SIERPINSKI GASKET PATCH AND MONOPOLE FRACTAL ANTENNA

ABD SHUKUR BIN JA'AFAR

UNIVERSITI TEKNOLOGI MALAYSIA

SIERPINSKI GASKET PATCH AND MONOPOLE ANTENNA

ABD SHUKUR BIN JA'AFAR

A thesis submitted in fulfilment of the requirements for the award of the Degree of Master of Engineering (Electrical-Electronics & Telecommunications)

> Faculty of Electrical Engineering Universiti Teknologi Malaysia

> > **MARCH 2005**

To My Loving and Caring Family ...

ACKNOWLEDGEMENTS

My first thanks is for my supervisor, Dr. Mohamad Kamal A. Rahim, whose constant support, patience and unbounded enthusiasm were of invaluable help. His devotion to the needs of the students and the encouragements has made working with him a true delight.

My sincere appreciation to my fellow colleagues in the sharing the similar research interests. I value the camaraderie we share as well as the time they spent to share with me enriching ideas, as well as their concern. My gratitude especially goes to Lester Cheung, Mohd Zoinol, Azahari, Abd Hafizh, Mohd Fairus Yusof, and Asrul Izzam for many hours of discussions, as well as assistance during fabrication process.

My sincerest thanks to all those who have helped to make this thesis possible. Warmest regards to my mother, sister, both grandmother and grandfather for their seamless caring encouragement and moral support that has made this journey possible.

ABSTRACT

The use of fractal geometry in designing antenna has been a recent topic of interest. It have already proved that fractal shaped have their own unique characteristics that improved antenna achievement without degrading antenna properties. This dissertation tells about one of familiar geometry in fractal antenna, Sierpinski gasket. Here, two types of antenna are designed: Sierpinski gasket patch and Sierpinski gasket monopole. Maximum iteration that applies to these antennas is three. The behaviors of both type antennas are investigate such as return loss, number of iteration and radiation pattern. Simulation, fabrication and testing have been done. The entire antenna shows multiband in resonant frequencies. For Sierpinski monopole shows a pattern in return loss but not for Sierpinski patch. Monopole type shows the frequency band logperiodically spaced by two, same as the scale factor among the structure (sub-gasket). The self-similarity properties of fractal structure are translated into its electromagnetic behavior.

ABSTRAK

Penggunaan geometri *fractal* di dalam rekabentuk antenna menjadi satu tumpuan sejak kebelakangan ini. Kajian telah membuktikan rekabentuk *fractal* mempunyai sifat yang unik di mana ia membantu pencapaian sesuatu antena tanpa mngurangkan prestasi asal. Disetasi ini membincangkan mengenai salah satu rekabentuk *fractal* yang terkenal iaitu Sierpinski gasket. Di sini, dua jenis antenna direkabentuk berdasarkan geometri Sierpinski gasket iaitu mikrojalur (antena tampal) dan ekakutub. Antenna tersebut disegmenkan sehingga iterasi ketiga. Kelakuan antenna fractal ini dikaji dari segi perubahan kehilangan kembali, bilangan iterasi yang dilaksanakan, dan corak sinaran. Simulasi, fabrikasi dan pengukuran telah dilaksanakan. Kesemua antenna menunjukkan sifat multijalur frekuensi apabila *fractal* dilaksanakan. Bagi jenis ekakutub, kehilangan kembali mempamerkan corak yang boleh dijangka tetapi tidak pada jenis mikrojalur. Jenis ekakutub juga menunjukkan pengulangan berkala jalur frekuensi sebanyak 2 kali ganda , dimana boleh diakitkan dengan struktur rekabentuk gasket antena tersebut. Ini boleh dikatakan rekabentuk kesamaan pada antena tersebut di pindahkan ke kelakuan elektromagnetiknya.

TABLE OF CONTENTS

CHAPTER	TITLE	PAGE
	TITLE	i
	DECLARATION	ii
	DEDICATION	iii
	ACKNOWLEDGEMENTS	iv
	ABSTRACT	v
	ABSTRAK	vi
	TABLE OF CONTENTS	vii
	LIST OF TABLES	Х
	LIST OF FIGURES	xi
	LIST OF SYMBOLS	xiii
	LIST OF APPENDICES	xiv
	LIST OF ABBREVIATIONS	xv
CHAPTER 1	INTRODUCTION	1
	1.1 Project Background	1
	1.2 Objective	2

1.3	Scope of Projects	2
1.4	Project Methodology	3
1.5	Thesis Outlines	4

2	ANT	ENNA THEORY	6
	2.1	Introduction	6
	2.2	Antenna Properties	7
		2.2.1 Input Impedance	7
		2.2.2 VSWR	7
		2.2.3 Gain	9
		2.2.4 Radiation Pattern	9
		2.2.5 3dB Beamwidth (HPBW)	11
		2.2.6 Directivity	11
		2.2.7 Polarization	12
		2.2.8 Bandwidth	12
	2.3	Scattering Parameters	13
	2.4	Basic Microstrip Antennas	15
	2.5	Analysis of Microstrip Antennas	17
		2.5.1 Transmission Line Model	18
		2.5.2 Full Wave Analysis	20
		2.5.3 Cavity Model	20
		2.5.3.1 Equilateral Triangle Microstrip Antenna	21
		2.5.3.2Resonant Frequency	22
	2.6	Feeding Techniques	23
		2.6.1 Coaxial Probe Feed	23
		2.6.2 Side Feed	24
	2.7	Matching Techniques	25
	2.8	Summary	27

CHAPTER 2 ANTENNA THEORY

6

CHAPTER 3 FRACTAL ANTENNA

28

3.1	Fracta	l Background	28
3.2	Fracta	l Antenna Elements	31
3.3	Fracta	l Geometry	32
	3.3.1	Sierpinski Carpet	33
	3.3.2	Koch curves	33
	3.3.3	Hilbert curves	34
3.4	Sierpi	nski Gasket Geometry	35
	3.4.1	Generation of Sierpinski Gasket Geometry	36
3.5	Sierpi	nski Gasket Monopole	39
3.6	Design	n Procedure	40
	3.6.1	Sierpinski Gasket Patch	43
	3.6.2	Sierpinski Gasket Monopole	45
3.7	Summ	ary	47

CHAPTER 4 SIMULATION, FABRICATION AND MEASUREMENT

4.1	Introduction	48
4.2	Fabrication	
	4.2.1 Etching Process	52
	4.2.2 Connector	53
4.3	Antenna Measurement	56
4.4	Summary	57

CHAPTER 5	rE	SULTS AND DISCUSSIONS	58
	5.1	Introduction	58
	5.2	Simulation Result	58

48

5.3	Measurement Result	68
5.4	Summary	77

CHAPTER 6 CONCLUSION AND RECOMMENDATION 78

7.1	Introduction	78
7.2	Conclusion	78
7.3	Recommendations And Future Works	79

REFERENCES	80
APPENDIX A	86
APPENDIX B	88
APPENDIX C	90
APPENDIX D	92
APPENDIX E	96

LIST OF TABLES

TABLEDESCRIPTIONPAGE

2.1	VSWR vs return loss	8
3.1	Laminates Specifications	41
3.2	Dimension for the antennas	43
3.3	SGFm2 geometry parameters	46
5.1	Frequency band, return loss and bandwidth	59
5.2	Frequency band, return loss and bandwidth	60
5.3	Frequency band, return loss and bandwidth	60
5.4	Frequency band, return loss and bandwidth	61
5.5	Frequency band, return loss and bandwidth	62
5.6	Frequency band, return loss and bandwidth	63
5.7	Frequency band, return loss and bandwidth	
	for measurement	69
5.8	Frequency band, return loss and bandwidth	
	for measurement	70
5.9	Frequency band, return loss and bandwidth	
	for measurement	72
5.10	Frequency band, return loss and bandwidth	
	for measurement	74

LIST OF FIGURES

FIGURE DESCRIPTION

PAGE

1.1	Geometry of each design antenna	4
2.1	Example of radiation pattern	10
2.2	Convention used to define S-parameters for a two-port network	14
2.3	Basic structure of microstrip antenna	16
2.4	Charge distribution and current density	16
2.5	Transmission line model of microstrip antenna	18
2.6	Cavity model of patch antenna	21
2.7	Structure antenna with coaxial probe feeding technique	24
2.8	Antenna structure with side feed microstrip line	25
2.9	Matching with single section quarter wave transformer	26
3.1	Example geometry in nature that is modeled using fractal-fern	30
3.2	Example geometry in nature that is modeled using	
	fractal-landscape	30
3.3	Example fractal geometry in nature	31
3.4	Example of fractal antenna	32
3.5	Four stages in construction of Sierpinski carpet	33
3.6	Step of construction of Koch curves geometries	34
3.7	Four stage in construction of Hilbert curves	35
3.8	Multiple copy generation approach	37

3.9	Decomposition generation approach	37
3.10	Iterated Function System for generation of self-similar	
	Sierpinski gasket geometry	38
3.11	Sierpinski gasket monopole antenna	39
3.12	Flow chart of the design procedure for SGFpe1, SGFpd1,	
	and SGFm1	42
3.13	Stage of construct Sierpinski gasket patch	44
3.14	Introducing coupling patches-SGFpe1 and SGFpd1	45
3.15	Dimension of SGFm2	46
4.1	Microwave Office Environment	49
4.2	TXLINE calculator	49
4.3	Layout design on EM structure	50
4.4	3D view of layout design	51
4.5	Types of connector that are used	53
4.6	Step of fabrication process from beginning to measurement	54
4.7	Sierpinski gasket patch antenna	55
4.8	Sierpinski gasket monopole antenna	55
4.9	Radiation pattern measurement setup	57
5.1	Return loss response of SGFpe1 at 1 st iteration	59
5.2	Return loss response of SGFpe1 at 2nd iteration	59
5.3	Return loss response of SGFpe1 at 3rd iteration	60
5.4	Return loss response of SGFpd1 at 1st iteration	61
5.5	Return loss response of SGFpd1 at 2nd iteration	62
5.6	Return loss response of SGFpd1 at 3 rd iteration	63
5.7	Radiation pattern simulation at $\Phi=0$ cut (E-plane) for SGFpe1	64
5.8	Radiation pattern simulation at Φ =90 cut (H-plane) for SGFpe1	65
5.9	Radiation pattern simulation at $\Phi=0$ (E-plane) for SGFpd1	66
5.10	Radiation pattern simulation at Φ =90 (H-plane) for SGFpd1	67
5.11	Comparison simulation and measurement of SGFpd1 antenna	68
5.12	Comparison simulation and measurement of SGFpe1 antenna.	69
5.13	Measurement plot of co-polarisation and	

	cross-polarisation for SGFpd1	71	
5.14	Return loss measurement for SGFm1 antenna		
5.15 Measurement plot of co-polarisation and			
	cross-polarisation for SGFm1	73	
5.16	Return loss measurement for SGFm2 antenna	74	
5.17	Measurement plot of co-polarisation and		
	cross-polarisation for SGFm2	76	

LIST OF SYMBOLS

BW	-	Bandwidth
c	-	Velocity of light
D	-	Directivity
f	-	Frequency
\mathbf{f}_{o}	-	Operating frequency
$\mathbf{f}_{\mathbf{r}}$	-	Resonant frequency
G	-	Gain
h	-	Substrates thickness
S_{11}	-	Return loss
t	-	Thickness of conductor
tanδ	-	Loss tangent
VSWR	-	Voltage standing wave ratio
W	-	Width of feed line
Z _{in}	-	Input impedance.
Zo	-	Characteristic impedance
Z_{L}	-	Load impedance
ε _r	-	Relative permittivity
Eeff	-	Effective relative permittivity
σ	-	Conductivity
λ_{o}	-	Free space wavelength
$\lambda_{ m g}$	-	Guided wavelength
π	-	3.142

LIST OF APPENDICES

APPENDIX DESCRIPTION PAGE

Appendix A	Transmission lines width calculation-Mathcad2000	86
Appendix B	Calculating dimension a of triangle	88
Appendix C	Figure of return loss for all iteration	90
Appendix D	Equipment for measurement and fabricated antenna	92
Appendix E	Example of MATLAB program to plot radiation	
	pattern.	96

LIST OF ABBREVIATIONS

SGFpe1

SGFpd1 SGFm1

SGFm2

S	-	Sierpinski
G	-	Gasket
F	-	Fractal
р	-	patch
m	-	monopole
e	-	edge feed
d	-	direct feed
#	-	version number

RF	-	Radio Frequency
VSWR	-	Voltage Standing Wave Ratio
HPBW	-	Half Power Beamwidth
dB	-	decibel

CHAPTER 1

INTRODUCTION

1.1 Project Background

In modern wireless communication systems and increasing of other wireless applications, wider bandwidth, multiband and low profile antennas are in great demand for both commercial and military applications. This has initiated antenna research in various directions, one of them is using fractal shaped antenna elements. Traditionally, each antenna operates at a single or dual frequency bands, where different antenna is needed for different applications. This will cause a limited space and place problem. In order to overcome this problem, multiband antenna can be used where a single antenna can operate at many frequency bands. One technique to construct a multiband antenna is by applying fractal shape into antenna geometry.

This project presents the Sierpinski gasket patch and monopole antenna where this famous shape, the antenna behaviors are investigated. In addition to the theoretical design procedure, numerical simulation was performed using Moment of Methods (Mom) software (Microwave Office, ADS) to obtain design parameters such as size of patch and feeding location. The antennas have been fabricated and tested.

1.2 Objective

The objective of this project is to design, simulate and fabricate the Sierpinski gasket patch (microstrip) and monopole fractal antenna. The behavior and properties of these antennas are investigated.

1.3 Scope of Project

The scopes defined for this project are as follows:

- Understanding the antenna concept.
- Design the equilateral triangle for microstrip at 1.8GHz, and fractal it until 3rd iteration. The same structure will be used for monopole type.
- Performs numerical solution using Microwave Office V6 and Advance Design System (ADS) softwares.
- Practical implementation of the antennas.
- Measurement of the antennas properties.
- Comparison the measurement and simulation results.

1.4 Project Methodology

The project begins with the understanding of the microstrip antenna technology. This includes the property studies such as the radiation pattern, input impedance and operating frequency. The related literature reviews includes understanding the Sierpinski gasket shape for monopole type. The design of the microstrip Sierpinski gasket starts with an equilateral triangle as an initiator with operating frequency at 1.8 GHz. This will determine the size of the patch before iteration need to apply. The next step is to choose the relevant material such as microwave laminate. The information is used to calculate the characteristics and performance of the antenna. The software used for numerical simulation are Microwave Office V6 and Advance Design System (ADS). The practical implementation is carried out after the simulation process. This involves the artwork preparation for the antenna fabrication as well as connecting the appropriate connector. The knowledge of AutoCAD software is very useful in fulfilling this task. AutoCAD software is chosen to print actual antenna size on transparency for fabrication process. Then the measurement was performed. Comparisons between simulation and experimental results are made.

In this project four antennas have been fabricated. For Sierpinski gasket patch two variations of feeding techniques have been constructed, which is the direct feed and the edge feed. The antennas are named as SGFdf1, SGFef1, SGFm1, and SGFm2. Figure 1.1 shows the geometry of each antenna.

Figure 1.1: Geometry of each antenna.

1.5 Thesis Outline

The thesis is organized into 7 chapters. Chapter 1 presents the overall idea of this thesis including objective, scope of project and project methodology. Chapter 2 presents basic theory antenna theory and properties.

Chapter 3 presents the background or the idea of fractals dimension. The geometry of Sierpinski gasket also has been elaborate here.

Chapter 5 tells about simulation software, fabrication process and testing of the antennas. Chapter 6 presents the result and discussion in detail. The final chapter, Chapter 7 emphasizes on conclusion, recommendations and future works.