp: 742 - 745.

[36] Yan, H.H., Chow, J.-C., Fischl, R., Chen, R.X. (1992). "Power system security assessment using a hybrid expert system/neural network architecture." IEEE International Symposium on Circuits and Systems, ISCAS '92, Proceedings, Vol. 4, pp: 1713 - 1716.

[37] Sidhu, T.S., Lan Cui. (2000). "Contingency screening for steady-state security analysis by using FFT and artificial neural networks." IEEE Transactions on Power Systems, Vol. 15, pp: 421 - 426.

[38] Maghrabi, H., Refaee, J.A.; Mohandes, M. (1998). "Contingency analysis of bulk power system using neural networks." International Conference on Power System Technology, Proceedings, POWERCON '98, Vol.2, pp: 1251 - 1254.

[39] Chicco, G., Napoli, R.; Piglione, F. (2001). "Neural networks for fast voltage prediction in power systems." IEEE Porto on Power Tech Proceedings, vol.2, pp: 5.

[40] Jain, T., Srivastava, L.; Singh, S.N. (2003). "Fast voltage contingency screening using radial basis function neural network." IEEE Transactions on Power Systems, Vol. 18, Issue 4, pp. 1359 - 1366.

[41] Augugliaro, A., Cataliotti, V., Dusonchet, L., Favuzza, S.; Scaccianoce, G. (1999). "Load flow solution in electrical power systems with variable configurations by progressive learning networks." International Conference on Electric Power Engineering, PowerTech Budapest 99, pp: 131.

[42] Napoli, R., Piglione, F. (1996). "On-line static security assessment of power systems by a progressive learning neural network." Electrotechnical Conference, MELECON '96, 8th Mediterranean, vol.3, pp: 1435 - 1438.

[43] Bompard, E., Chicco, G., Napoli, R., Piglione, F. (1999). "Fast contingency analysis by means of a progressive learning neural network." International Conference on Electric Power Engineering, PowerTech Budapest 99, pp: 133.

[44] Cirrincione, G., Girrincione, M.; Piglione, F. (1996)."A neural network architecture for static security mapping in power systems." Electrotechnical Conference, MELECON '96, 8th Mediterranean. Vol.3. pp: 1611 - 1614.

[45] Lo, K.L., Peng, L.J., Maqueen, J.F., Ekwue, A.O., Cheng, D.T.Y. (1995).
"Application of Kohonen self-organising neural network to static security assessment." Fourth International Conference on Artificial Neural Networks, pp: 387 - 392.

[46] Weerasooriya, S., El-Sharkawi, M.A. (1992). "Feature selection for static security assessment using neural networks." IEEE International Symposium on Circuits and Systems, ISCAS '92, Proceedings, Vol. 4, pp: 1693 - 1696.

[47] Shyh-Jier Huang., Chuan-Chang Hung. (1995). "Genetic algorithms enhanced Kohonen's neural networks." IEEE International Conference on Neural Networks, Proceedings, Vol.2, pp: 708 - 712.

[48] Niebur, D., Germond, A.J. (1991). "Power flow classification for static security assessment." Proceedings of the First International Forum on Applications Neural Networks to Power Systems, pp: 83 - 88.

[49] Niebur, D., Germond, A.J. (1992). "Power system static security assessment using the Kohonen neural network classifier." IEEE Transactions on Power Systems, Vol. 7, pp: 865 - 872.

[50] Huang, S.-J. (2001). "Static security assessment of a power system using querybased learning approaches with genetic enhancement." IEE Proceedings on Generation, Transmission and Distribution, Vol. 148, Issue 4, pp: 319 - 325.

[51] El-Sharkawi, M.A., Atteri, R. (1993). "Static security assessment of power system using Kohonen neural network." Proceedings of the Second International Forum on Applications Neural Networks to Power Systems, ANNPS '93, pp: 373 -377.

[52] Weerasooriya, S., El-Sharkawi, M.A. (1991). "Use of Karhunen-Loe've expansion in training neural networks for static security assessment." Proceedings of the First International Forum on Applications Neural Networks to Power Systems, pp: 59 - 64.

[53] Chan, K.W., Edwards, A.R., Dunn, R.W., Daniels, A.R. (2000). "On-line dynamic security contingency screening using artificial neural networks." IEE Proceedings on Generation, Transmission and Distribution, Vol. 147, pp: 367 - 372.

[54] Tso, S.K., Gu, X.P., Zeng, Q.Y.; Lo, K.L., Zhang, W.Q. (1998). "A hybrid framework of short-duration simulation and ANN-based transient stability assessment for contingency screening." International Conference on Power System Technology, Proceedings, POWERCON '98, Vol.2, pp: 1315 - 1319.

[55] Karapidakis, E.S., Hatziargyriou, N.D. (2000). "Application of artificial neural networks for security assessment of medium size power systems." 10th Mediterranean Electrotechnical Conference, MELECON 2000, Vol.3, pp: 1189 -1192. [56] Qin Zhou., Davidson, J., Fouad, A.A. (1994). "Application of artificial neural networks in power system security and vulnerability assessment," IEEE Transactions on Power Systems, Vol. 9, pp: 525 - 532.

[57] Jensen, C.A., Reed, R.D., Marks, R.J., II, El-Sharkawi, M.A., Jae-Byung Jung., Miyamoto, R.T., Anderson, G.M., Eggen, C.J. (1999). "Inversion of feedforward neural networks algorithms and applications." Proceedings of the IEEE, Vol. 87, Issue 9, pp: 1536-1549.

[58] Saadat., H. (2000). "Power System Analysis, Singapore." McGraw-Hill.

[59] Hagan, M.T., Menhaj, M.B. (1994). "Training Feedforward Networks with the Marquardt Algorithm." IEEE Transaction on Neural Networks, Vol. 5, Issue 6, pp: 989 - 993.