PRELIMINARY ASSESSMENT USING HOMER SOFTWARE FOR HARNESSING RENEWABLE ENERGY FROM SEWAGE TREATMENT PLANT

NOR AZAM AZIZ BOGAL

A project report submitted in partial fulfilment of the requirements for award of degree of Master of Engineering (Electrical-Power)

> Faculty of Electrical Engineering Universiti Teknologi Malaysia

> > JANUARY 2014

Dedication to my beloved late father, Hj Bogal Hj Japar, my mother Hjh Ismingaton Ishak and my wife Aliza Ahmad whom support me, physically, mentally and emotionally, throughout my Master's study.

My love of this world,Nurin Batrisyia, Amirul Akmal,Awwal Irsyad,Hijzai Imtihan & Sarjana Al Fateh,

For my fantastic siblings, in-law and friends, appreciate your encouragement and help.

To all my lecturers, you are my inspiration for today and future time, Insha'Allah.

Thank you everyone for making this happen and only Allah can bestow His reward to all of you.

ACKNOWLEDGEMENT

First of all, I would like to thank Allah SWT for giving me faith and strength to complete this project 1. My highest appreciation goes to my project supervisor,. Prof Ir. Dr Abdul Halim Bin Mohamed Yatim, who had continuously, giving me guidance and ideas for this project 1. His support and understanding had facilitate me to complete the project.

Last but not least, I would like to express my gratitude to all my families, friends and people that involve directly or indirectly in the process to complete this project.

ABSTRACT

The thesis highlighted on the potential of sewage as a renewable source of energy. The objective is to simulate the harvested renewable energy from sewage treatment system using Homer software which is practical and user friendly. Based on case study in Malaysia particularly in Klang Valley; where the source of sewage is abundant due to high population, the sewerage treatment plant Pantai 1 and Bunus have been simulated using Homer and produce positive result with electricity generation of 1,314,000kWh/year and 2,134,500 kWh/year constitute 33% and 55% of the plant electricity consumption. It shows that there is a huge potential energy generation from waste sources in Malaysia and further analysis on the techno economic also presented

ABSTRAK

Tesis ini menekankan tentang potensi sisa kumbahan sebagai sumber tenaga yang boleh diperbaharui. Objektifnya adalah untuk mensimulasikan tenaga boleh diperbaharui yang diperolehi dari loji rawatan kumbahan menggunakan perisian Homer yang praktikal dan mesra pengguna. Berdasarkan kajian kes di Malaysia terutamanya di Lembah Klang; di mana sumber sisa kumbahan yang banyak kerana penduduk yang padat, loji rawatan kumbahan Pantai 1 dan Bunus telah disimulasi menggunakan Homer dengan keputusan yang positif dengan penjanaan elektrik berjumlah 1,314,000 kWj / tahun dan 2,134,500 kWh / tahun yang merupakan 33% dan 55% daripada penggunaan elektrik loji tersebut. Ini menunjukkan bahawa terdapat potensi yang besar bagi penjanaan tenaga daripada sumber sisa buangan di Malaysia dan analisis lanjut mengenai tekno ekonomi turut dibentangkan

TABLE OF CONTENTS

1

TITLE

PAGE

DEC	LARATION	ii
DEDICATION		iii
ACKNOWLEDGEMENT		iv
ABSTRACT		
ABSTRAK		
TABLE OF CONTENT		
LIST OF TABLES		
LIST OF FIGURES		Х
LIST OF ABBREVIATIONS		
INTI	RODUCTION	
1.1	Introduction	1
1.2	Background Of Studies	2
12	Problem Statement	1

1.3	Problem Statement	4
1.4	Objectives	4
1.5	Scope Of Studies	5
1.6	Thesis Report Outline	5

2 LITERATURE REVIEW

2.1	What Is Sewage Treatment?	7
2.2	Principle Of Sewage Treatment	10
2.3	Typical Sewage Treatment Processes	11

2.4	What Is Anaerobic Digestion?	12
2.5	Why Biogas?	14
2.6	How We Get The Energy	15
2.7	Biogas Efficiency	16
2.8	Prospect of energy from STP in Malaysia?	16
2.9	Potential Of Renewable Energy From STP	18
	In Klang Valley Area	
2.10	Why Homer?	20

3 METH

METHODOLGY

3.1	Introduction		22
3.2	Flow (Chart for Preliminary Assesment	23
3.3	Metho	dology of Project Implementation	24
	33.1	Homer Simulation & Process Flowchart	25
	3.3.2	Modelling Biogas In Homer	27
	3.3.3	Biogas Generator Sizing Method and	28
		Calculation Theory	
	3.3.4	Data Assessment Method On Utility	28
		Bill Cost Saving, Connection to	
		Grid (FIT) & CDM Revenue Generation	
3.4	Data C	Sathering And Analysis	29
	3.4.1	Study Case in Pantai 1 STP	29
	3.4.2	Manual Assesment Calculation	30
		For Pantai 1 STP	
	3.4.3	Data On Average Daily Biogas	32
		Production For Pantai 1 STP	
	3.4.4	Design Specification For Pantai 1 STP	33
	3.4.5	Simulation Input For Pantai 1 STP	33
	3.4.5.1	Generator Input Based On Cost	34
	3.4.5.2	2 Generator Input Based On Fuel	34
	3.4.5.3	Generator Input Based On Schedule	35
	3.4.5.4	Generator Input Based On Emissions	36
	3.4.5.5	Grid Input Based On Rates	36

3.4.5.6	Grid Input Based On Emission	37
3.4.5.7	Grid Input Based On Advanced Setting	38
3.4.5.8	Primary Load Input	38
3.4.5.9	Biomass Resources Input	39
3.4.5.1	0 Economics Input	40
3.4.5.1	1 Constraints Input	42
3.4.6	Study Case in Bunus STP	43
3.4.7	Manual Assesment Calculation	43
	For Bunus STP	
3.4.8	Data Average Daily Biogas	45
	Production For Bunus STP	
3.4.9	Design Specification For Bunus STP	46
	3.4.10 Simulation Input	

4 **RESULT AND ANALYSIS**

4.1	Introduction	47
4.2	Simulation Result For Pantai 1 STP	48
	4.2.1 Sensitivity & Optimization Result	48
	4.2.2 Cost Summary	49
	4.2.3 Cash Flow	50
	4.2.4 Monthly Average Electric Production	51
	4.2.5 Environmental Aspect	52
4.3	Comparison Data Between Manual	53
	Calculation & Simulation For Pantai 1 STP	
	4.3.1 Comparison Based On Electricity Production	53
	4.3.2 Comparison Based On Payback Period	54
	43.3 Comparison Based On CO2 Emission	55
4.4	Simulation Result For Bunus STP	
	4.4.1 Sensitivity & Optimization Result	56
	4.4.2 Cost Summary	57
	4.4.3 Cash Flow	58
	4.4.4 Monthly Average Electric Production	59
	4.4.5 Environmental Aspect	59

4.5	Comp	Comparison Data Between Manual	
	Calculation & Simulation For Bunus STP		
	4.5.1	Comparison Based On Electricity	60
		Production	
	4.5.2	Comparison Based On Payback Period	61
	4.5.3	Comparison Based On CO2 Emission	62
4.6	Summ	ary	63

5 CONCLUSION AND FUTURE WORK

5.1	Summary of Work	64
5.2	Contribution of the Study	65
5.3	Suggestion for Future works	66

REFERENCES

LIST OF TABLES

TABLE NO.	TITLE	PAGE
2.1	Types of STP in Malaysia (IWK, 2008)	9
2.2	Effluent discharge standard to Malaysia influent	10
	[Malaysian Standard - Environmental Quality	
	(Sewage) Regulations 2009 (PU(A) 432), Second	
	Schedule (Regulation 7) Acceptable Conditions Of	
	Sewage Discharge Of Standards A and B]	
2.3	Potential of Electricity Generations of STP in	17
	Malaysia	
2.4	Klang Valley Population Forecast: (National	18
	Summit on Urban Public Transport 2010	
3.1	Average Biogas Production & Electricity	32
	Consumption For Pantai 1 STP	
3.2	Design Specification For Pantai 1 STP	33
3.3	Average Biogas Production & Electricity	45
	Consumption For Bunus STP	
3.4	Design Specification For Bunus STP	46
4.1	Emission using grid and biogas versus grid	52
4.2	Electricity Production	53
4.3	Comparison of Actual & Simulation Result For	53
	Electricity Production	

4.4	Comparison of Actual & Simulation Result For	54
	Payback Period	
4.5	Simulation result using Homer showing the	55
	payback ends after 7 year.	
4.6	Comparison of Actual & Simulation Result For	55
	Co2 Emission	
4.7	Emission using grid and biogas versus grid	55
4.8	Electricity Production	60
4.9	Comparison of Actual & Simulation Result For	61
	Electricity Production	
4.10	Comparison of Actual & Simulation Result For	61
	Payback Period	
4.11	Simulation result using Homer showing the	62
	payback ends after 7 year.	
4.12	Comparison of Actual & Simulation Result For	62
	Co2 Emission	

LIST OF FIGURES

FIGURE NO.	TITLE	PAGE
2.1	Evolution of STP in Malaysia	8
2.2	Principle of Sewage Treatment	10
2.3	Typical of Sewage Treatment Processes	11
2.4	Anaerobic digestion process	13
2.5	Conversion of Biogas To Electricity	15
2.6	Regional Treatment Plant Within Klang Valley	20
3.1	Proposed Project Methodology for Harnessing	23
	Renewable Energy Potential from a Sewage	
	Treatment Plant	
3.2	Correlation of sensitivity analysis and optimization	25
3.3	Flow Chart of Homer simulation	26
3.4	STP Biogas System In Homer Interface	27
3.5	Pantai Catchments Area Capacity	29
3.6	The architect illustration of completed Pantai 2 STP	30
3.7	Homer Generator Input Based On Cost	34
3.8	Homer Generator Input Based On Fuel	35
3.9	Homer Generator Input Based On Schedule	35
3.10	Homer Generator Input Based On Emissions	36
3.11	Homer Grid Input Based On Rates	37
3.12	Homer Grid Input Based On Emissions	37

LIST OF FIGURES (C'td)

FIGURE NO.	TITLE	PAGE
3.13	Homer Grid Input Based On Advanced Setting	38
3.14	Homer Primary Load Input	39
3.15	Homer Biomass Resources Input	40
3.16	Homer Economic Input	41
3.17	Homer Constraint Input	42
3.18	Aerial view of Bunus STP	43
4.1	Sensitivity Result	49
4.2	Optimization Result	49
4.3	Cost Summary Result	50
4.4	Cost Flow Result	51
4.5	Monthly Average Electric Production	52
4.6	Graph of Monthly Average Electric Production	53
4.7	Economic Comparison Between Grid &	54
	Grid+Biogas System	
4.8	Sensitivity Result	56
4.9	Optimization Result	57
4.10	Cost Summary Result	57
4.11	Cost Flow Result	58
4.12	Monthly Average Electric Production	59
4.13	Graph of Monthly Average Electric Production	60
4.14	Economic Comparison Between Grid &	61
	Grid+Biogas System	

LIST OF ABBREVIATION

SYMBOL/ABBREVIATION DESCRIPTION

RE	-Renewable Energy
STP	-Sewerage Treatment Plant
MW	Megawatt
Mt	-Million
CO2	-Carbon Dioxide
kW	-kilowatt
BOD	-Biochemical Oxygen
	Demand
kWh	-kilowatthour
UK	-United Kingdom
US	-United States
H2S	-Hidrogen Sulfida
MWh	-Megawathour
GHG	-Green House Gas
kJ/m3	-Kilojoule per cubic meter
IWK	-Indah Water Konsortium
FiT	-Feed In Tariff

CHAPTER 1

INTRODUCTION

1.1 Introduction

With the recent volatility of oil prices and public awareness on the environmental destruction caused by greenhouse gas emission (GHG) have escalate the demand of clean and green energy.

According to the World Energy Outlook 2013, the global energy demand will set to increase with renewable energy (RE) shares increase to 30% of the energy produce by 2035.

Locally, Malaysia have strive to reduce 40% of its carbon intensity by the year of 2020.As such ,Malaysia have come up with National Green Technology in 2009 and subsequently National Renewable Energy policy in 2010 to fulfil national aspiration for sustainable development of renewable energy

It was reported that as of December 2013, 131MW of RE has been commissioned and connected to the grid.At this rate, the nation is targeting for 2,080MW of cumulative RE capacity by 2020, contributing to 11% of the national energy mix and saving of 42.2Mt of CO2 emission

RE is an important alternative source of energy to complement conventional sources of energy comprising natural gas, coal and oil. The utilisation of RE, which is more environmental friendly, can also improve energy security as well as reduce dependency on fossil fuels.

Thus, government have been supportive in effort to promote the utilization of RE across all sector that is driving the national economic growth One of the potential RE project yet to be explored is from waste water industry or sewage treatment plant

Albert Einstein once quoted "*Energy cannot be created or destroyed. It can only be changed from one form to another*" .Food which consumed by human is in a form of energy while the waste sludge is in another. The methane which have been extracted through anaerobic digestion of the waste sludge will then feed out to biogas generator to produce electric energy. The potential of energy resources from waste is endless as it is availability likely to be proportionate with human population.

1.2 Background Of Studies

Electricity generation from sewage treatment seems awkward and unheard especially in Malaysia. But with the availability of latest technology and industry

interest to harness renewable energy, pilot project have been successfully implemented in Penang's Jelutong Sewage Treatment Plant. The 180kW Biogas Generator set will be utilise for the Plant's Compound Lighting and if proven reliable will be extended to supply power for the Plant's other essential equipment. Other than that; a few project still in the pipeline including the renewable energy project at STP Pantai 1, proposed STP Pantai 2 with an underground STP facility utilizing green and renewable energy while the area above the STP will be developed as a leisure park with sports, recreational, administration building and community facilities for the local resident.

The current practice of Malaysia STP operator in managing biogas generated by anaerobic digesters is by flaring off the gas. Flaring is necessary in order to relief the pressure in the digesters due to biogas generated.

Instead of flaring, the biogas generated by the anaerobic digesters has the potential to be use to generate electricity, which can be utilise by the sewage treatment plant itself.

In Malaysia, energy conversion from the bio gradable source is still in infancy stages . The potential for waste energy generation in Malaysia depends on the availability of the specific resources at the designated place as it will require proper planning and huge investment. Understanding the chemical reaction and waste handling is a crucial step in planning a waste to energy project. Detailed knowledge of chemical reaction of waste is needed to estimate the quantum of a biogas energy project. This first requires a general assessment of the available energy potential from waste sludge.

This thesis project presents the technical feasibility assessment of biogas generated from sewage in Malaysia particularly in KlangValley. The evaluations is a based on existing similar methods but utilizing Homer as software based due to it user friendly graphical user interface. The sizing of a biogas generator producing electricity requires a detailed calculation on methane output .The idea is to utilize the methane instead of flared to atmosphere as the current practise.

1.3 Problem Statement

Nowadays, the need for new source of renewable energy have become pressing issue. In Malaysia particularly, the effect of sudden world oil price hike in 2004 is a wakeup call for not too dependent on fossil fuel. In this proposal, a new approach by harnessing renewable energy from sewage treatment plant is proposed

1.4 Objective

The overall objective of this research work is to propose a new available source of renewable energy from sewage treatment plant. The specific objectives are as follow:

1.	To provide preliminary assessment on harnessing renewable
	energy from sewage treatment system (STP).
•	
2.	To simulate the potential of biogas using Homer.
3.	The evaluate the comparison between simulation and available
	real data
4.	To evaluate the financial economic viability of the proposed
	system in Malaysia.

1.5 Scope Of Studies

The scope in this project work will be emphasizes on the simulation of renewable energy harnessed from sewage treatment plant particularly from biogas. Micro hydro has been excluded in the initial stage due to insignificance contribution of renewable energy.

The quantified value of electricity generated from the plant biogas production Homer software then will be used to get a realistic projection of the capital, operating expenses and finally determines the economic feasibility of the system.

1.6 Thesis Report Outline

In general, this report mainly consists of five (5) main chapters; introduction, literature review, economic evaluations and simulation using Homer software, simulation results analysis and conclusion.

Chapter one discussed the research project in collectively. This chapter explained the crucial aspect of the research work such as background studies, objectives, research scopes and methodology as well the thesis outline will also be discussed.

Chapter two completely dedicated to literature review about the biogas from the sewage treatment system. This chapter will be in detail discussing on what is the sewage treatment system all about, principle of sewage treatment system, anaerobic digestion, methane and biogas extraction. In this academic literature, the factor in contributing to the output power of the system will also be elaborated.

Chapter three explains mathematical formula and calculation to determine the generated electricity output of the sewage treatment based on case study in Pantai 1 and Bunus and how to simulate based on available data using the Homer simulation.

Chapter four discussed in depth on the obtained simulation results. The result will be further analysed based on electricity generation production, payback period and CO2 reduction perspective. Conclusion and suggestion in improvising this research work shall be detailed out in Chapter five.

References

Ahmed, S. & Henzea, M. (2008) "Biological Hydrolysis And Acidification Of Sludge Under Anaerobic Conditions: The Effect Of Sludge Type And Origin On The Production And Composition Of Volatile Fatty Acids" Water Research, 42 (14), 3729-3738.

Aline Choulot Vincent Denis and Petras Punys (2012). "Integration of Small Hydro Turbines into Existing Water Infrastructures" In Hydropower - Practice and Application, Dr. Hossein Samadi-Boroujeni (Ed.), ISBN: 978-953- 51-0164-2, InTech. Available from: <u>http://www.intechopen.com/books/hydropower-practice</u>

Appels, L., Baeyens, J., Degreve, J. & Dewil, R. (2008) "*Principles And Potential Of The Anaerobic Digestion Of Waste-Activated Sludge*" Progress in Energy and Combustion Science, 34, pg 755–781.

Fariza S. (2011)"Techno-Economic-Environmental Assessment of Renewable Energy Potential from a Sewage Treatment Plant"

CDM Energy Secretariat (2011) "*Study on Grid Connected Electricity Baselines in Malaysia Year 2009*" Published Final Report by GreenTech Malaysia on January 2011Haandel, A

Lettinga, G (1994) "Anaerobic Sewage Treatment- A Practical Guide for Regions with Hot Climate" John Wiley & Sons

Metcalf and Eddy (2003) "*Wastewater Engineering: Treatment and Reuse*" 4th edition, McGraw-Hill, Canada.

Malaysian Standard - Environmental Quality (Sewage) Regulations 2009 (PU(A) 432), Second Schedule (Regulation 7) Acceptable Conditions Of Sewage Discharge Of Standards A and B. <u>http://www.iwk.com.my/v/knowledge-arena/sewage-treatment-plant</u>

Rulkens, W. (2008) "Sewage Sludge as a Biomass Resource for the Production of Energy: Overview and Assessment of the Various Options" Energy & Fuels 2008 22, pg 9–15

BEM May 2005 Sewage Treatment Trends in Malaysia By Ir. Haniffa Hamid and Dr. Aminuddin Mohd Baki, Indah Water Konsortium Sdn. Bhd.

FIT rate for Biogas : <u>http://seda.gov.my/</u>

TNB Tariff rate : <u>http://www.tnb.com.my/business/for-industrial/pricing-tariff.html</u>

Wastewater Production, Treatment, and Use in Malaysia

http://www.ais.unwater.org/ais/pluginfile.php/501/mod_page/content/83/report_malay sia.pdf).

Klang Valley Population Forecast: (National Summit on Urban Public Transport 2010 <u>http://www.asli.com.my/DOCUMENTS/PublicTransport2010/6%20-</u>%20Ir%20Tai%20Tuck%20Leong.pdf)