
 VOT 75166

OUT-OF-CORE SIMPLIFICATION WITH APPEARANCE

PRESERVATION

FOR COMPUTER GAME APPLICATIONS

Project Leader

Abdullah Bade

Researcher

Assoc. Prof. Daut Daman

Mohd Shahrizal Sunar

Research Assistant

Tan Kim Heok

RESEARCH MANAGEMENT CENTER

UNIVERSITI TEKNOLOGI MALAYSIA

2006

OUT-OF-CORE SIMPLIFICATION WITH APPEARANCE

PRESERVATION

FOR COMPUTER GAME APPLICATIONS

PROJECT REPORT

Author

Abdullah Bade

RESEARCH MANAGEMENT CENTER

UNIVERSITI TEKNOLOGI MALAYSIA

2006

 i

Acknowledgement

Special thanks are dedicated to the management and staff of Research

Management Center (RMC), Universiti Teknologi Malaysia Malaysia for their

supports, commitments and motivations. We would like to express our appreciation

to those who have assisted us directly or indirectly in making this project a success.

 ii

Abstract

Drastic growth in computer simulations’ complexity and 3D scanning technology has

boosted the size of geometry data sets. Before this, conventional (in-core)

simplification techniques are sufficient in data reduction to accelerate graphics

rendering. However, powerful graphics workstation also unable to load or even

generates the smooth rendering of these extremely large data. In this thesis, out-of-

core simplification algorithm is introduced to overcome the limitation of

conventional technique. Meanwhile, preservation on surface attributes such as

normals, colors and textures, which essential to bring out the beauty of 3D object, are

also discussed. The first process is to convert the input data into a memory efficient

format. Next, datasets are organized in an octree structure and later partitioned

meshes are kept in secondary memory (hard disk). Subsequently, submeshes are

simplified using a new variation of vertex clustering technique. In order to maintain

the surface attributes, a proposed vertex clustering technique that collapses all

triangles in every leaf node using the generalized quadric error metrics is introduced.

Unlike any other vertex clustering methods, the knowledge of neighbourhood

between nodes is unnecessary and the node simplification is performed

independently. This simplification is executed recursively until a desired levels of

detail is achieved. During run-time, the visible mesh is rendered based on the

distance criterion by extracting the required data from the previously generated

octree structure. The evaluated experiments show that the simplification is greatly

controlled by octree’s subdivision level and end node size. The finer the octree, thus

the finer mesh will be generated. Overall, the proposed algorithm is capable in

simplifying large datasets with pleasant quality and relatively fast. The system is run

efficiently on low cost personal computer with small memory footprint.

 iii

Abstrak

Perkembangan drastik dalam simulasi komputer dan teknologi pengimbasan 3D telah

meningkatkan saiz data geometri. Sebelum ini, teknik simplifikasi tradisional (in-

core) mampu mengurangkan saiz data untuk mempercepatkan visualisasi grafik.

Walau bagaimanapun, stesen kerja grafik yang berspesifikasi tinggi juga tidak

mampu memuat data yang terlalu besar ini apatah lagi menjana visualisasi yang licin.

Dalam thesis ini, algoritma simplifikasi out-of-core telah diperkenalkan untuk

mengatasi kekurangan teknik tradisional. Sementara ini, pengekalan ciri-ciri

permukaaan seperti normal, warna dan tekstur yang menunjukkan kecantikan objek

3D telah dibincangkan. Proses pertama ialah menukarkan data input kepada format

yang ramah memori. Kemudian, data disusun dalam struktur octree dan data yang

siap dibahagikan disimpan dalam memori sekunder (cakera keras). Selepas ini,

permukaan bagi setiap nod diringkaskan dengan teknik pengumpulan verteks. Untuk

mengekalkan attribut-attribut permukaan, teknik pengumpulan vertex yang

menggantikan segitiga-segitiga dalam setiap nod dengan menggunakan kaedah

“generalized quadric error metrics” dicadangkan. Berbeza dengan teknik-teknik lain,

pengetahuan antara nod jiran tidak diperlukan dan simplifikasi nod dilakukan secara

individu. Proses simplifikasi ini dijalankan secara rekursif sehingga bilangan

resolusi yang dikehendaki dicapai. Semasa perlaksaan sistem, permukaan yang

boleh dinampak divisualisasikan berdasarkan aspek jarak dengan mengekstrak data

berkenaan dari struktur octree yang dihasilkan. Eksperimen yang dianalisa

menunjukkan bahawa simplifikasi banyak dikawal oleh aras pembahagian octree dan

saiz nod akhir. Semakin banyak octree dibahagikan, semakin tinggi resolusi

permukaan yang dihasilkan. Secara keseluruhan, algoritma cadangan adalah

berpotensi dalam simplifikasi data besar dengan kualiti yang memuaskan dan agak

cepat. Sistem ini telah dilaksanakan secara effektif pada komputer berkos rendah

dengan penggunaan memori yang kecil.

 iv

Table of Contents

CHAPTER TITLE PAGE

 Acknowledgement i

 Abstract ii

 Abstrak iii

 Table of Contents iv

1 INTRODUCTION 1

 1.1 Introduction 1

 1.2 Background Research 2

 1.3 Motivations 5

 1.4 Problem Statement 6

 1.5 Purpose 6

 1.6 Objectives 6

 1.6 Research Scope 7

2 LITERATURE REVIEW 8

 2.1 Introduction 8

 2.2 Level of Detail Framework 9

 2.2.1 Discrete Level of Detail 9

 2.2.2 Continuous Level of Detail 10

 2.2.3 View-Dependent Level of Detail 11

 2.3 Level of Detail Management 11

 2.4 Level of Detail Generation 15

 2.4.1 Geometry Simplification 16

 2.4.1.1 Vertex Clustering 16

 2.4.1.2 Face Clustering 17

 2.4.1.3 Vertex Removal 18

 2.4.1.4 Edge Collapse 19

 v

 2.4.1.5 Vertex Pair Contraction 21

 2.4.2 Topology Simplification 21

 2.5 Metrics for Simplification and Quality Evaluation 23

 2.5.1 Geometry-Based Metrics 23

 2.5.1.1 Quadric Error Metrics 23

 2.5.1.2 Vertex-Vertex vs Vertex-Plane

vs Vertex-Surface vs Surface-

Surface Distance

24

 2.5.2 Attribute Error Metrics 25

 2.6 External Memory Algorithms 25

 2.6.1 Computational Model 27

 2.6.2 Batched Computations 27

 2.6.2.1 External Merge Sort 27

 2.6.2.2 Out-of-Core Pointer

Dereferencing

28

 2.6.2.3 The Meta-Cell Technique 29

 2.6.3 On-Line Computations 30

 2.7 Out-of-Core Approaches 31

 2.7.1 Spatial Clustering 32

 2.7.2 Surface Segmentation 34

 2.7.3 Streaming 36

 2.7.4 Comparison 38

 2.8 Analysis on Out-of-Core Approach 39

 2.8.1 Advantages and Disadvantages 39

 2.8.2 Comparison: In-core and Out-of-Core

Approach

39

 2.8.3 Performance Comparison: Existing

Simplification Techniques

41

 2.9 Appearance Attribute Preservation 46

 2.10 Summary 48

3 METHODOLOGY 51

 3.1 Introduction 51

 vi

 3.2 Algorithm Overview 52

 3.3 Data Processing 54

 3.31 Data File Structure 55

 3.4 Proposed Octree Construction 57

 3.5 Proposed Out-of-Core Simplification 59

 3.5.1 New Vertex Clustering 60

 3.5.2 Generalized Quadric Error Metrics 61

 3.5.2 Simplification on Internal Nodes 63

 3.6 Run Time Rendering 64

 3.7 Summary 65

4 IMPLEMENTATION 66

 4.1 Introduction 66

 4.2 Data Processing 67

 4.2.1 Input Data Reading 67

 4.2.2 Triangle Soup Mesh Generation 68

 4.2.2.1 Calculation of Triangle’s

Dimension and Sorting Index

69

 4.2.2.2 External Sorting on Sorting

Index

71

 4.2.2.3 Dereferencing on Sorting Indices 72

 4.3 Octree Construction 73

 4.4 Out-of-Core Simplification 76

 4.4.1 Simplification on Leaf Nodes 76

 4.4.2 Simplification on Internal Nodes 76

 4.5 Run Time Rendering 77

 4.6 Summary 78

5 RESULTS AND DISCUSSIONS 79

 5.1 Introduction 79

 5.2 Octree Construction Analysis 80

 5.3 Out-of-Core Simplification Analysis 81

 5.3.1 Proposed Out-of-Core Simplification

 vii

Analysis 82

 5.3.2 Relationships between Simplification and

Octree Construction

85

 5.3.3 Surface-Preserving Simplification

Analysis

89

 5.3.4 Comparison on Out-of-Core

Simplifications

91

 5.4 Summary 93

6 CONCLUSIONS 94

 6.1 Summary 94

 6.2 Summary of Contributions 95

 6.3 Future Works 97

REFERENCES 99

Appendices A - B 112

CHAPTER 1

INTRODUCTION

1.1 Introduction

A 3D interactive graphics application is an extremely computational

demanding paradigm, requiring the simulation and display of a virtual environment

at interactive frame rates. It is significant in real time game environment. Even with

the use of powerful graphics workstations, a moderately complex virtual

environment can involve a vast amount of computation, inducing a noticeable lag

into the system. This lag can detrimentally affect the visual effect and may therefore

severely compromise the diffusion of the quality of graphics application.

Therefore, a lot of techniques have been proposed to overcome the delay of

the display. It includes motion prediction, fixed update rate, visibility culling,

frameless rendering, Galilean antialiasing, level of detail, world subdivision or even

employing parallelism. Researches have been done and recovered that the fixed

update rates and level of detail technique are the only solutions which enable the

application program balances the load of the system in real-time (Reddy, 1997). Of

these solutions, concentration is focused on the notion of level of detail.

Since the mid nineteen-seventies, programmers have used Level of Detail

(LOD) management to improve the performance and quality of their graphics

systems. The LOD approach involves maintaining a set of representations of each

polygonal object, each with varying levels of triangle resolution. During the

 2

execution of the animation, object deemed to be less important is displayed with a

low-resolution representation. Where as object of higher importance is displayed

with higher level of triangle resolution.

The drastic growth in scanning technology and high realism computer

simulation complexity has lead to the increase of dataset size. Only super computer

or powerful graphics workstation are capable to handle these massive datasets. For

this reason, problem of dealing with meshes that are apparently larger than the

available main memory exists. Data, which has hundreds, million of polygons are

impossible to fit in any available main memory in desktop personal computer.

Because of this memory shortage, conventional simplification methods, which

typically require reading and storing the entire model in main memory, cannot be

used anymore. Hence, out-of-core approaches are gaining its attention widely.

As commonly known, graphics applications always desire high realism scene

yet smooth scene rendering. Smooth rendering can be achieved by reducing the

number of polygons to a suitable level of detail using the simplification technique. It

saves milliseconds of execution time that help to improve performance. However, in

order to obtain a nice simplified mesh, surface attributes other than geometry

information are essential to be preserved as well. Eye catching surface appearance

certainly will increase the beauty of the scene effectively.

1.2 Background Research

Traditionally, polygonal models have been used in computer graphics

extensively. Till this moment, large variety of applications is using this fundamental

primitive to represent three dimensional objects. Besides, many graphics hardware

and software rendering systems support this data structure. In addition, all virtual

environment systems employ polygon renderers as their graphics engine.

In reality, many computational demanding systems desire smooth rendering

of these polygonal meshes. To optimize the speed and quality of graphics rendering,

 3

level of details has been used widely to reduce the complexity of the polygonal mesh

using level of detail technique. In short, a process which takes an original polygon

description of a three dimensional object and creates another such description,

retaining the general shape and appearance of the original model, but containing

fewer polygons.

Recent advances in scanning technology, simulation complexity and storage

capacity have lead to an explosion in the availability and complexity of polygonal

models, which often consist of millions of polygons. Because of the memory

shortage in dealing with meshes that are significantly larger than available main

memory, conventional methods, which typically require reading and storing the

entire model in main memory during simplification process, cannot solve the

dilemma anymore. Thus, out-of-core approaches are introduced consequently.

Out-of-core algorithms are also known as external algorithms or secondary

memory algorithms. Out-of-core algorithms keep the bulk of the data on disk, and

keep in main memory (or so called in-core) only the part of the data that’s being

processed. Lindstrom (Lindstrom, 2000a) is the pioneer in out-of-core simplification

field. He created a simplification method; called OoCS which is independent of

input mesh size. However, the output size of the mesh must be smaller than the

available main memory. Later on, other researchers carried out similar approaches.

Especially in out-of-core simplification, a large number of research have been

done on level of detail’s construction and management for use in interactive graphics

applications, mostly in medical visualization, flight simulators, terrain visualization

systems, computer aided design and computer games. For instance, simplification is

used broadly in medical and scientific visualization. It always involves a lot of

processing on high resolution three dimensional data sets. The data is mainly

produced by those high technology scanners, such as CT or MRI scanners. The

simplification process may need to extract volumetric data at different density levels.

If the accuracy is not that critical, one may only process on its isosurfaces. Anyhow,

these data simplification require a lot of processing time and it is mainly run daily on

supercomputers worldwide.

 4

Graphics applications, which demand high accuracy in simplification

development is critical. It is essential to maintain the high quality and good frame

rates at the same time. For example, medical visualization and terrain visualization

is crucial in maintaining a good visual fidelity. Anyway, in many real time systems,

the quality of data visualization has to be degraded in order to retain superior

rendering time. For instance, an excellent frame rate is vital in game environment

without doubt. Thus, the quality of simplified model has to be sacrificed sometimes.

Rendering the large models at interactive frame rates is essential in many

areas, includes entertainment, training, simulation and urban planning. Out-of-core

techniques are required to display large models at interactive frame rates using low

memory machines. Hence, it needs new solution or further improvement such as

prefetching, geomorphing, appearance preservation, parallelization, visibility pre-

computing, geometry caching, image-based rendering, and etc.

To avoid the last minute data fetching when needed, prefetching, visibility

pre-computing and geometry caching are imperative. Although the changes from

frame to frame are regularly small, however, they are occasionally large, so,

prefetching technique is needed. This technique predicts or speculates which part of

the model are likely to become visible in the next few frames then prefetch them

from disk ahead of time. Correa et al. (2002) showed that prefetching can be based

on from-point visibility algorithms. Visibility can be pre-computed using from-

region visibility or from-point visibility. Whilst geometry caching exploits the

coherence between frames, thus keeping geometry cache in main memory and update

the cache as the viewing parameters changes.

Above and beyond, parallelization and image-based rendering enhance the

frame rates as well. Parallelization (Correa et al., 2002) uses a few processors to run

different tasks at the same time. Or, it can make use of multithreading concept in a

single-processor machine too. On the other hand, image-based rendering techniques

(Wilson and Monacha, 2003) such as texture-mapped impostors can be used to

accelerate the rendering process. These texture-mapped impostors are generated

either in a preprocessing step or at runtime (but not every frame). These techniques

are suitable for outdoor models.

 5

The geomorphing and surface preserving are potential in pleasant scene

rendering. An unfortunate side effect of rendering with dynamic levels of detail is

the sudden visual ‘pop’ that occurs when triangles are inserted or removed from the

mesh. Geomorphing allows smooth transitions between the approximations

(Levenberg, 20002; Erikson, 2000; Hoppe, 1998a). In virtual environments or three

dimensional game engines, the surface attributes play an important role to make the

object looks attractive. Therefore, these surface attributes like colors and textures

should be maintained after simplification process.

1.3 Motivations

Why do we care about visualization of large datasets? Due to the advances in

scanning technology and complexity of computer simulation, the size of the datasets

grows rapidly these years. The data is vital because it has application in many areas,

such as computer design and engineering, visualization of medical data, modeling

and simulation of weapons, exploration of oil and gas, virtual training and many

more.

These massive data can only be rendered on high end computer system. If it

is needed to run on personal computer, it may be an impossible mission, or even it

can, the output is jagged or ungraceful. Therefore, to run it on expensive high end

graphics machine, it is very cost ineffective and not user friendly. There is a need to

display the data in low cost PC with high quality output.

Surface attributes, for example, normal, curvature, color and texture values

are important to make the rendered objects looks attractive. It can increase the

realism of a virtual environment. It shows the details of an object, such as its

illumination, lighting effect and material attributes. Without it, the rendered scene

will become dull and bored.

 6

1.4 Problem Statement

The datasets are getting enormous in size. However, even the well

implemented in-core methods no more able to simplify these massive datasets. This

is mainly because in-core approach loads the whole full resolution mesh into main

memory during simplification process. Besides, we cannot keep relying on high end

graphics machine as it is expensive and not everyone has the chance to use it.

Therefore, when the datasets bigger than the main memory, the datasets cannot be

simplified.

Geometry aspects like vertex position always retained after simplification

process whether in in-core simplification or out-of-core simplification. However,

work in preserving the surface appearance, e.g. surface normal, curvature and color

or even texture attributes in the original mesh is not common in out-of-core

simplification approach. The lost surface attributes will greatly reduce the realism of

virtual environment.

1.5 Purpose

To render the massive datasets in 3D real-time environment and preserve its

surface appearance during simplification process using commodity personal

computer.

1.6 Objectives

1. To develop an out-of-core simplification technique.

2. To preserve the surface attributes on the out-of-core model based on

error metrics.

 7

1.7 Research Scope

a) Only triangular polygonal mesh is considered, other data

representation is not investigated here.

b) The simplification is for only static polygonal objects, dynamic object

is not covered here.

c) Only vertex positions, normals, colors and texture coordinates are

preserved after simplification process.

d) Application is run on commodity personal computer. Commodity in

this content means low cost PC with not more than 2GB RAM and not

any kind of SGI machine.

e) Graphics card of the PC is assumed capable in handling real time

rendering.

f) Only simple level of detail management system is applied by using

distance criterion.

g) Secondary memory used here is the hard disk, other secondary

memory devices are not investigated its cons and pros.

h) The size of the datasets mustn’t larger than the size of secondary

memory owned by the machine.

i) No other enhancement techniques such as geomorphing, prefetching,

caching, parallelization and no disk usage reduction are investigated.

CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

Mesh simplification reduces storage requirements and computational

complexity. For these reason, the scene rendering frame rate also becomes faster. In

order to make the simplification suits into real time application, there are a few

processes to go through. First, determine the level of detail framework to be used.

Each LOD framework has its cons and pros. It is chosen based on application needs.

Next, work on level of detail management to choose suitable or appropriate selection

criteria. Then, to generate each level of detail for an object, simplification method is

taken into account. For sure, metrics for simplification and quality evaluation is

required as well.

The large datasets cannot be simplified using the ordinary in-core

simplification methods as discussed before. It is inadequate. The large dataset

simplification needs more mechanisms to make it run able in real time on low cost

personal computer. First of all, the large dataset need to be loaded into system using

external memory algorithm. Then, then data shall be organized into suitable

structure, which facilitate and accelerate the real time rendering. Last but not least, it

has to be simplified using out-of-core simplification algorithm.

Here, the essential algorithms in making out-of-core simplification success in

graphics application are discussed in a few sections. In Section 2.2, the level of

 9

detail framework is discussed. Following it, Section 2.3 shows the level of detail

management implemented so far. Then, researches that had been done in simplifying

object are explained in Section 2.4. Next, the error metrics for simplification and

evaluation are revealed in Section 2.5. Then, external memory management (Section

2.6) and out-of-core approaches (Section 2.7) are carried out. Later on, several

comparisons carried out to differentiate all of the existing techniques (Section 2.8).

Next, the appearance preservation is discussed in Section 2.9. Last but not least, this

work is concluded in last section.

2.2 Level of Detail Framework

Currently, there are three different kinds of LOD framework, which are

discrete LOD, continuous LOD and view-dependent LOD. Discrete LOD is the

traditional approach, which is being used since 1976. Continuous LOD was

developed in year 1996, while view-dependent LOD was created in the following

year.

2.2.1 Discrete Level of Detail

Discrete level of detail creates several discrete versions of the object during a

pre-process time. During run-time, it picks the most appropriate level of detail to

represent the object according to some particular selection criteria. Many works

select the appropriate level of detail using the distance aspect (Funkhouser and

Sequin, 1993; Garland and Heckbert, 1997; Erikson et al., 2001). Since levels of

detail are created offline at fixed resolutions, so it is called discrete level of detail or

static polygonal simplification.

Discrete level of detail has its advantages and disadvantages. The most

significant advantage is it is the simplest model to be programmed. Simply, the level

of detail creation does not encounter any real-time constraints, as it is computed

 10

offline. It imposes very little overhead during run-time process. Secondly, it fits the

modern graphics hardware well. It is easily to compile each level of detail into

triangle strips, display list, vertex array and so on. Hence, it may accelerate the

rendering process compared to unorganized list of polygons.

Even the implementation of discrete LOD is straightforward, popping

artifacts may occur during level of detail switching. Besides, it is unsuitable for

large datasets simplification if the whole simplified mesh is loaded during run-time

without taking any viewing aspect into consideration.

2.2.2 Continuous Level of Detail

Continuous LOD is a departure from the traditional discrete approach.

Discrete LOD creates individual levels of detail in a pre-process. Contrast to this,

continuous LOD creates data structure, which enables desired level of detail can be

extracted during run time.

Continuous LOD has better fidelity. The level of detail is specified exactly,

not chosen from a few pre-created options. Thus objects use no more unnecessary

polygons, which free up polygons for other objects. Therefore, it has better resource

utilization and leads to better overall fidelity. By using continuous LOD, transition

between approximations is smoother (Lindstrom et al., 1996; Xia et al., 1997; El-

Sana and Varshney, 1998). This is because continuous LOD can adjust detail

gradually and incrementally, subsequently reduces visual pops. To further eliminate

visual pops, geomorphing technique can be applied. Additionally, it supports

progressive transmission (Hoppe, 1996). However, it is inappropriate to use it in

real-time massive data simplification.

 11

2.2.3 View-Dependent Level of Detail

View-dependent LOD uses current view parameters to select best

representation for the current view. A single object may span several levels of detail.

It is a selective refinement of continuous LOD. It shows nearby portions of object at

higher resolution than distant portions (Hoppe, 1997; Luebke and Erikson, 1997; El-

Sana and Varshney, 1999, Lindstrom, 2003b). Silhouette regions of an object may

appear at a higher resolution than interior regions. View-dependent LOD can also

take into account the user peripheral vision.

View-dependent LOD has better granularity than continuous LOD do. This

is because it allocates polygons where they are most needed, within as well as among

objects. For instance, one may consider a situation where only a part of object is

near to viewer whilst the rest are not. If discrete LOD or continuous LOD is used,

one may either use the high detail mesh or low detail mesh. It is rather unpractical as

using the high detail mesh creates the unacceptable frame rates and the low detail

mesh creates terrible fidelity.

The obvious disadvantage of view-dependent LOD is the increased loading

time in choosing and extracting the appropriate LOD. If the system is run in real-

time or CPU bound, this extra work will decrease the frame rate and subsequently

induce lag artifacts.

2.3 Level of Detail Management

Level of detail management is an important process to choose the best level

of detail for the object representation in different conditions. In deciding the most

appropriate level of detail, different criteria have been developed to optimize the

level of detail selection.

Traditionally, the system assigns levels of detail in a range of distances

(Kemeny, 1993; Vince, 1993, Chrislip and Ehlert Jr., 1995, Carey and Bell, 1997).

 12

Basically a corresponding level of detail is applied based on the object’s distance to

the user viewpoint. It may create visual ‘pop’ and does not maintain constant frame

rate. The correct switching distance may vary with field of view, resolution and etc.

However, it is extremely simple to understand and to implement.

A more sophisticated level of detail management is required to enhance the

level of detail selection. Here, other implemented levels of detail selection

techniques are encapsulated as below:

a) Size

An object’s LOD is based upon its pixel size on the display device. It can

overcome the weakness of distance selection criterion (Wernecke, 1993).

b) Eccentricity

An object’s LOD is based upon the degree to which it exists in the periphery

of the display (Funkhouser and Sequin, 1993; Ohshima et al., 1996; Reddy,

1995; Watson et al., 1995). It is generally assumed that the user will be

looking towards the centre of the display if suitable eye tracking system is

absent. Thus, objects are degraded in relation to their displacement from this

point.

c) Velocity

An object’s LOD is based upon its velocity relative to the user, e.g. its

velocity across the display device or the user’s retina (Ohshima et al., 1996;

Funkhouser and Sequin, 1993). Funkhouser and Sequin (1993) acknowledge

that the objects moving quickly across the screen appear blurred, or can be

seen only for only a short period of time, and hence the user may not be able

to see them clearly.

However, different idea comes from Brown et al. (2003a), which is visual

importance-biased image synthesis animation. He extends the ideas by

incorporating temporal changes into the models and techniques developed.

This research indicates that motion is a strong attractor of visual attention. It

also shows that high correlation of points between viewers when observing

 13

images containing movement. This is probably point to slow moving object

but not a fast moving object.

d) Fixed Frame Rate

Distinct from others, fixed frame rate concerns computational optimization

rather than perceptual optimization. An object’s LOD is modulated in order

to achieve a prescribed update rate. The refresh of screen must be in certain

speed even sometimes the realism of scene has to be sacrificed.

Time-critical rendering ensures guaranteed frame rates even on scenes with

very high complexity (Zach et al., 2002). This presented time-critical

rendering approach that combines discrete and continuous LOD selection and

demonstrated its benefits in a terrain flyover application. The rendering

process of every frame has to meet strict timing constraints to attain the best

visual quality with the available rendering time.

e) Human Eyes Limitation

Resolution of element depends upon the depth of field focus of the user’s

eyes. For example, objects out with the fusional area appear in lower detail.

Highest sensitivity to spatial detail at fovea, other area is less sensitive.

Another weakness of human eye is saccade. A saccade is a rapid reflex

movement of the eye to fixate a target onto the fovea. Human do not appear

to perceive detail during saccade.

Change Blindness (Cater et al., 2003), a major side effect of brief visual

disruptions, including an eye saccade, a flicker or a blink, where portions of

the scene that have changed simultaneously with the visual disruption go

unnoticed to the viewer. Without automatic control, attention is controlled

entirely by slower, highly-level mechanisms in the visual system, that search

the scene, object by object, until attention finally focuses on the object that is

changing. Once attention has latched onto the appropriate object, the change

is easy to see, but this occurs only after exhaustive serial inspection of the

scene.

 14

There are two major influences on human visual attention: bottom-up and

top-down processing. Bottom-up processing is the automatic direction of

gaze to lively or colourful objects as determined by low-level vision. In

contrast, top-down processing is consciously directed attention in the pursuit

of predetermined goals or tasks. This technique demonstrated the principle of

Inattentional Blindness (Cater, 2002), a major side effect of top-down

processing, where portions of the scene that unrelated to the specified task are

unnoticed.

f) Environment Conditions

Slacken level of detail thresholds through the use of fog, haze, clouds, smoke,

and etc. This is because these effects make the scene blur and hard to

perceive the actual detail.

g) Attention-Directed

This concept works out on where the user is likely to be looking at by using

models of visual attention. Or, control where the user looks through the

dramatic content of your scenes.

Visual attention-based technique allocates polygons to objects in a scene

according their visual importance (Brown et al., 2003b). Every object is

assigned an object importance value by considering the size, position, motion

and luminance of the object. Then, a suitable level of detail will be taken for

each object.

h) Shader LOD

Procedural shaders can adjust their detail as well. For example, convert

bump map to texture map, texture map or noise function to single color, multi

textures to one texture or using BRDF approximations.

 15

2.4 Level of Detail Generation

Automatic generation of various levels of detail is essential. Without this

ability, multiresolution of meshes have to be generated manually. Such activity

would be a tedious and laborious process. Hence, a variety of level of detail

generation techniques has been proposed and generally known (Figure 2.1).

Figure 2.1 Level of detail generation classification

The most widespread methodologies in surface simplification are refinement

and decimation. Refinement algorithm begins with an initial coarse approximation

and adds details in each step. Essentially the opposition of refinement, decimation

algorithm begins with the original surface and iteratively removes details at each step.

Both refinement and decimation derive an approximation through a transformation

from initial surface. Many algorithms have been developed in both approaches.

However, decimation algorithm seems to have a more vital role in memory

management.

Decimation simplification can either be polygonal simplification or non-

polygonal simplification. Non-polygonal simplification includes parametric spline

surface simplification, simplification of volumetric models and also image based

simplification. For an example, Alliez and Schmitt (1999) minimize a volume using

LOD Generation

Refinement Decimation

Non-Polygonal
Simplification

Polygonal
Simplification

Geometry
Simplification

Topology
Simplification

 16

the gradient-based optimization algorithm and finite-element interpolation model.

Nooruddin and Turk (2003) also use voxel-based method with 3D morphological

operators in their simplification. Practically, mostly all virtual environment systems

employ polygon renderer as their graphics engine. Therefore, it is common to

convert any other model types into polygonal surfaces before rendering. Hence, the

polygonal model is ubiquitous. Pragmatically, the focus falls on polygonal model.

Polygon simplification can be categorized into geometry simplification and

topology simplification. Geometric simplification reduces the number of geometric

primitives such as vertices, edges, and triangles. Meanwhile, topology simplification

deducts the number of holes, tunnels and cavities. Simplification that changes the

geometry and topology of the original mesh is called aggressive simplification.

Another idea from Erikson (1996) is that polygonal simplification can be separated

into geometry removal (decimation), sampling and adaptive subdivision (refinement).

Sampling is an algorithm that samples a model’s geometry and then attempts to

generate a simplified model that closely fits the sampled data.

2.4.1 Geometry Simplification

2.4.1.1 Vertex Clustering

The initial vertex clustering approach, proposed by Rossignac and Borrel

(1993), is performed by building uniform grid of rectilinear cells, and then merging

all the vertices within a cell, also can be call a cluster to a representative vertex for

the cell. All the triangles and edges that stay completely in a cell are collapsed to a

single point. Consequently, all these triangles and edges are discarded. Here by, the

simplified mesh is generated.

The quality of vertex clustering could be improved by using some simple

heuristics in finding the optimal vertex. Other than the work of Rossignac and Borrel

(1993), Low and Tan (1997) proposed a slight variation on this heuristic motivated

by a more thorough geometric reasoning. Their contribution is the making use of

 17

“floating cell”. This floating cell algorithm dynamically picks the most important

vertex as the center of a new cell, thus the quality is better.

Regularly, vertex clustering technique is fast and simple to implement. By

recursively merging the clusters, the supercluster can be created. At the same time, it

can be organized in a tree-like manner, allowing selective refinement of view-

dependent simplification.

2.4.1.2 Face Clustering

Face clustering is similar to vertex clustering as both also group a number of

vertices into a cluster. However, face clustering is less popular than vertex clustering.

The algorithm starts by partitioning the original faces into superface patches (Kalvin

and Taylor, 1996). Then, the interior vertices in each cluster are removed, and the

cluster boundaries are simplified. In a final phase, the resulting non-planar

superclusters are triangulated, thus creates a simplified model.

Garland (1999) creates multiple levels of detail for radiositized models by

simplifying them in regions of near constant color. He uses the quadric error metric

in simplifying the mesh’s dual graph.

Simplified mesh generated by face clustering has poorer quality compared to

other operators. It is because the choice in choosing a right region to be a superface

is already a tiresome and difficult work. Therefore, it is hard to create clusters that

collectively provide an optimal partitioning to retain the important features. Some

more, the geometry of the mesh is rarely optimized.

 18

2.4.1.3 Vertex Removal

Vertex removal method iteratively keeps taking away a vertex in each time,

and its incident triangles are removed. In doing it, holes may be created and thus

triangulation is needed. Perhaps this is one of the most natural approaches. The first

vertex removal method was foremost introduced by Schroeder et al. (1992). They

remove the vertex based on the distance between the vertex and the plane by fitting a

plane to the vertices surrounding the vertex being considered for removal. Vertices

in high curvature regions have the higher priority to be retained compared to the

vertices in flatter regions during simplification process. This is because eliminating

the vertex in high curvature regions induces more error.

Same like Schroeder et al. do, other works also make use of the error metrics.

Simplification envelops (Cohen et al., 1996) algorithm removes the vertices

randomly as long as the simplified surface lies within the envelopes. It is ensuring

the simplified mesh stays within a specified deviation from the original mesh. Klein

et al. (1996) also coarsen the model using vertex removal technique with maximum

error bounds guaranty.

Figure 2.2 Local simplification operations (Lindstrom, 2003a)

 19

2.4.1.4 Edge Collapse

Edge collapse is the most popular simplification operator, invented by Hoppe

et al. (1993). This operator collapses an edge to a single vertex, continuously

deleting the collapsed edge and its incident triangles. It is similar to vertex removal

as it takes away a vertex at a time, yet, the choice of the vertex to be taken away is

different. Also unlike vertex removal, no triangulation action is required because the

resulting connectivity is uniquely defined

Progressive mesh (Hoppe, 1996) is the most famous work in existing edge

collapse algorithms. A coarse mesh is keep adding details into it, explicitly, keep

refining the mesh until a desired level of refined mesh is produced. It is done by

performing the vertex split actions on the original mesh. This algorithm is wholly

beneficial as the original coarser mesh can be obtained back by using the information

used in vertex splitting process.

Edge collapse algorithm need to choose the order of edges to be collapse and

also the optimal vertex to replace the discarded edge. Generally, these decisions are

made by specifying an error metrics that depends on the positions of the substitute

vertex. The sequence of the edges collapses usually is ordered from the cheapest to

the most expensive action. In choosing the right replacement vertex, the lowest error

metrics is used. Anyway, there are other factors may involve in these processes,

including topological constraints, geometry constraints and handling of degenerate

cases.

An identical edge collapse algorithm from Ronfard and Rossignac (1996)

determine the edge collapsing sequence based on the maximum distance from the

new optimal vertex to its supporting planes. A variation of this work, Garland and

Heckbert (1997) perform the edge collapses by minimizing aggregate quadric error

metrics, which is the sum of squared distances to the supporting planes. Whenever

an edge is collapsed, the new vertex inherits the sum of quadric matrices of the

edge’s vertices.

 20

Haibin and Quiqi (2000) present a simple, fast and effective polygon

reduction algorithm based on edge collapse by utilizing the “minimal cost” method

to create multiresolution in real time 3D virtual environment development. Franc

and Skala (2001) propose the parallel triangular mesh decimation using the edge

contraction. The system is fast even sorting is not implemented. Its strength is

proved according to the number of processors and the data size they used for testing.

Lindstrom and Turk (1998) create memoryless simplification using edge

collapse, where geometric history in simplification is not retained. Then, the work

was evaluated by Lindstrom and Turk (1999). Besides, memoryless polygonal

simplification (Sourthen et al., 2001) applies vertex split operations in their level of

detail generation.

Danovaro et al. (2002) compare two types of multiresolution representation:

one is tetrahedron bisection (HT) and another one is based on vertex split (MT).

Their work shows that HT can only deal with structured datasets whilst MT can work

on unstructured and structured mesh. At the same time, based on their experiments,

HT is more economic and the extracted mesh is lower in size.

An easier edge collapse method, commonly referred as half-edge collapse

reduces an edge to one of its vertices. Hence, it generally produces in lower quality

meshes than formal edge collapse since it allows no freedom in optimizing the mesh

geometry. Anyway, as it allows the geometry to be fixed up-front, therefore it

enables the polygon transferring and caching on the graphics card done efficiently.

Besides, it is good in doing the view-dependent dynamic level of detail management.

In addition, it is more concise and faster compared to edge collapse. This makes it

suitable for progressive compression.

Another potential coarsening operation is called triangle collapse, which

merges the three vertices of a triangle to an optimal vertex. It was used by Hamann

(1994) and Gieng et al. (1997) for simplification. Since this operation is equivalent

to perform two consecutive edge collapses, thus it also requires optimization of the

substitute vertex. It has little bit faster computational time than the general edge

collapse.

 21

2.4.1.5 Vertex Pair Contraction

Vertex pair contraction is a variation of edge collapse that merges any pair of

vertices from a virtual edge. There’s possibility to merge disconnected components

of a model by allowing topologically disjoint vertices to be collapsed. Not every pair

of vertices can be collapsed, basically the subsets of pairs, which are spatially close

to each other, are considered. Different strategies have been introduced and the

selection of the virtual edge is usually orthogonal to the simplification method itself,

including Delaunay edges (1997) and static thresholding (1997).

The work of Erikson and Manocha (1999) is the most notable for its dynamic

selection of virtual edges, which allows increasingly larger gaps between pieces of a

model to be merged. According to the work of Garland and Heckbert (1997), the

vertex pair contraction can be generalized to a single atomic merge of any number of

vertices. Thus, vertex pair contraction is considered the primitive generation of the

edge collapse and vertex clustering simplification method.

2.4.2 Topology Simplification

Topology refers to the connected polygonal mesh’s structure. Whilst, local

topology of a primitive such as a vertex, edge or face is the connectivity of the

primitive to their immediate neighborhood. If the local topology of a mesh is

everywhere equivalent to a disc, then it is known as 2D manifold mesh.

Research on simplifying the topology of models with complex topological

structure is gaining its attention. For large models with a large number of connected

components and holes, such as mechanical part assemblies and large structures such

as a building, it may need to merge the geometrically close pieces into larger

individual pieces to allow further simplification (Erikson, 2000).

During topology simplification, it has to determine whether the manifold of

mesh is required to be preserved or else. Topology preserving algorithm does not

 22

close the holes in a mesh and hence the simplification is limited. Opposite to it,

topology modifying algorithm aggregates separate components into assemblies, thus

allows drastic simplification.

By default, the vertex pair contraction and vertex clustering are the

simplification operators that modify the topology of models. These operators are not

purposely designed to do so, but it is a byproduct of the geometry coarsening process.

Anyway, these operators may introduce non-manifold mesh after simplification takes

place.

Schroeder (1997) keeps on coarsening the mesh using vertex splits when the

half edge collapse is limited during the manifold preserving coarsening process.

However, only limited topological simplification is allowed, for example,

disconnected parts cannot be merged. The method proposed by El-Sana and

Varshney (1997) is able to detect and remove small holes or bumps.

Nooruddin and Turk (2003) implement a new topology-altering

simplification, which able to handle holes, double walls and intersecting parts.

Meanwhile, their work preserves the surface attributes and manifold of mesh at the

same time. Liu et al. (2003) present a manifold-guaranteed out-of-core

simplification of large meshes with controlled topological type by utilizes a set of

Hermite data as an intermediate model representation. The topological controls

include manifoldness of the simplified meshes, toleration of non-manifold mesh data

input, topological noise removal, topological type control and sharp features and

boundary preservation.

In many real-time applications, surface’s manifoldness is less important.

Hence, the vertex pair contraction and its derivatives are sufficient for topology

simplification and it is significantly simpler to implement. Anyway, topology should

be preserved well if the visual fidelity is crucial.

 23

2.5 Metrics for Simplification and Quality Evaluation

Geometric error metrics is a measurement of geometric deviation between

two surfaces during simplification. Because of the simplified mesh is rarely identical

to the original, therefore metrics is used to check how similar the two models are.

For graphics applications that produce raster image or the visual quality of the model

is highly important, thus the image metric is more suitable at this moment.

2.5.1 Geometry-Based Metrics

Besides evaluating the quality of the simplified mesh, metrics is determining

the way of simplification works. This mathematical definition of metrics is

responsible in calculating the representative vertex and also determining the order of

the coarsening operations. Anyway, each metrics has different ways in choosing its

best manner for object simplification. On the other hand, the quality of the metrics is

hardly to be evaluated in a precise way.

Typically simplification algorithms are using different kinds of metrics.

Though, many of them are inspired by the well-known symmetric Hausdorff distance.

This metric is defined using the Euclidean distance, which uses the shortest distance

between a point and a set of points. In next sections, the well known metrics will be

given away.

2.5.1.1 Quadric Error Metrics

The mathematical computation in metrics generation is usually reduced its

complexity in order to make the simplification faster. There are many ways in

calculating error metrics. For metrics based on maximum error, they are more

conservative and fast. Meanwhile, the mean error metric is done locally on a small

portion of the surface (Hoppe et al., 1993).

 24

Quadric error metrics (Garland and Heckbert, 1997) is based on weighted

sums of squared distances. The distances are measured with respect to a collection

of triangle planes associated with each vertex. This algorithm proceeds by iteratively

merging pairs of vertices, which need not to be connected edge. Its major

contribution is a new way to represent error using a sequence of vertex merge

operations.

Quadric error metrics efficiently represents the metrics by using matrix.

Anyhow, it only supports wholly geometry simplification. Garland and Heckbert

(1998) extends the metrics to more than four dimensions to support surface attributes

preservation other than geometry information. The matrix’s dimension is based on

how many attributes does a vertex own. It is particularly robust and fast. Besides, it

produces good fidelity mesh even for drastic polygon reduction.

Quadric error metrics is fast, simple and guide simplification with minor

storage costs. The visual fidelity is relatively high at the same time. In addition, it

does not require manifold topology. That is, it allows drastic simplification as it lets

holes to be closed and components to be merged.

2.5.1.2 Vertex-Vertex vs Vertex-Plane vs Vertex-Surface vs Surface-Surface

Distance

Vertex-vertex distance measures the maximum distance traveled by merging

vertices. While vertex-plane distance stores set of planes with each vertex, then

errors are calculated based on distance from vertex to plane. Similarly, vertex-

surface distance is distance between vertex and surface. It maps point set to closest

points to simplified surface. Maximum distance between input and simplified

surfaces is used to measure surface-surface distance.

 25

2.5.2 Attribute Error Metrics

Quality evaluation can be done on image instead of model’s geometry.

Image metrics have been adopted in a number of different graphics applications.

Therefore, the quality of the simplified mesh can be measured by evaluating the

difference before and after the simplification happens. Some image metrics are quite

simple. Probably the traditional metrics for comparing images is the Lp pixel-wise

norm. Nonetheless, recently there are quite a number of researches focus on

humans’ psychology and vision to develop the computational models. In doing it,

image processing and human visual perception is exploited.

Image processing techniques such as Fourier transform (Rushmeier et al.,

1995) or wavelet transforms (Jacobs et al., 1995) can be used for this purpose.

Besides, contrast sensitivity function also can be employed to guide the

simplification process. It measures contrast and spatial frequency of changes induces

by operation.

Human visual perception is utilized by Watson et al. (2000) by conducting a

survey on the human’s ability in identifying simplified models using different

metrics. The durations of time spent to distinguish the different between the images

for different metrics are analyzed. The results show that image metrics generally

performed somewhat better than the geometry-based metrics used by Metro.

Nevertheless, its robustness is uncertain.

2.6 External Memory Algorithms

The external memory algorithms are required in handling the data, which

larger than the main memory. Because of the main memory cannot fit all the data,

thus there is an external memory dilemma. As the speed of the data set is growing

much faster than the RAM size. Therefore, these algorithms are essential to make

the massive data sets loadable and run able in graphics applications. The initial work

of external memory is proposed by Aggarwal and Vitter (1988). Later on, some

 26

other fundamental paradigms for external memory algorithms are introduced. Until

now, researches on external memory are continuous and never end.

There are two fundamental external memory concepts used in visualization

and graphics applications, including batch computation and on-line computation.

Batch computation has no preprocessing process and the whole set of data is

processed. The way to make the data loadable is stream in the data in a few passes.

Thus, only the portion of the data, which is smaller than the workstation’s memory,

is filled at one time and processed. Whilst on-line computation conducts preprocess

to organize the data into a more manageable data structure in advance. This

preprocess actually is a batch computation. Therefore, during runtime, only the

needed portion of data is read into main memory by performing query on the well

built data structure.

To accelerate the graphics rendering, geometry caching or prefetching

techniques can be combined with the explained paradigms. It avoids the last minute

data retrieval when the part of the data required to be displayed on screen. Else, it

may slow down the rendering process as it needs to find the right portion of data

from the data structure and then throw the required data to graphics card. Hence, if

the part of the data, which is possible visible in the next frame is predicted, and put

into cache first, consequently rendering will be speeded up.

In following section, discussion on computational model (Aggarwal and

Vitter, 1988) is carried out. Then, batched computations, including external merge

sort (Aggarwal and Vitter, 1988), out-of-core pointer de-referencing (Chiang and

Silva, 1997), and the meta-cell technique (Chiang et al., 1998) are discussed. Next,

on-line computation (Bayer and McCeight, 1972; Comer, 1979) is investigated too.

 27

2.6.1 Computational Model

Disk access is two times longer than main memory access (Aggarwal and

Vitter, 1988). In order to optimize the disk accessing time, a large block of

contiguous data is loaded in one time. In handling large data sets, the size of input

data (N) and the available main memory size (M) have to be found out.

Continuously, the size of the data item (B) has to be determined. It is the size of

memory used for every pass of data reading or data processing.

The performance of external memory algorithms is based on the total of the

I/O operations (Aggarwal and Vitter, 1988). This I/O complexity is calculated by

dividing the size of input data by size of the data item (N/B). The data size of

scanned data may be reaching a few hundreds million of triangles. For instance,

LLNL isosurface datasets used in work of Correa (2003) is 473 million triangles.

2.6.2 Batched Computations

2.6.2.1 External Merge Sort

Sorting is the primary practice in large data management. This is because

sorting eliminates the need of randomly searching on a wanted value lies in the large

dataset. External merge sort is a k-way merge sort, that is, k is M/B. k is the

maximum number of disk block that can fit in main memory. The data is required to

be loaded into main memory portion by portion in its contiguous place.

K-way merge sort has to load the whole data set with size N. If the current

list L to be read is small enough to fit into main memory, then the data can be read

into system in one time then sort it and put it back into its contiguous place. Else, L

list is required to be spilt into k sub-lists, where each of them is equal in size. Then

for each sub-list, the sorting is performed. There are lots of sorting algorithms

nowadays, including bubble sort, quick sort, selection sort, tag sort and etc. After all

the sub-lists are sorted, these sub-lists are merged.

 28

Basically, merging is made by comparing the values from different lists. For

example, like in two-way merge sort, two lists of data will be merged into a single

data list. These two lists are read from beginning, and then compare the first

elements from both lists. Whichever smaller element is put into output list and the

array pointer is incremented. Continue checking on the following elements in both

lists until all data elements are completely sorted.

A memory insensitive technique (Lindstrom, 2000a; Lindstrom and Silva,

2001) practically use the external merge rsort written by Linderman (2000) It is a

combination of radix and merge sort technique, which the keys are compare

lexicographically.

The way of the sorted k sub-lists of the entire data (N) to be merged in good

I/O complexity is important. These k sorted-lists are merged and output these sorted

items to disk in units of blocks. When the previous buffer finished its process, then

the next block of the corresponding sub-list is read into main memory to fill up the

allocated buffer. This process is repeated until all k sub-lists are merged successfully.

2.6.2.2 Out-of-Core Pointer Dereferencing

Usually data used in visualization or graphics applications is in indexed

format. The triangular indexed mesh has a list of vertex coordinates and a list of

triangles indices pointing to its relevant vertex coordinates. This data format is

compact and save memory space as every vertex value is only stored once.

Using indexed mesh needs full searching on the vertex list to find its

belonged vertices. If the data is small, then it is not noticeably memory inefficient.

However, probably the vertex list or the triangles’ indices or both of them are not fit

able in main memory. Hence, pointer dereferencing is essential to generate a triangle

soup instead of using the indexed mesh. Subsequently, it avoids the random accesses

on disk. Random access is a must avoided task because single vertex retrieval may

 29

need several block by block data readings (B) from the entire input data (N). It

would require (N) I/O’s in the worst case, which is extremely ineffective.

In order to make the massive data reading I/O efficient, thus the pointer

dereferencing is used to replace the triangle indices by its corresponding vertices.

Because of each triangle contains three vertices, so the pointer dereferencing also has

three passes. In first pass, sort the first vertex using external merge sort technique.

After all of the first vertices from triangle list are sorted, now the vertex list can be

read in sequence. Keep replacing the vertex 1 with first vertex from vertex list,

vertex 2 with second vertex from vertex list and so on. At that moment, all of the

first triangle indices are filled with its equivalent vertices. In the second pass, sort

the second vertices in the triangle list, and then dereference their equivalent vertices.

Same works are acted upon the third vertices. Finally, triangle soup mesh is

generated with every triangle indices are filled with its corresponding vertices.

This technique is applied in Lindstrom’s (2000b) first out-of-core data

simplification. Same with others’ opinion, his work also avoids random access by

using triangle soup mesh instead of indexed mesh. This data representation is two to

three times more space consuming, but typically increase simplification speed by a

factor of 15-20 (Lindstrom, 2000b). This process has also been used in (Chiang and

Silva, 1997; Chiang et al., 1998; El-Sana and Chiang, 2000; Lindstrom and Silva,

2001). These direct vertex information make the I/O complexity better.

2.6.2.3 The Meta-Cell Technique

The out-of-core pointer dereferencing technique is I/O efficient, but it is not

suitable for final data representation in real time applications. Additionally, the

vertices are duplicated quite many times. It causes the disk space overhead is bulky.

To optimize both disk access and disk-space requirement, Chiang et al. (1998)

proposed a technique called meta-cell technique. It is an I/O efficient partition

scheme for irregular mesh. This technique has been adopted in out-of-core

 30

isosurface extraction (Chiang et al., 1998; Chiang et al., 2001) and out-of-core

volume rendering (Farias and Silva, 2001).

Basically the meta-cell technique divides the data into cells, which are equal

in volume. Each meta-cell has own information and is normally loaded the whole

from disk to main memory. The cell data is in indexed representation, called index

cell set (ICS) by Chiang et al. (1998). This data representation contains a local

vertex list and a local cell list, which point to the local vertex list. Hence, the vertex

duplications are reduced compared to out-of-core pointer de-referencing technique.

Only the vertices that fall into two different meta-cells are kept twice. Anyway, the

more the meta-cells, the more the duplicated vertices it creates. However, it means

each meta-cell is more refined and contains less information. Subsequently, the disk

reading is faster. Therefore, there is always trade-off between query time and disk

space.

The meta-cell technique has been extended for view-dependent simplification

(El-Sana and Chiang, 2000). The meta-node tree is not only used in simplification

but also accelerate the run time data query. At the same time, they also employ some

additional features, such as prefetching, buffer management and also parallel

processing.

2.6.3 On-Line Computations

A more efficient data searching probably is the tree based data structures for

real time applications. The data in tree based data structures are well sorted and

queries can be done faster. For external memory usage, the most famous tree based

structure is the multiway B-tree by Bayer and McCreight (1972). Each end node

holds B items. The branching factor is defined as the number of children of each

internal node, except root node. This framework has been adopted in the works of

Edelsbrunner (1983), El-Sana and Chiang (2000) and El-Sana and Varshney (1999).

This algorithm is robust and capable to facilitate in many out-of-core visualization

and graphic domains.

 31

Tree based data structure significantly reduce the I/O complexity compared to

direct data searching on the external memory mesh. Usually binary tree or even

octree with branching factor two or eight can be used. Anyway, it still requires

accessing a certain number of items in order to get the demanded item. Therefore, it

is better to externalize the data structure to B-tree-like data structure. It can be done

by increasing the branching factor for the internal node. Automatically, the tree’s

height is decreased while the number of items in each node is increased. As a result,

it can trim down the data searching time.

2.7 Out-of-Core Approaches

One of the reason why out-of-core simplification approaches exist is the

majority of the previous methods for in-core simplification are ill-suited in out-of-

core setting. The prevailing approach to in-core simplification is to iteratively

perform a sequence of local mesh coarsening operations (Section 2.4.1) that locally

simplify the mesh by removing a primitive geometry at one time. The order of

operations performed relies on the error metrics they use, which discard a simplex

according to their visual importance. In any case, manipulating the order of

coarsening operations from lowest error to highest error impose a certain number of

memory and computational time.

In order to make the massive mesh able to be simplified, usually the mesh

need to be partitioned until it is suitable to be simplified in available main memory.

Therefore, it is common to group the mesh into clusters. Basically those triangles,

whose vertices belong to three different clusters, are remained during the

simplification process. Ideally the partitioning is done to minimize the given error

measurement and the representative vertex is chosen based on certain error metrics.

Most of the in-core methods use indexed mesh representation, where the

triangles are specified as indices and their corresponding vertices are referred. For

out-of-core simplification to be viable, random accesses must be avoided at all costs.

As a result, many out-of-core methods make use of a triangle soup mesh

 32

representation, where each triangle is represented independently as a triplet of vertex

coordinated. The triangle soup can be generated by using the previously discussed

external memory algorithms.

Varadhan and Manocha (2002) proposed an external memory algorithm for

fast display of large and complex geometric environment. This algorithm uses a

parallel approach to render the scene as well as fetch objects from the disk in a

synchronous manner. Besides, novel prioritized prefetching technique that takes into

account LOD switching and visibility-based events. Correa et al. (2002) also present

an out-of-core preprocessing algorithm, which uses multiple threads to overlap

rendering, visibility computation and disk operation. Besides, from-point

prefetching method is implemented. Crack prevention is introduced by Guthe et al.

(2003) by appropriately shades the cut using fat borders in their hierarchical levels of

details algorithm.

Borodin et al. (2003) also propose an out-of-core simplification with

guaranteed error tolerance. The algorithm consisted three processes, includes

memory insentive cutting, hierarchical simplification and memory insensitive

stitching. Vertex contraction is their simplification operator as they claimed it

produces better quality but slower computation time. Shaffer and Garland (2001)

also propose an adaptive simplification of massive meshes, which can generate

progressive transmission. It uses edge contraction in simplification process.

There are three distinct approaches to out-of-core simplification techniques:

spatial clustering, surface segmentation and streaming (Lindstrom, 2003b). For each

approach, uniform and adaptive partitioning will be distinguished.

2.7.1 Spatial Clustering

Clustering decisions is based on either connectivity or geometry of the mesh,

or both. Because of computing and maintaining the connectivity of a large mesh out-

of-core is difficult, perhaps the simplest approach is partitioning the vertices spatially.

 33

Determining cell containment performs vertex clustering. No topological constraints

are considered.

Spatial clustering’s main idea is to partition the space that the surface is

embedded into simple convex 3D regions. Next, merge the vertices in the same cell.

Because the mesh geometry is often specified in a Cartesian coordinate system, a

rectilinear grid gives the most straightforward space partitioning. It is similar to

vertex clustering algorithms (Section 2.4.1.1). Figure 2.3 illustrates the how the

spatial clustering works.

Figure 2.3 Spatial Clustering process (Lindstrom, 2003a)

Uniform spatial clustering is simplest partitioning, which partitions the space

into grid equally. It sparse the data structure represents occupied cells. By

minimizing the quadric error, the representative vertex can be calculated. The

triangles whose vertices fall in three different cells are kept at last. These processes

are practically done by Lindstrom (2000) in his out-of-core simplification (OOCS).

Later on, memory insensitive clustering (OOCSx) approach, which is independent on

simplified mesh’s size, is introduced (Lindstrom and Silva, 2001). It first scans the

triangles, and then computes the plane equation, saves the cluster ID and plane

equation for each vertex and saves the non-degenerated triangles to triangle file. Sort

plane equation file on cluster ID then compute cluster quadrics and output optimal

vertices. Then, re-indexing process take place to sort the triangle file, scan and

replace the cluster ID with vertex ID, repeat to every vertex field. This work is

extended to run-time view-dependent rendering by preserving some surface attributes

(Lindstrom, 2003c).

 34

For uneven triangles distributed mesh, where many triangles may fall in a

region whilst the other part may have very little number of triangles, it is impractical

to use the uniform clustering. It is because the uniform spatial clustering technique

doesn’t adapt to surface features nicely. It does not imply well-shaped clusters.

Besides, it may create many uneven or disconnected surface patches. On the other

hand, the fixed-resolution limits the maximum simplification. To overcome these

weaknesses, adaptive spatial clustering technique is proposed.

In adaptive clustering, the cell geometry is adapted to surface condition. For

example, uses smaller cells in detailed regions. Garland and Shaffer (2002) present a

BSP tree technique in space partitioning. Firstly, the quadrics on uniform grid are

accumulated. Secondly, the PCA of primal/dual quadrics is used to a suitable space

partitioning condition. In second pass, the mesh is reclustered. Fei et al. (2002)

propose an adaptive sampling scheme, called the balanced retriangulation (BT).

They use Garland’s quadric error matrix to analyze the global distribution of surface

details. Based on this analysis, a local retriangulation achieves adaptive sampling by

restoring detailed areas with cell split operation while further simplifying smooth

areas with edge collapse operations.

2.7.2 Surface Segmentation

Fundamentally, spatial clustering partitions the space that the surface lies in.

This method partitions the surface into patches so that they can be further processed

independent in-core. Then, every patch is simplified to a desired level of detail using

in-core simplification operator. For instance, one can simplify the triangles in the

patch using the edge collapse. After simplification, the patches are stitched back.

As in spatial clustering, surface segmentation could be uniform by

partitioning the surface over uniform grid, or adaptive by cutting the surface along

feature line. Figure 2.4 shows the diagram of process flow in surface segmentation

method.

 35

Figure 2.4 Block-based simplification using uniform surface segmentation and

edge collapse (Hoppe, 1998b)

Bernardini et al. (2002) propose a uniform surface segmentation algorithm

with constraints that the boundary intact to allow future merging. It is quite easy to

implement and have higher quality than spatial clustering simplification method. But,

it is two times slower than spatial clustering method. Additionally, the output of the

simplified mesh can’t span a few level of detail.

An adaptive surface segmentation algorithm is proposed, named OEMM

(Cignoni et al., 2003c). It uses octree-based external memory mesh data structure.

The grid is rectilinear and the data structure is unspecific that not only created for

simplification purpose. It is similar to Bernardini et al. (2002), but the octree adapts

in suitable resolution to match better surface detail, the edges can be collapsed across

patch boundaries and the output is a progressive mesh.

Another adaptive approach, which is fully depends on error-driven surface

segmentation is introduced by El-Sana and Chiang (2000). This technique can

preserve the correct collapsing order and thus ensure the run-time image quality.

Besides, features like prefetching, implicit dependencies and parallel processes are

implemented. It computes mesh connectivity, initialize priority queue on disk. Then,

for each bath of lower-error edges, dequeue the edge and load incident faces into

RAM, collapse edges whenever possible, recomputed error then write back to disk.

It repeats until desired accuracy is achieved.

 36

Prince (2000) uses octree partitioning and edge collapse like OEMM do. He

is able to create and view progressive mesh representation of large models. He uses

octree partition, edge collapse simplification operator but need to frozen the path’s

boundary. There is another adaptive surface segmentation method is by Choudhury

and Watson (2002) whose propose a simplification in reserve. It is an enhancement

of RSimp (Brodsky and Watson, 2000) to become VMRSimp. Brodsky and Watson

use refinement based on vector quantization. Their work is generally believed faster

as the refinement is take shorter time than simplification does. Anyway, it has

poorer quality as refinement leads to lower quality result.

2.7.3 Streaming

Streaming treats a mesh as a sequenced stream of triangles. For each time,

read a triangle, process it then write it in a single pass. Later on, in finite in-core

stream buffer, indexed submesh is built up. For the triangles that loaded into buffer,

in-core simplification is performed. In order to make sure buffer contains

sufficiently large and connected mesh patches, it requires coherent linear layout of

mesh triangles.

In stream buffer properties, there are processed region, buffered region and

unprocessed region. One or more loops of edges that divide mesh into processed and

unprocessed regions. Indexed triangles read from input boundary and write to output

boundary. The stream boundary sweeps continuously over mesh. Therefore, no

stitching is needed unlike conventional surface segmentation method. Figure 2.5

shows the stream boundaries.

 37

Figure 2.5 Streaming properties (Lindstrom, 2003a)

A new approach in out-of-core mesh processing technique can be adapted to

perform computation based on new processing sequence (Isenburg and Gumhold,

2003; Isenburg et al., 2003a) paradigm. Processing sequence for large mesh

simplification (Isenburg et al., 2003b) represents a mesh as a particular interleaved

ordering of indexed triangles and vertices. This representation allows streaming very

large meshes through main memory while maintaining information about the

visitation status of edges and vertices. Stream-based edge collapse (Wu and Kobbelt,

2003) reads the input from a data stream and writes the output to another stream. It

is good because it doesn’t have stitching artifacts, but its geometry hashing overhead

and cannot differentiate stream boundary from surface boundary.

 38

2.7.4 Comparison

The Table 2.1 shows the comparison between these out-of-core

simplifications based on different attributes.

Table 2.1 Comparison between 3 types of out-of-core simplification

Characteristics Spatial Clustering Surface

Segmentation

Streaming

Concept Cluster vertices

based on spatial

proximity

Cluster vertices

primary based on

error

Cluster vertices

based on spatial or

error-based criteria

Speed Fast (50-400K tps) Slow (1-10K tps) Fast and highly

parallelizable via

pipelining

Quality Low High Governed by user

specific stream

buffer

Suitable situation Time or space is at

premium.

Quality more

important than

speed, need

progressive

streaming, view-

dependent

rendering and

preserve topology

Need to preserve

connectivity, need

high quality

Main drawback Low quality,

topology not

preserved

Slow Not clear how to

create

multiresolution

meshes

Each out-of-core simplification technique has its cons and pros. So, in order

to choose a better one, select one which most suites the type of application it’s

applied on. In this way, the optimum output mesh can be produced.

 39

2.8 Analysis on Out-of-Core Approach

2.8.1 Advantages and Disadvantages

Nowadays, models are well beyond most core memories can be handled. The

sizes of these datasets rise drastically from range 107 to 109 faces. The out-of-core

approaches apparently solved simplification problems on datasets, which are larger

than main memory. These out-of-core techniques use virtual memory to put the data

that are not used into hard disk and then put in the portion of data needed for

rendering into main memory. Therefore, it makes the display of extremely large

datasets possible.

Besides, out-of-core approaches could speed up development. For example,

Lindstrom (2000) presents an extremely fast simplification model that can process

400K triangles per second on desktop PC. It is the nearly impossible achieved by

other in-core simplification methods. On the other hand, it could handle highly

variable level of detail, even extreme close-ups revealing new detail.

Even though out-of-core approaches contributed a lot in making the rendering

of massive datasets possible, it has its weakness. That’s it; random access on must

be avoided. This is because the disk access is slow and hence need to minimize this

process. It is unlike main memory access, which is fast and convenient.

2.8.2 Comparison: In-Core and Out-of-Core Approach

In-core simplification and out-of-core simplification have their similarities

and differences. When looking into the purpose of simplification, they have a same

ambition, that’s to simplify the input mesh to a certain level of detail. They both

discard degenerated triangles. Their quality determined by the degree of similarity

between simplified mesh and original mesh. However, they have few differences as

well (refer Table 2.2).

 40

Table 2.2 Comparison between in-core approach and out-of-core approach

Characteristics In-core Out-of-core

Type of Memory Main memory. Use secondary memory for unused

data, main memory for data, which

will be displayed.

Size of datasets Must smaller than main

memory.

Can be larger than main memory,

maximum data size depends on

algorithm’s strategy. For example,

Lindstrom (2000) depends on output

mesh size whilst Lindstrom and Silva

(2001) is independent of the available

memory on computer.

Simplification

operators

Local simplification,

such as vertex removal,

edge collapse, triangle

collapse, vertex

clustering, vertex pair

contraction, etc.

Can be categorized in three groups,

which are spatial clustering, surface

segmentation and streaming. Internal

operation can be done by in-core

simplification operator, for example:

edge collapse in OEMM (Cignoni et

al., 2002) and vertex clustering

(Lindstrom, 2000).

How it works? Directly place the mesh

into main memory and

simplify it. For

example, edge collapse

and vertex clustering.

Convert mesh into a data structure in

preprocess and store it on disk, then

extract the portion of data that is being

used to main memory during run-time.

Speed Depends on size of

input mesh.

Depends on algorithm. But eventually

faster than in-core method.

Quality Depends on

simplification operator.

Depends on simplification method.

 41

2.8.3 Performance Comparison: Existing Simplification Techniques

For comparison between a few implemented simplification techniques, a

comparison can be made between in-core and out-of-core simplification. The basis

for many out-of-core simplifications, Out-of-Core Simplification (OOCS) by

(Lindstrom, 2000) is the initial work in out-of-core simplification. It can simplify

400K triangles per second and require 63-72 bytes to represent a triangle.

Nevertheless, its quality is quite low as no connectivity is remained. Table 2.3

compare the OOCS (Lindstrom, 2000) to two in-core simplification techniques,

QSlim (Garland and Heckbert, 1997) and memoryless simplification (Lindstrom and

Turk, 1998). QSlim is one of the fastest vertex merge algorithm (Brodsky and

Watson, 2000). While memoryless simplification is an efficient simplification that

no needs to retain history of simplified mesh in memory.

Table 2.3 Simplification results of running QSlim, memoryless simplification

(Mless) and OOCS. All results were gathered on a 195 MHz R 10000 SGI Origin

with 4GB of RAM and a standard SCSI disk drive (Lindstrom, 2000)

RAM (MB) Time (h:m:s) Model Tout

QSlim Mless OOCS QSlim Mless OOCS

244,562 213 134 28 5:31 11:59 0:16

113,090 214 134 11 5:55 14:12 0:12

Dragon

T=871,306

47,228 214 134 7 6:06 15:21 0:10

204,750 250 166 26 7:13 16:58 0:17Buddha

T=1,087,716 62,354 251 166 8 7:35 19:19 0:12

Blade

T=28,246,208

507,104 - 3,185 63 - 12:37:25 5:02

Statue

T=386,488,573

3,122,226 - - 366 - - 1:59:20

From Table 2.3, we can see that RAM usages in-core approaches (QSlim and

Memoryless Simplification) are depends on the size of the input mesh. When the

RAM usage is bigger than 4GB, blade cannot be process by QSlim method.

However, it still can be process by memoryless simplification because memoryless

 42

simplification doesn’t retain the history of simplified mesh free up some space for

this process. Nevertheless, statue with input size 400 millions of triangles cannot be

processed by memoryless simplification anymore as it cannot be fit into limited

RAM memory. It is not a problem for OOCS as it doesn’t depend on input mesh’s

size. OOCS can process any mesh with constraint that the size of the output mesh

mustn’t larger than RAM size. While being much more memory efficient, this out-

of-core simplification technique also orders of magnitude faster.

OOCS is fast, but the quality is looser because it doesn’t perform adaptive

sampling. Further, since OOCS does not reply on connectivity information, it has no

way of detecting boundary edges (or non-manifold edge). To make the quality better,

hybrid approach could be considered, that is, first, perform OOCS on a large model,

then follow by slower but accurate in-core simplification (Lindstrom, 2000a).

Even though OOCS can display lots of massive data, however, it encounters

problem when dealing with the output size, which is larger than available main

memory. Referring Table 2.4, OOCS is faster than OOCSx (Lindstrom and Silva,

2001) between two to five times when output mesh remains smaller than RAM size.

But, in one case, for simplification of blade, OOCSx is faster than OOCS. The

reason is OOCS ran out of memory, and numerous page faults occurred. Another

case is 15.5MB RAM even is not enough for OOCS to simplify the fluid. Memory

usage of OOCSx depends on size of the input mesh, whereas memory usage for

OOCS is proportional to size of output mesh. Additionally, OOCSx only use

arbitrary little main memory (5MB or 8MB RAM in this simplification process).

Contrary, OOCS use all available main memory for displaying the output mesh.

In (Lindstrom, 2003c), Lindstrom has improved insensitive algorithm

(Lindstrom and Silva, 2001), which is remarkable fast and yields an effective triangle

processing rate of roughly 20K to 60K triangles per second. The system is view-

dependent. Other than that, he also pointed out that El-Sana and Chiang (2000) can

simplify at 5,300 triangles per second with input mesh 1.2 million triangles. But,

their method will steadily reject the input mesh when it grows larger. Prince (2000)

can produce a 1000 triangles per second on 11.4 million triangles’ mesh, however, it

requires more than 512MB RAM to do it.

 43

Table 2.4 Run-time performance of OOCS and OOCSx. Blade were computed

on Linux PC with 512MB RAM and two 800 MHz Pentium III processor. Statue

and fluid are simplified on SGI Onyx2 with forth-eight 250MHz R10000 processor

and 15.5GB RAM. (Lindstrom and Silva, 2001)

RAM:disk (MB) Time (h:m:s) Model Tin Tout

OOCS OOCSx OOCS OOCSx

507,104 49:0 5:4,850 2:46 13:14

1, 968,172 160:0 5:4,899 3:11 14:30

Blade 28,246,208

7,327,888 859:0 5:4,993 19:14 17:04

3,012,996 261:0 8:64,004 44:22 2:7:24Statue 372,963,401

21,506,180 3,407:0 8:64,256 51:23 2:49:30

6,823,739 588:0 8:80,334 55:56 3:11:48

26,086,125 3,427:0 8:80,510 1:08:48 3:23:42

Fluid 467,614,855

94,054,242 - 8:80,345 - 4:19:09

Simplification using Octree-based External Memory Mesh (OEMM) by

(Cignoni et al., 2003c) eventually faster than in-core simplification method: QSlim

and RAM-QEM (implementation of QEM in main memory) and their RMS errors

are quite similar. However, it is much slower than OOCS even though the error

metrics is much smaller (higher quality) than OOCS. Besides, Cignoni et al. (2003c)

can produce up to 13K triangles per second, but the output is not directly usable in

view-dependent refinement. Table 2.5 shows the simplification of a Happy Buddha

(1,087, 716 faces) on PIII 800MHz PC with 128MB RAM.

Table 2.5 Simplification on Happy Buddha using four different codes (Cignoni

et al., 2003c)

Code Simpl.

faces

RAM

(MB)

Time (s) Tps rate RMS err

QSlim v2.0 18,338 195 60 17.4K 0.0131

RAM-QEM 18,338 160 58 18K 0.0125

- 4 58 - -OEMM-QEM (Preprocess)

OEMM-QEM (Simplify) 18,338 60 48 21.7K 0.0129

OOCS 19,071 36 15 69.5K 0.0245

 44

An approach making the out-of-core simplification with a guaranteed error

tolerance (Borodin et al., 2003) is implemented using vertex contraction technique

instead of vertex clustering. Even the error is minimized until lower than QSlim

(Garland and Heckbert, 1997) and output’s quality is high, the simplification time is

relatively slow. Plus, their work doesn’t show the statistics of simplified mesh with

size larger than 35K triangles (See Table 2.6).

Table 2.6 Reduction and performance rates for four standard models using a

1.8GHz Pentium IV PC with 512MB main memory (Borodin et al., 2001)

Model Tin Tout Error Simplifcation

time (h:m:s)

Rate

(tps)

Armadillo 345 944 33 780 0.129 0:05:06 826

Happy Buddha 1 087 716 32 377 0.170 0:19:28 728

David 2mm 8 254 150 25 888 0.178 2:22:02 762

Lucy 28 055 742 26 772 0.163 8:03:57 779

A multiphrase approach (Garland and Shaffer, 2002), which operates by

combining an initial out-of-core uniform clustering phase with a subsequent in-core

iterative edge contraction phase performs very well in simplification process. This

technique produces higher quality, better distribution of triangles than uniform

spatial clustering. But, higher grid resolution needed in the first pass causing the

more memory is consumed. Besides, it is still output sensitive. They have compared

their results with OOCS (Lindstrom, 2000), adaptive out-of-core clustering (Shaffer

and Garland, 2001), and QSlim (Garland and Heckbert, 1997). Results show that it

is able to simplify polygonal mesh of arbitrary size, like OOCS, but it is able to

generate much higher quality approximations at moderate to small output sizes.

Indeed, it consistently produces approximations of quality comparable to QSlim, but

using considerably less running time and memory, both asymptotically and in

practice.

Guthe et al. (2003) propose a very efficient hierarchical level of details on

complex environment and filling cracks created during simplification process by

using shaded fat borders. This algorithm is run on a 1.8GHz Pentium 4 PC with

512MB memory and ATI Radeon 9700Pro and the results are tremendously good.

 45

Their work is compared with out-of-core algorithm without crack filling and in-core

rendering. The frame rates that it produced are adequate to generate an excellent

real-time application probably due to the good VGA card they used.

Correa (2003) proposes a new algorithm in out-of-core simplification,

consisting two phrases of work as well, which is preprocessing and runtime. In

building the octree, a finer tree creates a more precise view-frustum. Coarser

granularity reduces traversal time, decreases vertex replication but increases

possibility of fetching and rendering of invisible geometry. LoD generations are

created by vertex clustering technique. Besides, occlusion culling and sort-first

parallel rendering are also implemented.

For preprocessing step, 2.4 GHz Pentium IV computer with 512 MB of RAM,

250 GB IDE disk and a NVIDIA GeForce Quadro FX 5200 Graphics card is used.

During octree generation, based on his thesis’s figure, granularity of 15K vertices per

leaf needs roughly six minutes to generate it. Whilst LOD generation for the original

data and four simplified models needs approximately eight minutes of time with

additional data size of 268MB. This algorithm is fairly good in its speed aspect.

Nevertheless, due to his implementation constructs static LOD, while Lindstrom

(2003c) generates view-dependent LOD, and hence comparison is hard to be made

between these algorithms. Besides, no figures on simplification time are shown.

Subsequently, it is difficult to compare its efficiency with other existing algorithms.

Comparison between performance of adaptive and uniform clustering

methods have been carried out by Shaffer and Garland (2001). Tool Metro (Cignoni

et al., 1998) is used to measure error metrics. The results show that error in coarse

approximation is reduced about 20%. At the same time, finer resolution is dropped

around 10% too. This shows that adaptive gives better quality approximation.

However, the time consuming to simplify the mesh is varied from around 2.5 to 3

times as much as that required for uniform clustering. As a short conclusion,

adaptive clustering induces better quality mesh but slower than uniform clustering do.

In streaming simplification approach, it generates higher quality than spatial

clustering and surface segmentation simplification techniques with low memory

 46

requirement. Most recent work by Isenburg et al. (2003b) enables full connectivity

and geometry information is available for the active elements of the traversal even

the mesh access is restricted to a fixed traversal order. This provides seemless and

highly efficient out-of-core access to very large meshes for algorithms that can adapt

their computations to this fixed ordering. Some models simplified using this

algorithm by using 800MHz Linux PC. This is suitable to make a comparison to

works of (Wu and Kobbelt, 2003; Lindstrom and Silva, 2001; Cignoni et al., 2003c)

as their works are run on 800MHz Pentium 3 with 880MB RAM. The quality of this

approach is apparently compatible with other out-of-core approaches. Anyway, the

neighbour triangles have to be grouped together.

From all these recently published algorithms, the findings show that the

multiphrase approach (Garland and Shaffer, 2002), Efficient View-Dependent Out-

of-Core Visualization (Guthe et al., 2003), Out-of-Core Visualization of Large

Datasets (Correa, 2003) and large mesh simplification using Sequence Processing

(Isenburg et al, 2003b) give an appropriate good quality as the same time a pleasant

processing time as well. OOCS (Lindstrom, 2000) would be the greatest if the

simplification time is the most vital element instead of quality.

2.9 Appearance Attribute Preservation

Many simplification algorithms simplify geometry data but pay no attention

to surface preservation. For sure, geometry simplification is vital in reducing the

gigantic data size. However, appearance-preserving also important to retain the

surface attributes after simplification process. Normally, the surfaces attributes need

to be preserved during mesh simplification include surface position, normal, surface

curvature, color attributes and texture attributes.

From beginning, surface preservation is often done separately with geometry

simplification. In accomplishing this, decouples the sampling rates of the surface

attributes by storing the object’s color and normal vectors in texture and normal

maps respectively. Then make sure the bounds on both the surface and texture

 47

deviations by filtering the model’s surface position. Meanwhile, the color and

normal attributes are filtered during rendering time. Thus, it guarantees the surface

attributes are sampled appropriately within certain error tolerance.

The mapping algorithm presented in (Bajaj and Schikore, 1996) allows the

preservation of arbitrary scalar fields across a surface. The scalar fields are linearly

interpolated across the mesh’s triangles. They track geometric and attribute errors in

mesh’s faces to obtain error-bounded simplification of meshes with attributes.

Hughes et al. (1996) investigated the simplification on colored Gouraud-

shaded meshes produced by global illumination algorithms. They transform the

vertex colors into a more perceptually linear space before simplification takes place.

Certain et al. (1996) added surface color to a wavelet-based multiresolution

framework for surface subdivision (DeRose et al., 1993). They generate two lists of

wavelet coefficients for geometry and color data. Surface parameterization is also

used to store colors in texture maps to render as textured triangles during rendering

process.

Hoppe (1996) explicitly includes surface attributes in the error metric of

Hoppe et al. (1993). The scalar deviation is measured as a sum of squared Euclidean

distances in the attribute space. However, it doesn’t show the impact after

incorporating the attributes preservation in the final appearance of simplified object.

Erikson and Manocha (1998) present a point-wise quadric error method to

measure the maximum attribute deviation in Euclidean attribute spaces. Associated

with each vertex is an attribute volume for each measured attribute. Each attribute

volume is initially a point in the attribute space. As vertex pairs are merged, the

attribute volumes grow to contain the volumes of both vertices.

Cohen et al. (1998) develop an algorithm, which is capable to reparameterize

texture maps as a surface is simplified. By tracking parametric instead of geometry

correspondence, their method bounds the displacement of a vertex on the mesh with

any given texture coordinate, which is the right metric for texture mapped surfaces.

 48

Unlike the method mentioned previously, the surface attributes’

simplification is possible to be completed successfully using a single metric. As

discussed in the section of quadric error metric (Section 2.5.1.1), extended quadric

error metric (Garland and Heckbert, 1998) is proficient in retaining surface attributes

during simplification development. In conjunction, Hoppe (1999) continue

enhancing this metric by using a wedge-based mesh data structure to capture the

attribute discontinuities, such as surface creases and material boundaries. Besides,

he permits simultaneous optimization of these multiple attributes vectors.

Similar to Garland and Heckbert (1998) and Hoppe (1999), Lindstrom (2000a)

has extended the vertex representation from three dimensions to multiple dimensions.

He is using the concept of utilizing single metric in geometry and attributes

simplification. Anyhow, Lindstrom (2000a) creates the texture coordinates himself

by choosing the most suitable texture coordinates based on the given vertex positions.

2.10 Summary

This chapter has covered mostly all the critical topics in level of detail field.

Mostly all the main processes involved in developing a full simplification model

have been discussed in depth, whether for in-core simplification or out-of-core

simplification.

This literature review surveyed the main processes in developing an in-core

simplification application, which are LOD framework, LOD management, LOD

generation and error metrics. First, we need to determine which type of LOD

framework that we are planning to use. Every LOD framework has its pros and cons.

Suitable LOD has to be chosen based on the type of application it applies in. View-

dependent offer higher fidelity as no extra polygons are rendered based on viewing

perspective. However, it needs more calculation on the viewing perception.

Contrary, discrete LOD may offer less accuracy, but its computation is less. Anyway,

using any of these LOD frameworks brings cons and pros. Hence, good care is

needed in handling its weakness.

 49

Even though many ideas developed so far in LOD management, but, there are

still no criterion can be said is the most optimum technique. Distance or screen

space size is the traditional way in LOD management, whilst visual perception is the

most up to date LOD management criterion. There’s always trade in between precise

level of detail selection with the high computation time and high cost in eye tracking

device.

Geometry simplification reduces number of polygons. To eliminate the holes

and cracks created, topology simplification must be applied. Many simplification

operators invented and enhanced so far. Same concept goes to this area, higher

quality mesh always need more computation time than others do. Edge collapse

creates nice output mesh, whereas the vertex clustering is fairly fast.

To measure the error metrics, there are a few methods in doing it. This is to

compare how accurate the simplified object with the original object. Either it is

geometry-based metrics or attributes error metrics. Among these metrics, quadric

error metrics is the robust and well-known error metrics.

Out-of-core approach needs more works than in-core do. That is, here,

external memory management and out-of-core simplification methods are considered

necessary. Before the data going through the simplification, external memory

management is making sure that it is loadable into main memory first. Later on, out-

of-core simplification is carried out. It partitions the space using spatial data

structure or subdivides the space uniformly first. Then, it uses the existing

simplification operator to simplify the mesh in every partitioned space. The process

is pretty tricky and need extra care to make sure it runs without causing any memory

leaking problem.

In addition, a full analysis has been carried out to investigate its cons and pros,

to compare between in-core and out-of-core methods and to study the performance

distinctions between existing out-of-core algorithms.

Last but not least, the well-known surface preservation techniques have been

revealed. At starting, simplification on geometry and attributes are made separately.

 50

Later on, simplification on geometry and surface attributes is performed on each

vertex by using single metrics. These recent methods are simple and straightforward

to be implemented.

CHAPTER 3

METHODOLOGY

3.1 Introduction

Rapid technology growth in modern 3D scanning technology and the high

complexity of computer simulations has led to a boost in the size of geometry

datasets. Even the most powerful graphics hardware also cannot handle the

rendering of the extremely massive data, especially in real-time application. Besides,

in many applications, surface attributes are important to show the details of the mesh.

Therefore, automatic simplification on massive datasets while preserving its surface

attributes is proposed.

This out-of-core simplification starts with data processing. Continuously,

data is represented in an octree structure and then the model is simplified using a new

variation of vertex clustering technique. During run-time, the portion of the visible

mesh is rendered based on distance aspect. This approach is fairly simple and

efficient.

The methodology is organized in a few sections. First, the algorithm

framework is employed. Next, the preprocess performing the data processing, octree

construction and simplification is given. Lastly, the run-time rendering is discussed

and finally a short conclusion is brought.

 52

3.2 Algorithm Overview

This paper introduces an approach for end-to-end and out-of-core

simplification and discrete visualization of large surfaces. Besides, appearance

preservation is proposed as well. Here, the arbitrarily large datasets, which are larger

than memory size, now can be visualized by using a sufficient amount of disk space

(a constant multiple size of the input mesh). The preprocess work starts with data

preprocessing and then an octree is constructed to partition the space efficiently.

Consequently, a modified vertex clustering simplification is preceded. Finally, the

multiresolution output mesh is displayed during run-time. The off-line phrases are

performed on secondary memory whilst the run-time system only pages in the

needed parts from the octree for rendering purpose. The framework overview is

shown in Figure 3.1.

Figure 3.1 Framework overview

Algorithm starts with data processing process. It involves data loading into

our system and dereferencing of triangle indices to their corresponding vertices. The

experimental data is in PLY data format. It is one of the common file formats in

storing the large datasets. However, these raw data are an indexed mesh. Even

though the format is compact, the processing time is slow. Thus, it needs to be

Preprocessing (Step 2)
Octree Construction

Preprocessing (Step 3)
Simplification

Run-time
Rendering

Preprocessing (Step 1)
Data Processing

 53

further processed before proceeding to simplification process. Hence, by using data

dereferencing, a list of triangle is pointed to its vertices so that a triangle soup mesh

is generated.

Secondly, an octree is constructed to divide the loaded data into spatial space.

The purpose is to make sure the data become easier and neater. By using it, the

simplification and data extraction processes become simpler. Most important is it

can accelerate the data query during rendering process later on. The triangular mesh

is subdivided into its appropriate location. Because of the datasets size is too large to

the available main memory size on commodity computer; hence the data in each

octree node is kept in its end node file. The end node files size is small enough to fit

in main memory and are stored in an organized directory format. Thus, the file

searching is easier to be performed.

At this stage, the end node files can be simplified independently. This step is

taken by modifying the existing vertex clustering technique from Rossignac and

Borrel (1993). As the mesh is already partitioned in previous stage, this input mesh

does not need any further space partitioning. If simplification is done separately in

every node, cracks and holes may be produced. In order to make sure that the whole

input mesh looks good after joining back all of the node’s simplified mesh, this

portion of mesh should retain its boundary edges. Meanwhile, all the vertices inside

the mesh are collapsed to an optimal vertex.

Inspired by OOCS algorithm (Lindstrom, 2000b), optimal vertex for the

discarded vertices can be found by using single error metrics. In this case, the

generalized quadric error metrics (Garland and Heckbert, 1998) is used to find the

optimal representation vertex so that the normal, color or texture attributes of the

geometry can be retained as well. This vertex clustering alike simplification operator

introduces non-manifold vertices and edges. However, the quality is good enough

and suitable for real-time application. Between, it is simple, robust and fast

compared to other simplification operators. The nature of traversing the mesh once

is practically inducing good I/O complexity. The output of this stage is a set of files

with multiple resolutions for each node.

 54

As the simplified meshes are pre-computed, hence, the framework is referred

as discrete level of detail framework. This framework is chosen as it is fast, better

suited for current hardware and imposes less computational time during run-time

than dynamic LODs do. During the run-time phrase, the data for visible nodes are

extracted from octree. Each of them is considered as active nodes and the triangle

information is loaded into a dynamic data structure. The active nodes are expanded

and collapsed based on viewing perception criteria.

3.3 Data Processing

PLY data file has header and follow by its vertex list, finally its face list. The

file header starts with PLY and end with END_HEADER. Following is the general

PLY file’s header structure:

ply

format ascii 1.0

comment …

element vertex num_of_vertices

property float32 x

property float32 y

property float32 z

element face num_of_faces

property list uint8 int32 vertex_index

end_header

Subsequently, a vertex list, which total up has num_of_vertices of vertices

and a triangle list, which total up has num_of_faces of triangles are listed. It is in

indexed format. The details of the file format are enclosed in Section 3.3.1. Even

this format is extremely space efficient. Nevertheless, it slows down the processing

time. Therefore, this indexed triangle list have to be converted to triangle soup style

even though it needs bigger storage space.

 55

After reading in the PLY file portion by portion, the header of the PLY file is

discarded as the other information is no need any longer. Only the number of

vertices and number of triangles are retained. Besides, the datasets type is also

recorded. Subsequently, two files are created, one storing the vertex values and

another one storing the indexed indices for triangles.

To make the indexed mesh become a triangle soup mesh, external sorting is

essential. External sorting is mandatory because the massive datasets cannot directly

be loaded into main memory due to resource limitations. External sorting loads the

portion of data, which fit into main memory, then sorts it and lastly output it to a file

again. Here, merge sort is used for this purpose. Sorting the triangle indices

involves the quicksort technique due of its advantage in sorting speed compared to

other sorting algorithms. As mentioned, the data is read part by part. Therefore,

merging is required to unite each sorted portions of data. The merging scheme used

in this project is the two-way-merge sort.

By using the merge sort technique, firstly, sort the first indices of all the

triangles. Then, each index is read sequentially. At the same time, the vertex values

are read in sequentially as well. Now, dereference each triangle index to its

corresponding vertex value. Because of the data is sorted in sequence, hence the

dereferencing process is generally faster. Repeat these steps until all of the triangle’s

first indices are dereferenced.

Taking account of each face is in triangle shape, each triangle has three

vertices. Thus, the merge sort and dereferencing processes are considered necessary

to run three times in order to create a complete triangle soup mesh.

3.3.1 Data File Structure

PLY file is a simple and easy file format to store graphical objects, which are

represented by a set of polygons. It is a common data format in scanning technology.

Only one object is described in a PLY file. It is a collection of vertices, faces and

 56

other elements such as color, surface normal, texture coordinates and so on. It is

either an ASCII representation or binary version for compact storage and fast I/O

processing. The PLY format is not intended to be a general scene description

language, a shading language or a catch-all modeling format. Hence, it has no

transformation matrices, object instantiation, modeling hierarchy or object sub-parts.

Figure 3.2 Main structure of PLY file

As mentioned before, PLY file (Figure 3.2) has a header, follow by a vertex

list next, then a face list. It may has other elements that declared by users. One can

ignore the unwanted information and only remain the needed data. The header

includes the description of every element type, including the element’s name, how

many of such elements are in the object and a list of various properties associated

with the element. The header also tells whether the file is ASCII format or binary

format and some comments maybe. Figure 3.3 is a PLY file example.

From Figure 3.3, it illustrates the element is in this structure:

element <element_name> <number_in_file>

property <data_type> <property_name1>

property <data_type> <property_name1>

…………….…

The property is listed in sequential order after its element. The property may have

scalar, list and also list type. The above format is scalar type. The list type is

structured as:

 property list <numerical_type> <numerical_type> <property_name>

Header
Vertex List
Face List
(List of other elements)

 57

Figure 3.3 PLY file example

3.4 Proposed Octree Construction

Instead of performing uniform vertex clustering, spatial octree structure is

adopted in data organization. This is due to uniform clustering technique causes

undesirable artifacts in the approximation even it offers great efficiency (Shaffer and

Garland, 2001). Besides, it is not suitable for real-time data display. At the same

time, this octree structure is vital in handling and organizing the massive datasets.

From previous data processing step, the entire processed triangle soup file is

loaded portion by portion into octree structure. Octree is chosen as it eliminates the

computation time spent on processing on the empty space in a data model. Before

partitioning the data into octant nodes, the bounding volumes of the input object are

ply
format ascii 1.0
comment made by tan
comment this is a cube
element vertex 8
property float32 x
property float32 y
property float32 z
element face 6
property list uint8 int32 vertex_indices
end header
0 0 0
0 0 1
0 1 1
0 1 0
1 0 0
1 0 1
1 1 1
1 1 0
4 0 1 2 3
4 7 6 5 4
4 0 4 5 1
4 01 5 6 2
4 0 2 6 73
4 3 7 4 0

--> Start with “ply”
--> Format=ASCII, version=1.0
--> All are comments

--> Define “vertex”, 8 in this file
--> Vertex has float “x” coordinate
--> “y” coordinate
--> “z” coordinate
--> Define “face”, 6 in this file
--> List of int vertex indices
--> Header meets its end
--> List of vertex starts
 … …

--> List of face starts
 … …

 58

essential for efficiency. The information includes the width and center point of the

bounding box that covers the whole mesh.

At each time, the space is divided into eight cubes recursively until the tree is

fully subdivided. It partitions the input mesh adaptively. This is because it only

breaks down the node into children nodes when the node has more triangles than it is

allowed to. Each internal node stores their directory path, so that every node’s file

searching becomes easier. The leaf nodes only need to hold the filename, which is

storing the partitioned triangle list.

Since the datasets could not fit into main memory, the vertices in each leaf

node are written into every end node file. The file is small and is kept in an

organized directory structure. Each child node is contained in their parents’ node

directory (previous parents’ directory). Hence, the tracking of every end node file is

simpler and organized better.

Different with others (Correa, 2003), this octree structure does not create any

triangle replication. Whenever the triangle has existed in previous visited nodes,

then the triangle would not be stored in any other node. This cause the boundary

triangle is kept only once. One may question that it may create artifacts during

rendering later. The artifacts occur whenever triangles inside a visible node does not

be kept if it is already kept in its neighbour node. However, this artifact is rarely

happened based on experiments.

By using the constructed octree as our spatial data structure, it makes

simplification easier and perceptual rendering faster in general. It contains the whole

world information. Every sub mesh in each leaf node is small and stored in its end

node file, thus making the simplification can be performed easily. However, the

octree need to be revised during simplification process if more than one level of

detail is demanded.

 59

3.5 Proposed Out-of-Core Simplification

The main flow of the simplification process has certain similarity with

previous vertex clustering techniques. In many existing vertex clustering techniques,

they use the idea of “triangle cluster” (Rossignac and Borrel, 1993; Low and Tan,

1997; Lindstrom, 2000a, Lindstrom and Silva, 2001), which maintain a triangle if its

three vertices fall in different regions. However, this concept is not adopted here.

Contrary, the boundary edges of the node are preserved. Thus, memory used to keep

the list of simplified triangular mesh is nonessential anymore.

Potentially this approach avoids the problem of creating any cracks or holes

after the mesh is simplified. This is because the boundary edges of every node are

preserved, leaving no hole between the nodes. Hence, any patching, retriangulation

or stitching (Cignoni et al., 2002) is unnecessary. During run-time, the simplified

mesh can be loaded directly from disk. The full idea is written in following section.

How to find a representative vertex for discarded vertices inside the boundary

edges? Typically edge collapse coarsening operator finds it by using a suitable

metrics. Anyhow, vertex clustering alike simplification is used here. However, a

vertex clustering operation is a multiple edge collapse operations. Therefore,

Lindstrom (2000b) has used quadric error metrics (Garland and Heckbert, 1997) in

his OOCS simplification. Inspired by this, all the vertices in a cell could be

collapsed into an optimal vertex by using single error metrics.

The quadric error metrics proposed by Garland and Heckbert (1997) is robust

and generate good quality simplified mesh. However, it only handles geometry data,

the other surface attributes such as normal, color, texture information are not handle

by this algorithm. Hence, here, the generalized quadric error metrics (Garland and

Heckbert, 1998) is adapted to compute the representative vertex for the discarded

vertices. It is as robust as original quadric error metrics and is able to handle the

surface attributes’ simplification at the same time. The complete framework is

carried out in Section 3.5.2.

 60

As the data is completely partitioned, therefore every single end node’s

triangle data is ready to be simplified. The process is totally independent as

simplification can take place without knowing its neighbours’ information. By

repeating the simplification on every leaf node, it generates first level of

simplification on the original input mesh. Every simplified triangular mesh is stored

on disk separately. This level of detail is the finest mesh among the simplified mesh.

To obtain coarser resolutions of the mesh, further simplification on internal nodes

(Section 3.5.3) is required.

3.5.1 New Vertex Clustering

Vertex clustering can also be called spatial clustering as it partitions the space

that the surface is embedded into simple convex 3D regions. Because triangular

mesh is always represented in Cartesian coordinate system, the easiest way is to do

rectilinear space partitioning or partition the space using spatial data structure such as

BSP, octree, kd-tree and etc. In this project, the space is partitioned adaptively using

octree because it suits the mesh’s condition better. In every leaf node, the new

approach on vertex clustering technique is applied to simplify the mesh. It does not

need any neighbour nodes’ information or any mesh stitching.

This new variation of vertex clustering technique is a fully independent

simplification process. It is claimed an independent process because it does not need

to know the triangles that fall into three different regions like other vertex clustering

methods do. Instead, it preserves the triangles, which has the boundary edges for

every node (Figure 3.4). Triangles that stay in internal area of the node are thrown

away. The discarded vertices are represented by a new generated optimal vertex

using the generalized quadric error metrics (Garland and Heckbert, 1998).

To find the boundary edges, every triangle in the node have to be tested its

edges. Every triangle has three edges. Every edge is considered as boundary edge at

starting and is stored as boundary edges. Whenever the triangle’s edge is found exist

in the boundary edges list, thus the edge is considered no more a boundary edge.

 61

Else, the edge is set as boundary edge. The process keep repeated until every edge is

checked. Finally, a list of boundary edges is produced. At the same time, the

representative vertex is calculated. Hence, the non-degenerate triangles are produced,

which every triangle consists of two vertices of a boundary edge and the

representative vertex.

Figure 3.4 New vertex clustering

There’s maybe occurrence that the substitute vertex is lie far outside from the

node. The situation happens when a cell contains two nearly parallel surface sheets.

Hence, the quadric may suggest a solution that is close to the intersection of both

planes. Thus, the substitute vertex has to be clamped back to its cell. Here, the

proposed vertex clustering technique pulls the optimal vertex to the center of the cell

when it is lying too far away from cell.

3.5.2 Generalized Quadric Error Metrics

This generalized quadric (Garland and Heckbert, 1998) is improved from the

original quadric error metrics (Garland and Heckbert, 1997). The original quadric

error metrics only handles geometry primitives (vertex position) in mesh

simplification. Although it is extended from previous quadric error metric, it cannot

be generated solely by using the normal of the plane for a triangle. Instead, it needs

two orthonormal unit vectors e1 and e2 to compute the error metrics. The unit vectors

are shown in Figure 3.5.

Before After

 62

Figure 3.5 Orthonormal vector e1 and e2 for origin vertex p for triangle T

(Garland and Heckbert, 1998)

Consider the triangle, T = (p, q, r) and all properties are assumed linearly

interpolated over triangles. If the vertex has color attribute, then p = (px, py, pz, pr, pg,

pb). If it has texture, then p = (px, py, pz, ps, pt). To compute e1 and e2, Equation 3.1

and Equation3.2 are used.

pq
pq

−
−

=1e (3.1)

11

11
2))((

))((
eprepr
eprepre

−•−−
−•−−

=
 (3.2)

Squared distance D2 of an arbitrary v from plane of T is D2=vTAv +2bTv + c,

which is similar to the original quadric error metrics where:
TT eeeeIA 1111 −−= (3.3)

peepeepb −•+•= 2211)()((3.4)
2

2
2

1)()(epepppc •−•−•= (3.5)

A is a symmetric matrix (3x3 matrix for geometry data only; 5x5 matrix for geometry

with texture coordinates data; 6x6 matrix for geometry with normal or color data), b

is a vector (3-vector if is geometry data only; 5-vector for geometry with texture

coordinates data; 6-vector for geometry with normal or color data), and c is a scalar

(coefficients).

To obtain the optimal vertex, VT, for a single triangle, following equation is

applied:

AVT = -b (3.6)

 63

By solving Equation 3.6, the optimal vertex with its simplified surface attributes for a

triangle is computed. To simplify different types of mesh, refer Table 3.1 for each

dimension it uses.

Table 3.1 Space Requirement (Garland and Heckbert, 1998)

Model type Vertex A Unique
coefficients

Geometry only [x y z]T 3x3 10

Geometry + 2D texture [x y z s t]T 5x5 21

Geometry + color [x y z r g b]T 6x6 28

Geometry + normal [x y z a b c]T 6x6 28

In order to get the optimal vertex for a cluster of triangles, VN , add up all

matrices A of every triangle and add up all vectors b of every triangle. For now, the

solution formula becomes as Equation 3.7.

∑AVN = - ∑b (3.7)

Solving this equation gives the representative vertex for all of the collapsed triangles

in a single cell.

3.5.3 Simplification on Internal Nodes

First level of detail is generated on all leaf nodes. This is the finest simplified

mesh. To get a coarser mesh, further simplification is essential to be performed on

internal nodes. The process starts from root node.

Starting from the root node, its children nodes is kept checking on. The data

in internal node is simplified whenever all of its children nodes are simplified in

previous level. The simplification is again using the new vertex clustering technique

(Section 3.5.1) and also the generalized quadric error metrics (Section 3.5.2) to

obtain the substitute vertex. Thus, after the simplification done on all of the children

nodes for the current node, set the node as it already been simplified. The output

 64

triangle list is written into the current node’s directory. The searching is stopped.

Else, don’t simplify it and the searching continues recursively.

The octree is traversed every time generating a new coarser mesh. The

process is repeating until a desired number of simplified meshes are generated. As

an alternative, the simplification will stop whenever the first level children nodes of

the root node are simplified before.

3.6 Run Time Rendering

The rendering is based on the visibility criterion. During rendering, the

boundaries of a node to the view-frustum planes are tested. If it is visible, expands

the node, else, collapse it. If a node is visible, then compare the threshold based on

distance aspect. If the object is far off the viewpoint, use less resolution mesh.

Otherwise, the higher resolution mesh is loaded.

This process is performing the on-demand paging on the external data. The

visible nodes in frustum are loaded initially. That is, load in the data from files,

which generated in octree and simplification processes previously. It frees up more

main memory by avoiding unnecessary data storage. From frame to frame, new

visible nodes are loaded as necessary. At the same time, the loaded nodes but

invisible for quite a time is thrown away from memory.

As commonly known, creation of a few resolution of mesh during the

preprocess phrase is a discrete level of detail framework. Consequently, it may

produce undesired popping artifacts. In order to resolve this trouble, adequate

number of simplified mesh is generated. Thus, when the changes between the levels

of detail switching are less, subsequently the popping problem could be minimized.

 65

3.7 Summary

The initial framework has been proposed to carry out the out-of-core large

mesh simplification with surface attributes preserved on commodity personal

computer. This method is some sort of hybrid method and a new variation on

previous simplification method to solve the stated issues. The implementation is

explained in next chapter.

CHAPTER 4

IMPLEMENTATION

4.1 Introduction

The methodology has been revealed in previous chapter. Consequently, the

details of the pseudo code and step-by-step algorithm are discussed here. As a brief

review, this system involves two main processes, which are preprocessing phrase and

run-time phrase. Preprocessing phrase performs data processing, octree construction

and mesh simplification. Whilst run-time phrase executes the real-time rendering on

simplified mesh based on the viewing criteria.

During data processing, input datasets are loaded in portion by portion. Then,

external sorting and dereferencing process is carried on. In simplification process,

new variation of vertex clustering algorithm is used to simplify the input mesh and a

hierarchy of mesh is generated. Meanwhile, a generalized quadric error metric is

used to calculate the representative vertex. This metric preserves the vertex position,

normal, color and texture information after the simplification process. Then, the data

is visualized subsequently.

 67

4.2 Data Processing

4.2.1 Input Data Reading

The input file, PLY has header and list of the declared elements. It can store

any polygonal information, for example storing the vertex, edge and also face list.

At the same times, it can keep a lot of information such as vertex coordinates,

normals, range data confidence and other different properties. Besides, the

polygonal faces may in triangular shape, tetrahedral shape or rectangle shape.

However, for this project, only triangular and appropriate data information is

remained after the file reading. Unused data is neglected.

In this approach, the header information is not kept except the element

information. The preserved elements are the “vertex” and “face” elements only. For

the properties, the vertex coordinates (x, y, z), surface normals, colors and texture

coordinates under the “vertex” element are retained. In no doubt, the “face” element,

which consists of the number of indices for the face and list of the vertex indices, is

preserved.

Figure 4.1 Data Structure for different type of vertex element

typedef struct Vertex {
 float x, y, z
} Vertex;

typedef struct NVertex {
 float x, y, z
 float nx, ny, nz
} NVertex;

typedef struct CVertex {
 float x, y, z;
 unsigned char red, green, blue
} CVertex;

typedef struct TVertex {
 float x, y, z;
 float u, v
} TVertex;

 68

After surveying on the existing PLY files, the data type for the each of the

needed elements and properties is noticed has its similarity. Figure 4.1 is the data

structure used to store the data.

To read the PLY file, the pseudo code is as below:

1. Read the PLY file header and take note of number of vertices and number of

triangles in this PLY model.

2. For every element,

a. If it is “vertex”,

i. Check the suitable data type whether it is only vertex

coordinates or it has normal, color and texture coordinates.

ii. Discard the other property (if found any).

iii. Load in the data portion by portion, the maximum records can

be loaded is depends on the allocated available main memory.

Then write the data into vertex file. Repeat until all data have

been written.

b. If it is “face”,

i. Set the data structure (as it has only one case).

ii. Discard other property (if found any).

iii. Load in the data portion by portion, the maximum records can

be loaded is depends on the allocated available main memory.

Then write the data into triangle file. Repeat until all data

have been written

c. If it is “other” element, ignore it.

3. Now the vertex file and triangle file is generated.

4.2.2 Triangle Soup Mesh Generation

Triangle soup file is mandatory to speed up the simplification and rendering

process, which performs later on. Involving algorithms are the external sorting and

data dereferencing processes. The concepts of two-way merge sort and data

 69

dereferencing functions are well explained previously. At this point, the main flow

of the works is described in a pseudo code chart:

1. From previous step, two files, which are vertex file and triangle file, are

generated. Besides, the kind of data, whether it is vertex coordinates only or

has surface normal, color or texture coordinates attributes are known.

Besides, the number of vertices and number of triangle are identified. In

addition, the buffer size is set. All these information is needed in this process.

2. In three passes (every triangle has three vertices),

a. Calculate triangle’s dimension and the index that will be sorted. First

pass is the first index for every triangle, and so on.

b. Externally sorts the current sorting indices.

c. Dereference its corresponding vertex.

3. The triangle soup file is successfully generated.

4.2.2.1 Calculation of Triangle’s Dimension and Sorting Index

By considering the data type for each triangle, the current record’s dimension

and sorting index for every pass in external sorting process can be determined. The

following chart illustrates how to calculate it in three passes (Figure 4.2). The

example is a data type, which only has vertex coordinates information. In first pass,

the first index of a triangle is the sorting index (box in gray). Of course, the record’s

dimension is three as every triangle has three vertices. Now, the vertex is

dereferenced into from the vertex list. Hence, first triangle’s index is replaced by

three corresponding vertex values, (x1, y1, z1). The process is repeated for all of the

first indices in the triangle list. In this calculation, the sorting index starts from zero,

but not one. For every data type, the record’s dimension and sorting index is listed in

Table 4.1.

 70

Figure 4.2 Finding record’s dimension and sorting index

Table 4.1 Record’s dimension and sorting index for each data type

First pass Second pass Third pass Data type

Record’s

dimension

Sorting

index

Record’s

dimension

Sorting

index

Record’s

dimension

Sorting

index

Geometry

only

3 0 5 3 7 6

Geometry +

normal

3 0 8 6 13 12

Geometry +

color

3 0 8 6 13 12

Geometry +

2D texture

3 0 7 5 11 10

V1 V2 V3

First pass
3 vertices form a
triangle.
Record’s dimension = 3
Sorting index = 0

X1 Y1 Z1 V2

V3

Second pass

V1 replaced by its
corresponding vertex.
Record’s dimension = 5
Sorting index = 3

X1 Y1 Z1 X2 Y2 Z2

V3

Third pass

V2 replaced by its
corresponding vertex.
Record’s dimension = 7
Sorting index = 6

Y1 Z1 X2 Y2 Z2 X1 X3 Y3 Z3

Dereferencing process is completed

 71

4.2.2.2 External Sorting on Sorting Indices

The sorting process is needed before the indexed indices are dereferenced. It

is to speed up the data referring. Else, it may affect the I/O operation slower as the

random access is a must avoided operation. By applying the sorting algorithm, the

I/O operation can be done in sequence. Because the data is larger than memory size,

merge sort is used to sort these massive data. Quicksort and two-way merge sort

algorithms are applied here. The flow of the process is described as below:

1. Calculate the number of times the data loading must be performed.

number_of_times = Dataset’s size / available memory size

// start performing sorting action

2. Load the portion of data, which is smaller than the available buffer size.

3. Perform quicksort() on the loaded data.

4. Output to a temporary output file.

5. Repeat step 2 – 4 for number_of_times.

// start performing merging action

6. If the number_of_generated_files = 1, rename the file as output file.

7. Else if the number_of_generated_files = 2, merge the two files as output file.

8. Else (number_of_generated_files > 2),

a. Divide the number_of_generated_files by 2, merge the pair of files

b. If left a, odd file, rename it.

c. Remove the unused files.

d. Now, get the new number_of_generated_files.

e. Repeats this step (step 8) until all files is merged.

9. The large data is well sorted in its current sorting index and merged into a

single file.

 72

4.2.2.3 Dereferencing on Sorting Indices

The sorted file and the vertex file are the input for dereferencing process.

The following flowchart in Figure 4.3 shows its algorithm flow.

Figure 4.3 Dereferencing process

Begin

Vertex data type, sort index
and max_record is known

Read a vertex, vert_id=0

Read a triangle, tri_id=0

Read triangle
success?

Write the
remaining
triangle data
to file

End tri_id=
vert_id?

Read next
triangle,
vert_id++

Dereference the vertex
and save it into buffer
tri_id++

tri_id =
max_record?

Write the data in buffer
to output file
tri_id=0

Yes

No

Yes

No

Yes

No

 73

4.3 Octree Construction

The fundamental concept of octree is to partition the space into eight smaller

cube recursively to become an easier handled data structure. Initially, the width and

center point of the cube, which coats the whole object, must be found. Later on, the

octree is built by recursively subdivide the cube. The node is subdivided into eight

directions (Figure 4.4). The data members and its constraint parameters in octree

class are given away in Figure 4.5.

Figure 4.4 Sub nodes in an octree node

Figure 4.5 Data member and parameters in COctree class

Top_Left_Back Top_Right_Back

Top_Left_Front
Top_Right_Front

Bottom_Right_Back
Bottom_Left_Back

Bottom_Left_Front Bottom_Right_Front

// node’s information
float width;
float center;
bool is_subdivided;
int tri_count;
// node’s data location
char* nodeDirectory;
char* endNodeFilename;
COctree* octreeNodes[8];
// node’s simplification information
bool * is_simplified;
char* simpFilename;
int simp_tri_count;

int max_tri
int max_subdivision;

Octree class member Octree’s controller parameters

 74

The works is simplified in following pseudo code:

1. Calculate width and center point for boundary cube, GetDimension().

a. Center vertex, center = (total up of all the vertices’ values) / total

number of vertices

b. Width, width is obtained by:

i. Compute the width of x, y and z direction by subtracting the

current width with center point.

ii. Multiply the width by two (full width).

iii. Compare the width in x, y and z direction. Take the greatest

value as the cube width.

2. Octree generation, CreateLargeNode()

a. If the current_num_tri > max_tri and current_subdivision <

max_subdivision

i. Set directory path, nodeDirectory.

ii. Create eight temporary files to store triangle values for every

child node.

iii. Set the subdivision status, is_subdivided = true;

iv. Load the data portion by portion which can be fit in main

memory

v. For each loaded triangle, find its location in current octree

node.

vi. Write the data into the node’s file based on their location.

vii. Repeat step (iv) to (vi) until all triangles are entirely divided.

viii. After the mesh is fully subdivided, create eight new octree

children nodes (CreateNewLargeNode()).

b. Else, just rename the input file as end node file.

3. Discard all existing non-end node files. Keeping only the end node files on

disk.

To create the new octree nodes (CreateNewLargeNode()) in previous Step 2

(viii), it is described as below:

1. Create a new child node by naming it octreeNodes[node position].

2. Set node directory path, nodeDirectory.

3. Compute new center node and new width, ComputeNewDimension().

 75

4. Call the function CreateLargeNode() in Step 2 (Octree Generation) to

generate an octree.

To create the new center and new width in previous Step 3

(ComputeNewDimension()) in creating the new octree nodes, it is describe as

following:

1. Using the parents’ center vertex, center and parents’ width, width, the new

center point for the child node is obtained.

a. If Top_Left_Front, new_center.x = center.x –width/4

 new_center.y = center.y + width/4

 new_center.z = center.z + width/4

b. Else if Top_Left_Back, new_center.x = center.x – width/4

 new_center.y = center.y + width/4

 new_center.z = center.z - width/4

c. Else if Top_Right_Back, new_center.x=center.x + width/4

 new_center.y = center.y + width/4

 new_center.z = center.z - width/4

d. Else if Top_Right_Front, new_center.x=center.x + width/4

 new_center.y = center.y + width/4

 new_center.z = center.z + width/4

e. Else if Bottom_Left_Front, new_center.x=center.x - width/4

 new_center.y = center.y - width/4

 new_center.z = center.z + width/4

f. Else if Bottom_Left_Back, new_center.x=center.x - width/4

 new_center.y = center.y - width/4

 new_center.z = center.z - width/4

g. Else if Bottom_Right_Back, new_center.x=center.x +- width/4

 new_center.y = center.y - width/4

 new_center.z = center.z - width/4

h. Else if Bottom_Right_Front, new_center.x=center.x + width/4

 new_center.y = center.y - width/4

 new_center.z = center.z + width/4

2. New width for the child node, new_width = width/2

 76

4.4 Out-of-Core Simplification

4.4.1 Simplification on Leaf Nodes

As the data was completely subdivided, therefore every single end node’s

triangle data is now ready to be simplified independently. The steps are as below:

1. Load in the data.

2. For each input triangle,

a. Calculate triangle’s quadric, QT and add it into node’s quadric, QN.

b. For each edge,

i. If it is not stored in edge list, add it into edge list and initially

set its status as a boundary edge.

ii. Else, set the edge’s status as a non-boundary edge.

3. For each edge in the edge list,

a. If its status is a boundary edge, save it into boundary edge list.

4. Calculate node’s optimal vertex, VN using node’s quadric, QN.

a. If VN is lie too far from node, set its value the center of node.

5. For each input triangle,

a. Check every boundary edge. If the edge is a boundary edge, add it

into output triangle list and set this boundary edge not a boundary

edge anymore. The triangle is consisted of two vertices from the

boundary edge and the calculated optimal vertex.

6. Write the output triangle list into a file, which named using the node’s

directory path with its level of detail indication number.

This simplification is performed on all of the leaf nodes. Therefore, first

level of detail in octree subdivided mesh is generated.

4.4.2 Simplification on Internal Nodes

After obtaining the first LOD (level-0), higher level of detail (level>0) is

produced by repeating the pseudo code until desired level of detail is achieved. The

 77

simplification for every level of detail starts by examining the root node. The

process is encapsulated as below:

1. Initially set the is_simplified[level] status as true and examining all children

nodes of the current node.

a. If all children nodes’ is_simplified [level-1] true, get the data from all

of the children nodes.

b. Else, set node’s is_simplified [level] status false and stop checking on

other children nodes.

2. Check for is_simplified [level] status,

a. If is_simplified [level] is true, simplify the data obtained previously

using the explained simplification algorithm (Section 4.4.1), then save

it to file named level.LOD in node’s directory.

b. Else continue check on the children nodes.

4.5 Run-Time Rendering

For each frame, only the nodes inside view frustum are being rendered. First

of all, the projection matrix and model matrix are extracted from current graphics

world. Hence, the clipping planes can be created. During rendering process, every

bounding cube, which bound every octree node, is then checked its eight points at the

corner. If the point is in frustum, load the node’s triangle list into our system.

After the previous simplification has been carried out, the mesh is simplified

into a few versions. Though, there are multiresolution meshes are available for the

graphics rendering. To decide which resolution of the mesh to be loaded, the

distance of the object to viewing point is the key in making decision on it. Whenever

the object is near to view point, extract the higher resolution node mesh. Else, use

the less resolution mesh for rendering.

After determining whether a node is inside or outside the frustum and also the

node’s level of detail, afterward the triangles inside the node is extracted from its

directory. If the normal, color or texture coordinates is provided, then this attribute is

 78

loaded with its geometric information. By using the OpenGL functions, these

triangles can be drawn subsequently.

To reduce disk access and speed up the rendering, the triangles for visible

nodes are kept in main memory after loading. Hence, the same data no need be

obtained from disk every frame if it is inside frustum for several continuous frames.

Whenever the loaded data is no longer falls in the frustum for a period of time, then

the data is obsolete and thrown from main memory to make the space available for

other visible nodes.

4.6 Summary

As this methodology have to deal with variety of massive datasets, hence the

implementation is very critical in memory management. The memory allocation has

to be handled with cares and has to be released from time to time. It is critical to

avoid memory leaking problem. Anyhow, the framework has been successfully

implemented to overcome the stated problems. In next chapter, the efficiency and

robustness of the framework is evaluated. Hence, the results is analyzed and

discussed in following chapter.

CHAPTER 5

RESULTS AND DISCUSSIONS

5.1 Introduction

To evaluate the proposed methodology in large data simplification with

surface preservation, the Buddha model, which is larger than mostly all low cost

computer’s main memory is analyzed and discussed in following experiments.

Buddha model has 1, 087, 716 triangles. This out-of-core simplification is run on

one CPU of a 2.4GHz Pentium IV with 512MB of RAM and NVIDIA GeForce FX

5200 graphics card.

At one time, the maximum main memory assigned for data storage and

processing for the experiments is restricted to 12MB of RAM only. It is to making

sure almost all of the low cost personal computers nowadays can perform this system

without any memory shortage and memory leaking problems. Besides, it is designed

so that main memory can be allocated in rendering or any other process.

First is the analysis on octree’s performance based on the octree’s depth and

leaf node’s size. Secondly, out-of-core simplification is evaluated carefully. To

compare the algorithm with other out-of-core simplification techniques, out-of-core

simplification (OOCS) by Lindstrom (2000b) is preferred. Meanwhile, the accuracy

of simplified mesh is measured by using Metro tool like other algorithms always do.

The quality and speed of this simplification method are revealed in numerical tables.

Besides, the qualities of simplified models are visually shown in images.

 80

5.2 Octree Construction Analysis

The time spent in octree generation is generally depends on the maximum

number of triangles assigned in every leaf node and also the octree subdivision level

(depth). Based on the experiments (Table 5.1), it proves the parameters continuously

affects how many of the total end nodes are generated. The more the leaf nodes are

created, the longer the octree building time is required.

Table 5.1 Octree generation duration

Leaf nodes’ max tri Octree depth Total of leaf nodes Built Time (h:m:s)

5 1374 6: 42 (402s) 1000

8 3568 8: 30 (510s)

5 1316 6: 42 (402s) 1500

8 2380 7: 33 (453s)

5 1262 6: 38 (398s) 2000

8 1654 6: 57 (417s)

5 1127 6: 26 (386s) 3000

8 1140 6: 27 (387s)

5 623 5: 39 (339s) 6000

8 623 5: 41 (641s)

Besides, one can notice that the relationships between the maximum number

of triangles in leaf node (max tri) and the octree’s depth with the octree building time

are highly correlated (Figure 5.1). More time is imposed when the maximum

triangle in every end node is less. Meanwhile, octree construction time is higher

when the octree’s subdivision level is higher. These two situations happen as they

both are expanding the octree’s size.

From the above experiments, the correlations between the parameters have

illustrated that both maximum number of triangles and octree’s depth are controlling

the octree construction. Relationship between maximum number of triangles and

octree’s depth is unique. It is observed that when maximum number of triangles of

leaf node is fixed, hence a deeper subdivided octree creates more end nodes and

 81

finally enforces more octree building time (Refer Table 5.1). Similarly, when

octree’s depth is fixed, then the smaller node assignation will create a bigger tree. In

Table 1, octrees with 3000 and 6000 maximum number of triangles have full control

on the octree generation. This is mainly because both of them created tree that less

the 5 level of subdivision. Hence, the assigned octree’s depth has no impact on

octree generation.

Figure 5.1 Octree building time versus (a) maximum number of triangles and (b)

octree subdivision depth

The maximum number of triangles or subdivision level shouldn’t be assigned

an extremely large or extremely small figure. Whenever either the maximum

number of triangles or octree subdivision depth is set too high, then the other party

will lose its full identity in controlling an octree construction. Let’s say the octree is

only allowed to be subdivided three times at most, thus setting the maximum number

of triangles to a small number will only have a little impact to the octree and

probably produce an unbalance tree.

5.3 Out-of-Core Simplification Analysis

In simplification analysis, some experiments in a few perspectives have been

carried out. First is the analysis on the multiresolution simplified meshes, which are

generated using the proposed out-of-core vertex clustering technique. Next, the

Time

Leaf node’s max tri

Time

Octree’s depth

(a) (a)

 82

simplified models are applied in a variety of distances to show its quality based on

viewing perception. Besides, this proposed simplification technique is compared

with Out-of-Core Simplification (OOCS) by Lindstrom (2000b). Lastly, the

relationship between simplification and octree construction is revealed.

5.3.1 Proposed Out-of-Core Simplification Analysis

From Figure 5.2, different resolutions of Buddha model, which simplified

using the proposed out-of-core vertex clustering technique, are given away. The

models are simplified at the first level of detail, which means each simplification is

done on leaf nodes only. The quality distortion is hardly to be perceived even after a

drastic simplification from 1, 087, 7106 triangles to 383, 619 triangles. The Buddha

model starts obviously losing its detail when the mesh is reduced to approximate 60K

polygons (Figure 5.2e).

In controlling the level of detail, the maximum number of triangles assigned

to octree’s leaf nodes plays an important role. That is, all of the triangles inside a

node will be simplified using the new variation of vertex clustering technique with

the constraint that the number of triangles it has must less than the assigned

maximum number of triangles. Like in Figure 5.2a, the maximum number of

triangles for node simplification is 200, thus creating a smoother looks simplified

Buddha as fewer polygons are simplified once. Whilst for Buddha in Figure 5.2.e, a

total of 6000 polygons are reduced to a few hundreds polygons to obtain this 60K

polygon mesh. This drastic polygon reduction certainly creates poorer quality mesh.

 83

Figure 5.2 Out-of-core simplification of Buddha model in different resolutions

(T = number of triangles)

To evaluate each simplification on the leaf nodes in details, the following

table shows the simplification duration and the error in each simplified mesh. The

mean error and RMS error are calculated using the Metro tool designed by Cignoni

e) T = 59, 252

a) T = 383, 619 b) T = 245, 485 Original, T = 1, 087, 716

d) T = 106, 993 c) T = 183, 393

 84

et al. (1998). The coarser the mesh, the bigger the error it has. As overall, the errors

are low thus the meshes’ qualities are relatively good.

Investigation on Table 5.2 shows that more time is used in coarser mesh

simplification. This is because, again, when the assigned maximum number of

triangles is larger, thus its simplification time on each leaf nodes is higher. When the

the node is bigger, the more triangles it has, thus the searching on the boundary edges

are more tedious and time consuming.

Table 5.2 Simplification times and errors of simplified Buddha models

Model Tin Tout Time (h: m: s) Mean Error RMS Error

Buddha 1, 087, 716 527, 338 55 0.000010 0.000022

Buddha 1, 087, 716 383, 619 1: 03 0.000018 0.000036

Buddha 1, 087, 716 245, 485 1: 21 0.000042 0.000073

Buddha 1, 087, 716 183, 393 2: 02 0.000070 0.000118

Buddha 1, 087, 716 106, 993 4: 51 0.000170 0.000274

Buddha 1, 087, 716 59, 252 8: 11 0.000289 0.000448

In this proposed method, the object is rendered based on the viewing distance

aspect. Therefore, less detail mesh can be used when the object is far from user

viewpoint as the user hardly perceives the loss of detail. Figure 5.3 shows the

simplified Buddha in Figure 5.2 in different distances.

 85

Figure 5.3 Multiresolution of Buddha model in different distances

5.3.2 Relationships between Simplification and Octree Constructions

Our out-of-core simplification is in sequence and continuous (Figure 5.4).

This means the simplification on next level of detail is based on the previously

simplified mesh. It is much faster than simplifying the original mesh every time a

new level of detail is required as the data reading on out-of-core data is memory

inefficient. Anyway, it will produce a little less quality mesh compared to the

simplification directly referring to the original mesh.

a) 384K

b) 245K

e) 59K

c) 183K

d) 107K

 86

Figure 5.4 Sequential simplification on Buddha model, using maximum number

of triangles = 1000, Octree’s depth = 8

The generation of first level of detail is completed by simplifying the original

mesh, which already well distributed in octree leaf nodes. Whilst for the other levels

of detail, it is obtained by simplifying the internal nodes of the built octree. Table

5.3 shows the generation times and output sizes of three simplified meshes. First

level of detail is produced in a reasonable timing. Meanwhile, the other levels of

details (LOD 2 and LOD 3) have excellent simplification durations. Subsequently,

the total time for all the level of details simplification is relatively small in overall.

At the same time, Table 5.3 also demonstrates the number of triangles

generated in each level of detail is about 30% to 50% of the previous simplified mesh

has. The output size is depends on the octree construction setting. The smaller the

maximum number of triangle assigned to the leaf nodes, the finer the mesh. For

simplification on internal nodes (other levels of detail), the number of discard

vertices is depends on the tree structure. Only the internal node, which has all the

children nodes been simplified before is allowed to be simplified further. It ensures

the simplification generally preserves the object’s shape.

LOD 2
T = 109, 653

LOD 3
T = 67, 435

LOD 1
T= 183, 393

 87

Table 5.3 Multiresolution simplification on Buddha in different octree structures

Simplification level Octree

Type

Octree

Specification LOD 1 LOD 2 LOD 3

Total time

(h: m: s)

∆ = 115,525 ∆ = 59,252 ∆ = 30,809 1 Max tri: 1000

Depth: 5 T = 4: 17 T = 16 T = 18

T = 4: 51

∆ = 183,393 ∆ = 109,653 ∆ = 67,435 2 Max tri: 1000

Depth: 8 T = 2: 02 T = 13 T = 18

T = 2: 33

∆ = 112,354 ∆ = 59,523 ∆ = 30,821 3 Max tri: 2000

Depth: 5 T = 4: 27 T = 19 T = 19

T = 5: 05

∆ = 127,700 ∆ = 75,397 ∆ = 64,353 4 Max tri: 2000

Depth: 8 T = 3: 41 T = 12 T = 12

T = 4: 05

∆ = 106,993 ∆ = 58,726 ∆ = 31,449 5 Max tri: 3000

Depth: 5 T = 4: 51 T = 18 T = 18

T = 5: 27

∆ = 107,691 ∆ = 59,522 ∆ = 36,457 6 Max tri: 3000

Depth: 8 T = 4: 50 T = 19 T = 17

T = 5: 26

The simplification time and quality is directly affected by the octree structure.

From the same table (Table 5.3), we can observe that the smaller the maximum

number of triangle assigned to leaf node, the faster the node simplification (Figure

5.5). This is because the larger the node, the time spent for searching on boundary

edges is longer.

Figure 5.5 Simplification time versus leaf node’s maximum number of triangles

For the same amount of maximum number of triangle, a deeper octree creates

quicker simplification too. This is because when the simplification is limited to a

Simplification Time

Leaf node’s max tri

 88

certain subdivision level, some nodes will be imposed a number of triangles, which is

greater than the assigned maximum number of triangles. Based on the testing of

octree with maximum number of triangles is 200 each node, the maximum depth of

octree can reach is seven subdivision levels for the simplified mesh with 383K

triangles. Meanwhile, the simplification with assigned 1000 or 2000 maximum

number of triangles can reach maximum depth of six subdivision levels. Thus, when

the octree’s depth is limited to five levels, some nodes will be assigned a greater

number of triangles than they are supposed to have. So on, the bigger node creates

slower processing time as explained before. For simplification with assigned 3000

maximum number of triangles, its maximum depth is less than five levels. Hence,

the simplification time and output size for both depths with level five or level eight

are almost the identical.

The assignations of maximum number of triangles and octree’s depth

shouldn’t go into extreme values. Assigning an extremely small maximum number

of triangles in leaf node is discouraging. This is because very little of triangles can

be eliminated in one node simplification. In the meantime, a too large maximum

number of triangles also has disadvantage in introducing poor simplification.

Basically an extremely low octree subdivision may create poor simplification

as well. Based on the experiments, subdivision level of octree is rarely exceeding

level ten. Hence, the octree won’t expand too large. To control the simplification on

the nodes, the best way is to set the maximum subdivision level to a relatively big

number (level eight or level ten). Accordingly, the node simplification is fully

controlled by the maximum number of triangles in every leaf node.

One may question when the levels of detail generation will end? It can be set

to desired levels of detail. Anyway, octree’s depth also plays a role in controlling the

levels of detail generations. The simplification will stop when it’s approaching the

root node even the levels of detail generation haven’t finished.

 89

5.3.3 Surface-Preserving Simplification Analysis

The surface preservation is including attribute preservation on normal, color

and texture attributes. Anyway, existing massive PLY data sets are not provided

these attributes. For small PLY model with color, its RGB is all set to 255, 255, 255.

Therefore, the preservation is hard to be shown. Anyway, the Generalized Quadric

Error Metric (Garland and Heckbert, 1998) had proved their robustness in surface

preservation.

Due to the memory problem, large mesh is not able to be texture mapped.

However, as a proof to attributes preservation, a simplified Buddha has been texture

mapped (spherical texture mapping) using 3D modeling software (3D Max Studio)

and then further simplified using the proposed algorithm. The simplification on

textured object is revealed in Figure 5.6. Due to the generalized quadric error metric

is assuming the mesh is continuous. Thus, we can see the discontinuous joint at the

boundary of the texture.

 90

Figure 5.6 Two different texture preserving simplifications on Buddha model

a) 15, 536 b) 7, 997 c) 5, 484

Texture 1

Texture 2

 91

5.3.4 Comparison on Out-of-Core Simplifications

Comparison is made between our algorithm and Out-of-Core Simplification

(OOCS) by Lindstrom (2000b). This is because OOCS is among the fastest

simplification method and also uses the vertex clustering operator like our

methodology. Moreover, the quality of OOCS technique is also good in general.

Following diagram (Figure 5.7) illustrates the Buddha simplified by OOCS and our

simplification algorithm. For the same amount of triangles both simplified mesh

from both algorithms, OOCS uses more space partitioning than our do. Thus, OOCS

produces slightly higher quality mesh than our do. In fact, fewer end nodes are used

in our case yet more triangles are retained in each node because of the preservation

on boundary edges.

Figure 5.7 Simplified Buddha with 90K triangles using OOCS (Lindstrom,

2000b) and the proposed method

In term of simplification time, our algorithm is faster than OOCS for a large

simplified mesh (90K triangles or more). Unfortunately, for drastic simplified mesh

with 50K or less triangles, the OOCS is much faster. OOCS is faster as the

rectilinear cells are less. While for us, collapsing a very large node is more time

OOCS
Time = 7: 23

72 x 180 x 72 cells
Original Buddha

Proposed method
Time = 6: 02

976 end nodes

 92

consuming because the involving boundary edges searching is longer when the node

contains more triangles. Table 5.4 shows the processing time of OOCS.

Table 5.4 Simplification on Buddha model using OOCS (Lindstrom, 2000b)

Output Size (Tout) Cell dimension Time (h: m: s)

95340 72 x 180 x 72 7: 37

68028 57 x 150 x 57 2: 28

31564 38 x 100 x 38 57

8104 20 x 50 x 20 50

Anyhow, our simplification technique has its pros as it can overcome some

other problems. First of all, simplification on single node evades unnecessary action

in getting to know the neighbouring information. Moreover, the simplification on

well partitioned octree nodes avoids repartitioning of mesh for more than one level of

detail generations. Additionally, the simplified mesh is ready for query extraction

during run-time rendering.

A big difference between OOCS and ours is, whenever several levels of detail

are required, our simplification is faster by comparing the total time needed for few

levels of detail generation. The scenario is explained in Section 5.2.2 previously.

Moreover, OOCS can’t generate output, which its size larger than available

main memory. Opposite to it, ours can do so because we are exploiting the disk

usage in keeping the simplified mesh. Furthermore, the node simplification is

definitely can be performed without memory shortage dilemma due to the small sub

mesh is kept in every leaf node.

On the whole, the speed of our proposed method is compatible with the

others as they are at least 10 times slower than OOCS do (Comparisons based on

Chapter 2). These algorithms created extremely good fidelity mesh but extremely

time-consuming.

 93

5.4 Summary

From the experiments, it is proved that proposed methodology is capable in

simplifying large datasets with surface preservation. An obvious finding is that

octree construction greatly affects the simplification process. That is, the level of

detail generation is guided by the octree structure. Letting leaf node size to control

the simplification process generally can guarantee the creation of a desired output

mesh. Besides, results showed that the octree subdivision level shouldn’t go

extremely deep to avoid extended construction time.

More experiments and brief discussion are carried out in Appendix A and

Appendix B. The same testing environment is used for the experiments in

appendices. Appendix A shows the results of Dragon model with 871, 414 triangles

whilst Appendix B shows the results of Blade model with 1, 765, 388 triangles.

CHAPTER 6

CONCLUSIONS

6.1 Summary

This project has presented a novel out-of-core simplification with small

memory allocation for computer games. In this project, the objectives of the study

are

(1) To perform out-of-core simplification in low end personal computer

(2) To preserve surface attributes in simplification process

In order to make it a success mission, the methodology starts with preprocess

and follows by run-time process.

The first objective is to process and simplify massive datasets so that it can be

visualized during run-time. To ensure the data is loadable into limited main memory,

the data is loaded part by part into main memory. Input data is converted into

triangle soup representation for memory efficiency. Then, to make the data suitable

for run time data accessing, the data is organized in an octree data structure, which is

exploiting on disk storage. Subsequently, the mesh in every octree node is simplified

independently using the proposed new vertex clustering technique. Finally, the

suitable portion of mesh is extracted and rendered based on viewing perspective.

Reviewing the results in Chapter 5, it is proved that the proposed

methodology is capable in simplifying the large data sets. The statistics show that

the proposed simplification technique generated relatively pleasant output with small

 95

simplification time. Small memory footprint has been exploited, as only a few

megabytes of main memory are required. Anyhow, the simplification quality is

constrained by octree condition and its quality could be futher improved.

In the second objective, the surface attributes are important in bringing out

the beauty of an object. To do this, the generalized quadric error metrics, which

formally used in vertex pair contraction has been adjusted and applied into the

proposed vertex clustering technique. By using it, the best optimal vertex and the

surface attributes are retained after simplification process. The metrics is robust yet

easy.

As conclusion, the proposed methodology has successfully simplified and

displayed massive datasets, which preserves surface attributes, such as positions,

normals, colors and texture coordinates for graphics application. The invention on

modifying the vertex clustering coarsening operator and adopting the suitable

algorithms into this out-of-core framework has made the research goals are

accomplished. This algorithm is a practical and scalable system that allows the

inexpensive PCs to visualize datasets in computer games, which is formally an

impossible task.

6.2 Summary of Contributions

The main research contributions are:

a) New simplification operator

The simplification technique is a new variation of vertex clustering

coarsening operator. The proposed vertex clustering algorithm does not

retain the triangle that fall into three different cells, but performs the

simplification on single node by preserving its node’s boundary. As the

neighborhood of nodes is unnecessary, the node simplification is fully

independent. Besides, it has made the node simplification performable in

 96

main memory as the subdivided meshes are small enough to fit in available

main memory.

b) Unique octree construction

The octree has been exploiting the file and directory system on disk in an

organized scheme. By keeping the file path of every node, the node’s mesh is

always easy to be achieved. The children nodes are always contained in their

parents’ directory. Thus, in each directory, no more than eight children

nodes’ files are saved. This ensures the file searching is faster and systematic.

The memory used to keep all the data is eliminated, thus making sure even

large data also loadable into this octree structure.

Usually in octree generation, if a triangle’s vertices fall into different nodes,

the triangle is kept in its corresponding nodes. Subsequently, it creates

replicate triangles. Here, a triangle is only being saved in one of the node that

it falls. Thus, no data replication caused. The side effect of it may create

artifacts during rendering is rare. This is because neighbour nodes are always

fall into viewing frustum during rendering time.

c) Preserved surface attributes in large data simplification

The surface attributes are preserved by combining the generalized quadric

error metrics (Garland and Heckbert, 1998) into the proposed out-of-core

simplification. This metrics is originally designed for edge collapse

coarsening operators. Here, the metrics is adjusted to be applicable into the

proposed vertex clustering simplification operator.

In many out-of-core simplification algorithms, the surface attributes, such as

normal and color are frequently preserved but not the texture attributes.

Contrast to them, the texture coordinates are preserved in this proposed out-

of-core simplification framework.

d) Novel out-of-core simplification

The proposed methodology so far has not been exploited by previous

researches. By adopting the appropriate existing techniques and modifying

some existing algorithms, it is proved that the proposed method is able to

 97

handle the massive data simplification. In addition, the way of

implementations of simplification and octree structure are significantly novel

and suitable for many graphics application.

6.3 Future Work

The proposed framework showed a promising result. Nevertheless, it is not a

conclusive study. In fact, improvement could be applied to this method to enhance

the quality and also the speed for the simplification and rendering process. There are

few possible venues for future work. First of all, the system could be improved if the

main memory that an inexpensive computer has is known. That is, the maximum

main memory assigned to system may not always set to a fixed value of 12MB.

Instead, we can use more main memory when a higher main memory is detected on

the computer. It can speed up the data processing.

Besides, there are rooms to enhance the proposed vertex clustering method.

If the boundary edges could be further simplified, thus it can reduce more triangles at

one time. However, caution must to be taken to avoid cracks or holes that may be

generated after the simplification on boundary edges. One can adopt weighted error

metric in computing the optimal vertex for the discarded vertices. This is because it

generally produces better quality simplified mesh. For simplification with texture

preservation, the generalized quadric error metrics could be extended to handle the

discontinuous mesh.

On the other hand, try to apply other higher quality simplification operators

like edge collapse to the node simplification may produce more outstanding result.

To improve the quality of simplified mesh, other coarsening operators could be

inserted into the current system by forming a new hybrid framework. As an opinion,

one may simplify original mesh to a level of detail, which it is the highest quality

mesh for the run-time rendering based on the main memory that a PC has. This

avoid excessive data storage that a system may not afford to render even it is fit able

into system.

 98

From the experimental results, the optimal values for both maximum number

of triangles and subdivision level in octree construction for different kind of models

are found. The optimal values are found if it creates same output triangles with less

computation time. However, it is more practical if the optimal values can be

represented by using a formula instead of doing the try and error experiments. The

formula should illustrate the relationship between the data size with the maximum

number of triangles in every end node and subdivision depth.

A better real time rendering speed is desired. Due to this out-of-core

framework exploits a lot of disk usage, thus the data fetching could to be improved to

avoid too much of disk accessing during rendering time. For these reasons, a full

prefetching technique is eagerly sought. Besides, a good geometry caching is also

very welcome to be appended in this methodology.

Exploiting the OpenGL functions to fully utilities the graphics card’s memory

is a good idea in accelerating the rendering. Besides, changing the triangular mesh to

triangle strips structure may help the rendering speed as well. In the proposed vertex

clustering technique, the simplified mesh can be easily converted to triangle strips if

the input mesh is a manifold mesh. Else, more works have to done to process the

mesh to be manifold before hand. Besides, this methodology is looking forward to

be extended to other domains, such as medical visualization or virtual geographic

information system (GIS).

 112

APPENDIX A

This appendix show results on Dragon model with some brief descriptions.

Dragon has 871, 414 triangles and only has geometry data. Table A1 is the octree

generation duration, which shows the octree reach does not reach depth of 5 levels

when the maximum triangle in end node is 2000 triangles or more. The generation

time is fast as the data is not very big.

Table A1 Octree generation duration

Leaf nodes’ max tri Octree depth Total of leaf nodes Built Time (h:m:s)

5 2159 7: 42 (462s) 100

8 25733 21: 44 (1304s)

5 2151 6: 02 (362s) 200

8 12719 15: 38 (938s)

5 1958 6: 15 (375s) 1000

8 2463 6: 31 (391s)

5 1471 5: 14 (314s) 2000

8 1484 5: 13 (313s)

5 955 4: 42 (282s) 3000

8 955 4: 44 (284s)

Figure A1 shows the simplified Dragon models in a few resolutions. The

model is still maintaining a good shape even simplified until 60K triangles. The

simplified Dragon models in a range of distances are shown in Figure A2. To

evaluate the real error of the simplified meshes, Table A2 shows that the errors are

very small in overall.

 113

Figure A1 Out-of-core simplification of Dragon model in different resolutions

(Tri = number of triangles, Time = simplification time)

Original, Tri = 871, 414 a) Tri = 425, 531
 Time = 37 s

b) Tri = 298, 266
 Time = 39 s

c) Tri = 136, 144
 Time = 94 s

d) Tri = 107, 633
 Time = 148 s

e) Tri = 64, 428
 Time = 226 s

 114

Figure A2 Multiresolution of Dragon model in different distances

Table A2 Simplification times and errors of simplified Dragon models

Model Tin Tout Time (h: m: s) Mean Error RMS Error

Dragon 871, 414 425, 531 0: 37 0.000011 0.000022

Dragon 871, 414 298, 266 0: 39 0.000021 0.000040

Dragon 871, 414 136, 144 1: 34 0.000085 0.000140

Dragon 871, 414 107, 633 2: 28 0.000136 0.000226

Dragon 871, 414 62, 428 3: 46 0. 000198 0. 000320

A few levels of detail may be generated in an octree structure, an example of

the sequential simplification is revealed in Figure A3. Besides, Table A3 shows the

simplification time for different octree structures. As mentioned before, the

simplification is depends on octree structure. Additionally, the octree subdivision

level is not reaching level 5 when the maximum triangle in every node is 2000

triangles or more. Thus, the simplification times for octree with maximum triangles

of 2000 triangles and 3000 triangles are same for depth of 5 levels and 8 levels.

a) 426K

b) 298K

c) 136K

d) 107K

e) 64K

 115

Figure A3 Sequential simplification on Dragon model, using maximum number

of triangles = 200, Octree’s depth = 8

LOD 1
Tri = 298, 266
Time = 39 s

LOD 2
Tri = 179, 586
Time = 13 s

LOD 3
Tri = 143, 803

Time = 9 s

 116

Table A3 Multiresolution simplification on Dragon in different octree structures

Simplification level Octree

Type

Octree

Specification LOD 1 LOD 2 LOD 3

Total time

(h: m: s)

∆ = 125,982 ∆ = 65,115 ∆ = 34,222 1 Max tri: 100

Depth: 5 T = 2: 55 T = 12 T = 14

T = 4: 21

∆ = 425,531 ∆ = 245,776 ∆ = 153,394 2 Max tri: 100

Depth: 8 T = 1: 04 T = 12 T = 11

T = 1: 37

∆ = 125,914 ∆ = 65,107 ∆ = 34,230 3 Max tri: 200

Depth: 5 T = 2: 37 T = 12 T = 14

T = 3: 03

∆ = 298,266 ∆ = 179,586 ∆ = 143,803 4 Max tri: 200

Depth: 8 T = 0: 39 T = 13 T = 9

T = 1: 01

∆ = 122,707 ∆ = 64,740 ∆ = 34,404 5 Max tri: 1000

Depth: 5 T = 2: 47 T = 11 T = 14

T = 4: 12

∆ = 136,144 ∆ = 81,320 ∆ = 66,826 6 Max tri: 1000

Depth: 8 T = 1: 34 T = 9 T = 9

T = 1: 52

∆ = 107,249 ∆ = 61,830 ∆ = 35,059 7 Max tri: 2000

Depth: 5 T = 3: 29 T = 10 T = 14

T = 3: 53

∆ = 107,633 ∆ = 62,224 ∆ = 37,512 8 Max tri: 2000

Depth: 8 T = 3: 28 T = 10 T = 13

T = 3: 51

∆ = 87,640 ∆ = 53,617 ∆ = 41,303 7 Max tri: 3000

Depth: 5 T = 5: 03 T = 9 T = 11

T = 5: 23

∆ = 87,640 ∆ = 53,617 ∆ = 41,303 8 Max tri: 3000

Depth: 8 T = 5: 03 T = 9 T = 11

T = 5: 23

Referring Figure A4, comparison is made between the proposed

simplification method with the OOCS technique (Lindstrom, 2000b). Both

simplification times are similar but the proposed method produces less quality mesh

as the number of subdivided cells is less than OOCS has. Due to the object size is by

default does not has the surface attributes other than geometry data and it is

unloadable into 3D modeler software, thus the surface preservation is not

investigated for this model.

 117

Figure A4 Simplified Dragon with 100K triangles using OOCS (Lindstrom,

2000b) and the proposed method

OOCS
Time = 3: 15

160 x 140 x 80 cells

Proposed method
Time = 3: 28

1484 end nodes

Original Dragon

 118

APPENDIX B

This appendix show results on Blade model with some brief descriptions.

Blade model has 1, 765, 388 triangles and only has geometry data. Table B1 is the

processing time of octree construction. In overall, it requires more time than other

data do because the data is larger. Besides, it is noticed that the octree depth is less

than 5 levels hen the maximum triangle of end node is 2000 polygons.

Table B1 Octree generation duration

Leaf nodes’ max tri Octree depth Total of leaf nodes Built Time (h:m:s)

5 2514 20: 49 (1249s) 500

10 10960 29: 29 (1769s)

5 2463 20: 49 (1249s) 1000

10 5843 20: 02 (1442s)

5 2428 20: 43 (1243s) 1500

10 2892 21: 02 (1262s)

5 2320 20: 24 (1224s) 2000

10 2344 20: 24 (1224s)

5 2015 19: 46 (1186s) 3000

10 2015 19: 45 (1185s)

Figure B1 shows a few simplified Blade models and their simplification times.

As usual, the more triangles are collapsed, the more time it needs to simplify the

Blade model. The quality distortion is little as the data originally is too large. Hence,

the simplified models are generally still maintaining the object’s shape well. At the

same time, Figure B2 is the simplified Blade models for Figure B1 in different

distances.

 119

Figure B1 Out-of-core simplification of Blade model in different resolutions (Tri

= number of triangles, Time = simplification time)

b) Tri = 440, 608
 Time = 3: 17

d) Tri = 247, 448
 Time = 7: 30

e) Tri = 227, 934
 Time = 8: 24

Original, Tri = 1, 765, 388 a) Tri = 622, 868
 Time = 2: 34

c) Tri = 325, 774
 Time = 5: 13

 120

Figure B2 Multiresolution of Blade model in different distances

a) 622K

b) 440K

c) 326K

d) 247K

e) 228K

 121

As the quality between these simplified meshes is hard to be distinguished

visually, Table B2 is created to show the errors of the simplified models. The error

is acceptable. For example, the error for simplified Blade with 623K triangles is

relatively small.

Table B2 Out Simplification times and errors of simplified Blade models

Model Tin Tout Time (h: m: s) Mean Error RMS Error

Blade 1, 765, 388 622, 868 2: 34 0.080685 0.195153

Blade 1, 765, 388 440, 608 3: 17 0.169567 0.345696

Blade 1, 765, 388 325, 774 5: 13 0.290001 0.526541

Blade 1, 765, 388 247, 448 7: 30 0.465160 0.764213

Blade 1, 765, 388 227, 934 8: 24 0.504452 0.816460

The multiresolution Blade models are simplified in a sequential way.

Example of a sequential simplification is shown in Figure B3. Table B3 shows the

generation of three levels of detail using different octree setting. The simplification

time is less when the node size is smaller.

Referring Figure B4, comparison is made between the proposed

simplification method with the OOCS technique (Lindstrom, 2000b). As mentioned

previously, the simplification is limited using OOCS (Lindstrom, 2000b). Hence

100K triangles simplified meshes are compared between his algorithm with the

proposed algorithm. Due to the object size is by default does not has the surface

attributes other than geometry data and it is unloadable into 3D modeler software,

thus the surface preservation is not investigated for this model.

 122

Figure B3 Sequential simplification on Blade model, using maximum number of

triangles = 1000, Octree’s depth = 8

LOD 1
Tri = 325,774
Time = 313 s

LOD 2
Tri = 199,734
Time = 28 s

LOD 3
Tri = 132,046
Time = 38 s

 123

Table B3 Multiresolution simplification on Blade in different octree structures

Simplification level Octree

Type

Octree

Specification LOD 1 LOD 2 LOD 3

Total time

(h: m: s)

∆ = 233,920 ∆ = 118,864 ∆ = 55,622 1 Max tri: 500

Depth: 5 T = 8: 05 T = 44 T = 54

T = 9: 43

∆ = 440,608 ∆ = 234,106 ∆ = 133,180 2 Max tri: 500

Depth: 10 T = 3: 17 T = 41 T = 46

T = 4: 44

∆ = 232,780 ∆ = 118,832 ∆ = 55,654 3 Max tri: 1000

Depth: 5 T = 8: 06 T = 43 T = 54

T = 9: 43

∆ = 325,774 ∆ = 199,734 ∆ = 132,046 4 Max tri: 1000

Depth: 10 T = 5: 13 T = 28 T = 38

T = 6: 19

∆ = 231,632 ∆ = 118,822 ∆ = 55,654 5 Max tri: 1500

Depth: 5 T = 8: 10 T = 43 T = 54

T = 9: 47

∆ = 247,448 ∆ = 140,646 ∆ = 102,050 6 Max tri: 1500

Depth: 10 T = 7: 30 T = 36 T = 44

T = 8: 50

∆ = 226,904 ∆ = 118,550 ∆ = 55,894 7 Max tri: 2000

Depth: 5 T = 8: 27 T = 42 T = 54

T = 10: 03

∆ = 227,934 ∆ = 120,450 ∆ = 61,230 8 Max tri: 2000

Depth: 10 T = 8: 24 T = 41 T = 53

T = 9: 58

Figure B4 Simplified Blade with 100K triangles using OOCS (Lindstrom, 2000b)

and the proposed method

Original Dragon
OOCS

Time = 9: 02
100 x 160 x 80 cells

Proposed method
Time = 8: 48

1536 end nodes

 99

REFERENCES

Aggarwal, A., and Vitter, J. S. (1988). The Input/Output Complexity of Sorting and

Related Problems. Communications of the ACM. 31(9):1116–1127.

Alliez, P. and Schmitt, F. (1999). Mesh Approximation using a Volume-Based

Metric. Proceeding of Pacific Graphics ’99 Conference Proceedings. 1999. 292-

301.

Bajaj, C., and Schikore, D. (1996). Error-bounded Reduction of Triangle Meshes

with Multivariate Data. SPIE. 2656: 34-45.

Bayer, R. and McCreight, E. (1972). Organization of Large Ordered Indexes. Acta

Inform., 1:173–189.

Bernardini, F., Rushmeier, H., Martin, IM, Mittleman, J. and Taubin, G. (2002).

Building a Digital Model of Michelangelo’s Florentine Pietà. Computer Graphics

and Applications. 22(1): 59-67.

Borodin, P., Guthe, M. and Klein, R. (2003). Out-of-Core Simplification with

Guaranteed Error Tolerance. Vision, Modeling and Visualization 2003. 19-21

November 2003. Munich, Germany: 309-316.

Brodsky, D. and Watson, B. (2000). Model Simplification though Refinement. In:

Mackenzie, I.S. and Stewart, J. eds. Graphics Interface 2000. Montreal, Canada:

Morgan Kaufmann Publishers. 211-228.

 100

Brown, R., Pham, B. and Maeder, A. (2003a). Visual Importance-biased Image

Synthesis Animation. Proceedings of the 1st international conference on

Computer graphics and interactive techniques in Austalasia and South East Asia.

2003. New York, USA: ACM Press. 63-70.

Brown, R., Cooper, L. and Pham, B. (2003b). Visual Attention-Based Polygon Level

of Detail Management. Proceedings of the 1st international conference on

Computer graphics and interactive techniques in Austalasia and South East Asia.

2003. New York, USA: ACM Press. 55-62.

Cater, K. (2002). Selective Quality Rendering by Exploiting Inattentional Blindness:

Looking but not Seeing. Proceedings of the ACM symposium on Virtual reality

software and technology. 2002. New York, USA: ACM Press. 17-24.

Cater, K., Chalmers, A. and Dalton, C. (2003). Varying Rendering Fidelity by

Exploiting Human Change Blindness. Proceedings of the 1st international

conference on Computer graphics and interactive techniques in Austalasia and

South East Asia. 2003. New York, USA: ACM Press. 39-46.

Certain, A., Popovic, J., DeRose, T., Duchamp, T., Salesin, D. and Stuetzle, W.

(1996). Interactive Multiresolution Surface Viewing. Proceedings of SIGGRAPH

96. 91-98.

Chhugani, J. and Kumar, S. (2003). Budget Sampling of Parametric Surface Patches.

Proceedings of the 2003 symposium on Interactive 3D graphics. 2003. New York,

USA: ACM Press. 131-138.

Chiang, Y. J., Farias, R., Silva, C. and Wei, B. (2001). A Unified Infrastructure for

Parallel Out-Of-Core Isosurface Extraction and Volume Rendering of

Unstructured Grids’. Proc. IEEE Symposium on Parallel and Large-Data

Visualization and Graphics. 59–66.

 101

Chiang, Y. J., Goodrich, M. T., Grove, E. F., Tamassia, R., Vengroff, D. E. and J. S.

Vitter. (2000). External-Memory Graph Algorithms. Proc. ACM-SIAM Symp. on

Discrete Algorithms. 139–149.

Chiang, Y. J. and Silva, C. T. (1997). I/O Optimal Isosurface Extraction. IEEE

Visualization 97. 293–300.

Chiang, Y. J. and Silva, C. T. (1999). External Memory Techniques for Isosurface

Extraction in Scientific Visualization. External Memory Algorithms and

Visualization, DIMACS Series. 50:247–277.

Chiang, Y. J., Silva, C. T. and Schroeder, W. J. (1998). Interactive Out-Of-Core

Isosurface Extraction. IEEE Visualization 98. Oct. 1998. 167–174,.

Choudhury, P. and Watson, B. (2002). Completely Adaptive Simplification of

Massive Meshes. Northwestern University: Tech. Report CS-02-09, 2002.

Chrislip, C. A. and Ehlert Jr., J. F. (1995). Level of Detail Models for Dismounted

Infantry. Naval Posgraduate School, Monterey, CA.: Master’s Thesis.

Cignoni, P., Ganovelli, F., Gobbetti, E., Marton, F., Federico, P., and Scopigno, R.

(2003a). BDAM - Batched Dynamic Adaptive Meshes for High Performance

Terrain Visualization. Computer Graphics Forum. 22(3): 505-514.

Cignoni, P., Ganovelli, F., Gobbetti, E., Marton, F., Federico, P., and Scopigno, R.

(2003b). Planet-Sized Batched Dynamic Adaptive Meshes (P-BDAM).

Proceedings IEEE Visualization. October 2003. Italy: IEEE Computer Society

Press, 147-155.

Cignoni, P., Montani, C., Rocchini, C. and Scopigno, R. (2003c). External Memory

Management and Simplification of Huge Meshes. Visualization and Computer

Graphics, IEEE Transactions. 9(4): 525-537.

 102

Cignoni, P., Rocchini, C., Scopigno, R. (1998). Metro: Measuring Error on

Simplified Surfaces. Computer Graphics Forum. 17(2): 37-54.

Cohen, J., Olano, M. and Manocha, D. (1998). Appearance-Preserving Simplification.

Proceedings of SIGGRAPH 98 in Computer Graphics Annual Conference, ACM

SIGGRAPH. 19-24 July 1998. Orlando, Florida: ACM SIGGRAPH, ?.

Cohen, J., Varshney, A., Manocha, D., Turk, G., Weber, H., Agarwal, P. Brooks, Jr.

F. P. and Wright, W. (1996). Simplification envelopes. In: Rishmeier, H. ed.

Proceedings of SIGGRAPH 96. New Orleans, Louisianna: Addison Wesley. 119-

128.

Cohen, J., Luebke, D., Duca, N. and Schubert, B. (2003). GLOD: Level of Detail for

The Masses. The Johns Hopkins University and the University of Virginia:

Technical Report.

Comer, D. (1979). The Ubiquitous B-Tree. ACM Comput. Surv. 11:121–137.

Correa, W. T, Klosowski, J.T and Silva, C. T. (2002). iWalk: Interactive Out-of-Core

Rendering of Large Models. Princeton University, 2002: Technical Report TR-

653-02.

Danovaro, E., Floriani, L. D., Lee, M. and Samet, H. (2002). Multiresolution

Tetrahedra Meshes: an Analysis and a Comparison. Shape Modeling

International 2002 (SMI’02). 17-22 May 2002. Banff, Canada: IEEE, 83.

DeHaemer, J. M. and Zyda, M. J. (1991) Simplification of Objects Rendered by

Polygonal Approximations. Computers & Graphics. 15(2):175-184.

DeRose, T.D., Lounsbery, M. and Warren, J. (1993). Multiresolution Analysis for

Surfaces of Arbitrary Topology Type. Department of Computer Science,

University of Washington: Technical Report TR 93-10-05.

 103

Edelsbrunner, H. (1983). A New Approach to Rectangle Intersections, Part I.

Internat. J. Comput. Math. 13: 209–219.

El-Sana, J. and Chiang, Y. J. (2000). External Memory View-Dependent

Simplification. Computer Graphics Forum. 19(3): 139–150.

El-Sana, J. and Varshney, A. (1997). Controlled Simplification of Genus for

Polygonal Models. In: Yagel, R. and Hagen, H. eds. IEEE Visualization ’97.

Phoenix, Arizona: IEEE. 403-412.

El-Sana, J. and Varshney, A. (1998). Topology Simplification for Polygonal Virtual

Environments. IEEE Transaction on Visualization and Computer Graphics. 4(2):

133-144.

El-Sana, J. and Varshney, A. (1999). Generalized View-Dependent Simplification.

Computer Graphics Forum. 18(3): 83–94.

Erikson, C. (1996). Polygonal Simplification: An Overview. Department of Computer

Science, University of North Carolina, Chapel Hill, NC: UNC Technical Report

No. TR96-016.

Erikson, C. (2000). Hierarchical Levels of Detail to Accelerate the Rendering of

Large Static and Dynamic Polygonal Environments. University of North

Carolina at Chapel Hill: Ph.D. Thesis.

Erikson, C. and Manocha, D. (1998). Simplification Culling of Static and Dynamic

Scene Graphs. Department of Computer Science, University of North Carolina at

Chapel Hill: Technical Report TR98-009.

Erikson, C. and Manocha, D. (1999). GAPS: General and Automatic Polygonal

Simplification. In: Hodgins, J. and Foley, J. D. eds. ACM symposium on

Interactive 3D Graphics. Atlanta, Georgia: ACM SIGGRAPH. 79-88.

 104

Erikson, C., Monacha, D. and Baxter, W. V. III. (2001). HLODs for Faster Display

of Large Static and Dynamic Environments. 2001 ACM Symposium on

Interactive 3D Graphics. 111-120.

Farias, R. and Silva, C. T. (2001). Out-Of-Core Rendering of Large, Unstructured

Grids. IEEE Computer Graphics & Applications. 21(4): 42–51.

Fei, G. Z., Guo, B. N., Wu, E. H., Cai, K. Y. (2002). An Adaptive Sampling Scheme

for Out-of-Core Simplification. Computer Graphics Forum. 21(2): 111-119.

Franc, M. and Skala, V. (2001). Parallel Triangular Mesh Decimation without

Sorting. 17th Spring Conference on Computer Graphics (SCCG '01). April 2001.

Budmerice,Slovakia: IEEE, 22-29.

Funkhouser, T. A. and Sequin, C. H. (1993). Adaptive Display Algorithm for

Interactive Frame Rates During Visualization of Complex Virtual Environment.

Proceedings of the 20th annual conference on Computer graphics and interactive

techniques. 1993. New York, USA: ACM Press. 247-254.

Garland, M. (1999). Quadric–Based Polygonal Surface Simplification. Carnegie

Mellon University: Ph.D. Thesis.

Garland, M. and Heckbert, P. S. (1997). Surface Simplification Using Quadric Error

Metrics. In: Whitted, T. ed. Proceedings of SIGGRAPH 97. Los Angeles,

California: ACM Press. 209-216.

Garland, M. and Heckbert, P.S. (1998). Simplifying Surface with Color and Texture

Using Quadric Error Metrics. IEEE Visualization ’98 Conference Proceeding.

IEEE, 263-270.

Garland, M. and Shaffer, E. (2002). A Multiphase Approach to Efficient Surface

Simplification. Visualization ’02. Washington, DC, USA: IEEE Computer

Society, 117-124.

 105

Gieng, T. S., Hamann, B. Joy, K. I., Schlussmann, G. L. And Trotts, I. J. (1997).

Smooth Hierarchical Surface Traingulations, In: Yagel, R. and Hagen, H. eds.

IEEE Visualization ’97. Phoenix, Arizona: IEEE. 379-386.

Guthe, M., Borodin, P. and Klein, R. (2003). Efficient View-Dependent Out-of-Core

Visualization. Proceeding of The 4th International Conference on Virtual Reality

and Its Application in Industry (VRAI’2003). October 2003.

Haibin, W. and Quiqi, R. (2000). Fast Rendering of Complex Virtual Environment.

Proceedings of ICSP2000. 1395-1398.

Hamann, B. (1994). A data Reduction Scheme for Triangulated Surfaces. Computer

Aided Geometric Design. 11(20): 197-214.

Hoppe, H. (1996). Progressive Mesh. In: Rushmeier, H. ed. Proceeding of

SIGGRAPH 96. Computer Graphics Proceedings, Annual Conference Series.

New Orleans, Louisiana: Addison Wesley. 99-108.

Hoppe, H. (1997). View-dependent Refinement of Progressive Meshes. Proceedings

of the 24th Annual Conference on Computer Graphics and Interactive Techniques.

August 1997. ACM: 189-198

Hoppe, H. (1998a). Efficient Implementation of Progressive Meshes. Computer

Graphics. 22(1): 27-36.

Hoppe, H. (1998b). Smooth View-Dependent Level-of-Detail Control and Its

Application to Terrain Rendering. IEEE Visualization ’98. October 1998. North

Carolina: IEEE, 25-42.

Hoppe, H. (1999). New Quadric Metric for Simplifying Meshes with Appearance

Attributes. IEEE Visualization ’99. October 1999. San Francisco, California:

IEEE, 59-66.

 106

Hoppe, H., DeRose, T., Duchamp, T., McDonald, J. and Stuetzle, W. (1993). Mesh

Optimization. In: Kajiya, J. T. ed. Proceeding of SIGGRAPH 93. Anaheim,

California: Addison Wesley. 19-26.

Hughes, M., Lastra, A. A. and Saxe, E. (1996). Simplification of Global-Illumination

Meshes. Proceedings of Eurographics '96, Computer Graphics Forum. 15(3):

339-345.

Isenburg, M. and Gumhold, S. (2003). Out-of-Core Compression for Gigantic

Polygon Meshes. ACM Transaction on Graphics. 22(3): 935-942.

Isenburg, M., Gumhold, S. and Snoeyink,J. (2003a). Processing Sequence: A New

Paradigm for Out-of-Core Processing on Large Meshes.

Isenburg, M., Lindstrom, P., Gumhold, S. and Snoeyink, J. (2003b). Large Mesh

Simplification using Processing Sequences. Proceedings of Visualization 2003.

19-24 October 2003. Seattle, Washington: IEEE, 465-472.

Jacob, C. E., Finkelstein, A. and Salesn, D. H. (1995). Fast Multiresolution Image

Querying. In: Cook, R. ed. Proceeding of SIGGRAPH 95, Computer Graphics

Proceedings, Annual Conference Series. Los Angeles, California: Addison

Wesley. 277-286.

Kalvin, A. D. and Taylor, R. H. (1994). Superfaces: Polygonal Mesh Simplification

with Bounded Error. IBM Research Division, T. J. Watson Research CEntre,

Yorktown Heights, NY: Technical Report RC 19828 (#87702).

Kalvin, A.D. and Taylor, R. H. (1996). Superfaces: Polygonal Mesh Simplification

with Bounded Error. IEEE Computer Graphics & Applications. 16(3):64-77.

Klein, R., Liebich, G. ad Straber, W. (1996). Mesh Reduction With Error Control. In:

Yagel, R. and Nielson, G. M. eds. IEEE Visualization ’96. San Francisco,

Carlifornia: IEEE. 311-318.

 107

Levenberg, J. (2002). Fast View-Dependent Level-of-Detail Rendering Using

Cached Geometry. IEEE Visualization 2002. October 2002. Boston, MA, USA:

IEEE. 259-265.

Linderman, J., (2000). rsort and fixcut man page, Apr 1996. (revised June 2000).

Lindstrom, P. (2000a). Model Simplification using Image and Geometry-Based

Metrics. Georgia Institute of Technology: Ph.D Thesis.

Lindstrom, P. (2000b). Out-of-Core Simplification of Large polygonal Models. ACM

SIGGRAPH 2000. July 2000. 259-262.

Lindstrom, P. (2003a). Out-of-Core Surface Simplification. California: University of

California, Davis, lectures on "Multiresolution Methods" February 2003.

Lindstrom, P. (2003b). Out-of-Core Construction and Visualization of

Multiresolution Surfaces. Symposium on Interactive 3D Graphics. April 2003.

ACM, 93-102, 239.

Lindstrom, P. (2003c). Out-of-core Construction and Visualization of

Multiresolution Surfaces. Proceedings of the 2003 Symposium on Interactive 3D

Graphics. 28-30 April 2003. Monterey, California: ACM Press,

Lindstrom, P., Koller, D., Ribarsky, W., Hughes, L. F., Faust, N. and Turner, G.

(1996). Real-Time, Continuous Level of Detail Rendering of Height Fields. ACM

SIGGRAGH 96. 109-118.

Lindstrom, P., and Pascucci, V. (2001). Visualization of Large Terrains Made Easy.

IEEE Visualization 2001. October 2001. San Diego, California: IEEE, 363–370.

Lindstrom, P. and Silva, C. (2001). A Memory Insensitive Technique for Large

Model Simplification. IEEE Visualization 2001. October 2001. IEEE, 121-126.

 108

Lindstrom, P. and Turk, G. (1998). Fast and Memory Efficient Polygonal

Simplification. In: Ebert, D., Hagen, H. and Rushmeier, H. eds. IEEE

Visualization ’98. Research Triangle Park, North Carolina: IEEE. 279-286.

Lindstrom, P. and Turk, G. (1999). Evaluation of Memoryless Simplification. IEEE

Transactions on Visualization and Computer Graphics. 5(2): 98-115.

Liu, Y. J., Yuen, M. F. and Tang, K. (2003). Manifold-Guaranteed Out-of-Core

Simplification of Large Meshes with Controlled Topological Type. The Visual

Computer (2003). 19(7-8): 565-580.

Low, K. L. and Tan T. S. (1997). Model Simplification using vertex-clustering. In:

Cohen, M. and Zeltzer, D. eds. 1997 ACM Symposium on Interactive 3D

Graphics. Phode Island: ACM SIGGRAPH. 75-82.

Luebke, D. and Erikson, C. (1997). View-Dependent Simplification of Arbitrary

Polygonal Environments. ACM SIGGRAPH 97. 199–208.

Nooruddin, F. S. and Turk, G. (2003). Simplification and Repair of Polygonal

Models using Volumetric Techniques. IEEE Transactions on Visualization and

Computer Graphics. 9(2): 191-205.

Ohshima, T., Yamamoto, H. and Tamura, H. (1996). Gaze-Directed Adaptive

Rendering for Interacting with Virtual Space. Proceedings of the IEEE Virtual

Reality Annual International Symposium (VRAIS). 30 March – 03 April 1996.

IEEE, 103-110.

Prince, C. (2000). Progressive Meshes for Large Models of Arbitrary Topology.

University of Washington: Master’s Thesis.

Reddy, M. (1995). Musings on Volumetric Level of Detail for Virtual Environments.

Virtual Reality: Research, Development and Application. 1(1): 49-56.

Reddy, M. (1997). Perceptually Modulated Level of Detail for Virtual Environment.

University of Edinburgh: Ph.D Thesis.

 109

Ronfard, R. and Rossignac, J. (1996). Full-Range Approximations for Triangulated

Polyhedra. Computer Graphics Forum. 15(3): 67-76;

Rossignac, J. and Borrel, P. (1992). Multi-resolution 3D Approximations for

Rendering Complex Scenes. NY: Technical Report RC 17697.

Rossignac, J. and Borrel, P. (1993). Multi-resolution 3d Approximations for

Rendering Complex Scenes. In: Falciendo, B. and Kunii, T. L. eds. Modeling in

Computer Graphics. Springer-Verlag. 455-465.

Rushmeier, H., Larson, G. W., Piatko, C., Sanders, P. and Rust, B. (1995).

Comparing Real and synthetic Images: Some Ides about Metrics. In: Hanrahan, P.

and Purgathofer, W. eds. Eurographics Rendering Workshop 1995. Dublin,

Ireland: Springer-Verleg. 82-91.

Schmitt, F. J. M., Barsky, B. A. And Du, W. H. (1986). An Adaptive Subdivision

Method for Surface-Fitting From Sample Data. Computer Graphics. 20(4): 179-

188.

Schroeder, W. J. (1997). A Topology Modifying Progressive Decimation Algorithm.

In: Yagel, R. and Hagen, H. eds. IEEE Visualization ’97. Phoenix, Arizona: IEEE.

205-212.

Schroeder, W. J., Zarge, J. A. And Lorensen W. E. (1992). Decimation of Triangle

Meshes. In: Catmull, E. E. ed. Computer Graphics (Proceeding of SIGGRAPH

92). Chicago: Illinois. 65-70.

Shaffer, E. and Garland M. (2001). Efficient Simplification of Massive Meshes. 12th

IEEE Visualization 2001 Conference (VIS 2001). 24-26 October 2001. San Diego,

CA: IEEE.

Silva, C.T., Chiang, Y. J., El-Sana, J. and Lindstrom, P. (2002). Out-Of-Core

Algorithms for Scientific Visualization and Computer Graphics. IEEE

Visualization Conference 2002. October 2002. Boston, MA: IEEE, 217-224.

 110

Southern, R., Marais, P. and Blake, E. (2001). Generic Memoryless Polygonal

simplification. ACM Afrigraph. ACM, 7-15.

Trotts, I. J., Hamann, B., Joy, K. I. (1999). Simplification of Tetrahedra Meshes with

Error Bounds. IEEE Transaction on Visualization and Computer Graphics. 5(3):

224-237.

Varadhan, G. and Manocha, D. (2002). Out-of-Core Rendering of Massive

Geometric Environments. IEEE Visualization 2002. Oct 27 – Nov 1. Boston:

IEEE, 69-76.

Vince, J. (1993). Virtual Reality Techniques in Flight Simulation. In A.A. Earnshaw,

M.A. Gigante and H.Jones eds. Virtual Reality Systems. Academic Press Ltd.

Watson, B., Friedman, A. and McGaffey, A. (2000). Using Naming Time to Evaluate

Quality Predictors for Model Simplification. Proceeding of the CHI 2000

Conference on Human Factors in Computing Systems. April 2000. The Hague,

The Netherlands: Addison Wesley. 113-120.

Watson, B., Walker, N. and Hodges, L.F. (1995). A User Study Evaluating Level of

Detail Degradation in the Periphery of Head-Mounted Displays. Proceedings of

the FIVE ’95 Conference. UK: University of London, 203-212.

Wernecke, J. (1993). The Inventor Mentor: Programming Object-Oriented 3D

Graphics with Open Inventor (TM). Release 2, 1st Edison. Boston, MA, USA:

Addison-Wesley.

Wilson, A. and Manocha, D. (2003). Simplifying Complex Environments Using

Incremental Textured Depth Meshes. ACM Transactions on Graphics (TOG).

July 2003. New York, USA: ACM Press. 678-688.

Wu, J. and Kobbelt, L. (2003). A Stream Algorithm for the Decimation of Massive

Meshes. Graphics Interface ‘03. 185-192.

 111

Xia, J. C., El-Sana, J. and Varshney, A. (1997). Adaptive Real-Time Level-of-Detail-

Based Rendering for Polygonal Models. IEEE Transactions on Visualization and

Computer Graphics. 3(2): 171-183.

Zach, C, Mantler, S. and Karner, K. (2002). Time-critical Rendering of Discrete and

Continuous Levels of Detail. Proceedings of the ACM symposium on Virtual

reality software and technology. 2002. New York, USA: ACM Press.

R & D FINAL REPORT 2nd. OPTION FORMAT

IP SCREENING & TECHNOLOGY ASSESSMENT FORM

END OF PROJECT

BENEFIT OF REPORT

BORANG PENGESAHAN LAPORAN AKHIR

TITLE PAGE (as 1st option report)

ABSTRACT(B. INGGERIS)

ABSTRAK(B. MELAYU)

ACKNOWLEDGEMENT

TABLE OF CONTENTS

CHAPTER 1
 INTRODUCTION

GENERAL PROBLEM STATEMENT OR STATE OF THE ART

OBJECTIVE AND SCOPE OF STUDY

CHAPTER 2 (related technical paper published – results of project : format as paper published)
 TITLE

 ABSTRACT

 INTRODUCTION

 EXPERIMENTAL

 RESULTS AND DISCUSSION

 CONCLUSION

CHAPTER 3 (related technical paper published –results of project)

CHAPTER 4 (related technical paper published –results of project)

 1

UTM/RMC/F/0014 (1998)

UNIVERSITI TEKNOLOGI MALAYSIA
Research Management Centre

PRELIMINARY IP SCREENING & TECHNOLOGY ASSESSMENT FORM

(To be completed by Project Leader submission of Final Report to RMC or whenever IP protection arrangement is required)

1. PROJECT TITLE IDENTIFICATION :

 OUT-OF-CORE SIMPLIFICATION WITH APPEARANCE PRESERVATION

FOR COMPUTER GAME APPLICATIONS Vote No: 75166

2. PROJECT LEADER :

Name : ABDULLAH BIN BADE

Address: FAKULTI SAINS KOMPUTER DAN SISTEM MAKLUMAT, UNIVERSITI TEKNOLOGI

MALAYSIA, 81310 SKUDAI JOHOR

Tel : 07-5532324 Fax : 07-5565044 e-mail : abade@fsksm.utm.my

3. DIRECT OUTPUT OF PROJECT (Please tick where applicable)

4. INTELLECTUAL PROPERTY (Please tick where applicable)

Not patentable Technology protected by patents

Patent search required Patent pending

Patent search completed and clean Monograph available

Invention remains confidential Inventor technology champion

No publications pending Inventor team player

No prior claims to the technology Industrial partner identified

 Scientific Research Applied Research Product/Process Development

 Algorithm Method/Technique Product / Component

 Structure Demonstration / Process
 Prototype
 Data Software

 Other, please specify Other, please specify Other, please specify

 ___________________ __________________ ___________________________

 ___________________ __________________ ___________________________

 ___________________ __________________ ___________________________

√

√

 Lampiran 13

 2

UTM/RMC/F/0014 (1998)

5. LIST OF EQUIPMENT BOUGHT USING THIS VOT

1. Computer (HP)
2. Laser Jet Printer

6. STATEMENT OF ACCOUNT

a) APPROVED FUNDING RM : 28,000.00

b) TOTAL SPENDING RM : …………………………

c) BALANCE RM : …………………………

7. TECHNICAL DESCRIPTION AND PERSPECTIVE

Please tick an executive summary of the new technology product, process, etc., describing how it
works. Include brief analysis that compares it with competitive technology and signals the one
that it may replace. Identify potential technology user group and the strategic means for
exploitation.

a) Technology Description

A 3D interactive graphics application is an extremely computational demanding paradigm, requiring the simulation

and display of a virtual environment at interactive frame rates. It is significant in real time game environment. Even

with the use of powerful graphics workstations, a moderately complex virtual environment can involve a vast amount

of computation, inducing a noticeable lag into the system. This lag can detrimentally affect the visual effect and may

therefore severely compromise the diffusion of the quality of graphics application. Therefore, a lot of techniques have

been proposed to overcome the delay of the display. It includes motion prediction, fixed update rate, visibility

culling, frameless rendering, Galilean antialiasing, level of detail, world subdivision or even employing parallelism. In

this project, we strive to render a massive dataset in 3D real-time environment and preserve its surface appearance

during simplification process using commodity personal computer. By using our out-of-core simplification technique

and preserve the surface attributes on the out-of-core model based on error metrics, we can prove that our proposed

methodology is capable in simplifying the large datasets with surface attributes preservation, such as positions,

normals, colors and texture coordinates for graphics application. The invention on modifying the vertex clustering

coarsening operator and adopting the suitable algorithms into this out-of-core framework has made the research goals

are accomplished. This algorithm is a practical and scalable system that allows the inexpensive PCs to visualize

datasets in computer games, which is formally an impossible task.

b) Market Potential

The output gathered from this study is useful for the industry of computer games particularly on handling and

manipulating massive datasets during run-time rendering. By keeping the bulk of the data on disk and retain in main

memory (or so called core) only the part of the data that’s being processed, visualizing massive datasets are now

possible.

 3

c) Commercialisation Strategies

In order to commercialize this research, the prototype and technique of out-of-core simplification with appearance

 preservation should be promoted to the industry of computer games in Malaysia through the Development and

 Creative Application Center, Multimedia Development Corporation Sdn Bhd (MDC).

8. RESEARCH PERFORMANCE EVALUATION

a) FACULTY RESEARCH COORDINATOR

Research Status () () () () () ()
Spending () () () () () ()
Overall Status () () () () () ()
 Excellent Very Good Good Satisfactory Fair Weak

Comment/Recommendations :

 __

__

………………………………………… Name : ………………………………………

Signature and stamp of Date : ………………………………………
JKPP Chairman

UTM/RMC/F/0014 (1998)

 4

RE

b) RMC EVALUATION

Research Status () () () () () ()
Spending () () () () () ()
Overall Status () () () () () ()
 Excellent Very Good Good Satisfactory Fair Weak

Comments :-

__

 __

Recommendations :

Needs further research

Patent application recommended

Market without patent

No tangible product. Report to be filed as reference

………………………………………………..

Name : ……………………………………………

Signature and Stamp of Dean / Deputy Dean

Date : ……………………………………………
Research Management Centre

UTM/RMC/F/0014 (1998)

 1

Lampiran 20

UTM/RMC/F/0024 (1998)

UNIVERSITI TEKNOLOGI MALAYSIA

BORANG PENGESAHAN
LAPORAN AKHIR PENYELIDIKAN

TAJUK PROJEK : OUT-OF-CORE SIMPLIFICATION WITH APPEARANCE

PRESERVATION FOR COMPUTER GAME APPLICATIONS

Saya ABDULLAH BADE
 (HURUF BESAR)

Mengaku membenarkan Laporan Akhir Penyelidikan ini disimpan di Perpustakaan Universiti Teknologi Malaysia dengan
syarat-syarat kegunaan seperti berikut :

1. Laporan Akhir Penyelidikan ini adalah hakmilik Universiti Teknologi Malaysia
2. Perpustakaan Universiti Teknologi Malaysia dibenarkan membuat salinan untuk tujuan rujukan sahaja.
3. Perpustakaan dibenarkan membuat penjualan salinan Laporan Akhir Penyelidikan ini bagi kategori TIDAK

TERHAD
4. * Sila tandakan (/)

 SULIT (Mengandungi maklumat yang berdarjah keselamatan atau
 Kepentingan Malaysia seperti yang termaktub di dalam
 AKTA RAHSIA RASMI 1972)

 TERHAD (Mengandungi maklumat TERHAD yang telah ditentukan
 oleh Organisasi/badan di mana penyelidikan dijalankan)

 TIDAK
 TERHAD

 __
 TANDATANGAN KETUA PENYELIDIK

 __
 Nama & Cop Ketua Penyelidik

 Tarikh : ________________

 √

