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ABSTRACT 

 

 

 

 

Ultrasound imaging has been widely used in kidney diagnosis, especially to 

estimate kidney size, shape and position, and to provide information about kidney 

function, and to help in diagnosis of structural abnormalities like cysts, stone, and 

infection.  However, the use of ultrasound in kidney diagnosis is operator dependent 

where the images may be interpreted differently depending on operators’ skills and 

experiences, variations in human perceptions of the images, and differences in 

features used in diagnosis.  Current kidney diagnosis may be improved by 

implementing automated techniques and computer aided diagnosis systems, but have 

not been widely explored.  Therefore, this study proposed a vector graphic image 

formation method which enables the ultrasound images to be manipulated for various 

applications including region of interest (ROI) generation, cysts detection and 

segmentation and abnormality classification.  Automatic kidney ROI generation 

algorithm able to achieve 89.6% true ROI when tested with 125 kidney images.  

Besides that, the vector graphic formation helps in detection and segmentation of 

cysts automatically with high accuracy (true positive area ratio = 0.9584, similarity 

index = 0.9439, Hausdorff distance = 11.4018) and less execution time (11.4 

seconds).  Performance evaluation to 50 single cyst images, and 25 multiple cysts 

images gave accuracy of 92%, and 86.89% respectively.  This vector graphic 

formation also helps in extracting better features that successfully classify kidney 

ultrasound images into three different groups namely normal, infectious and cystic 

with testing and validation accuracy of 93.33% and 91.67% respectively (p<0.05).  

Overall, this study has shown promising results and implementation of these 

proposed algorithms into current kidney diagnosis technique may help in improving 

current diagnosis accuracy while reducing human intervention and operator 

dependency. 
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ABSTRAK 

 

 

 

 

 Pengimejan ultrabunyi telahpun digunakan secara meluas dalam diagnosis 

ginjal, terutamanya untuk menganggar saiz, bentuk dan kedudukan ginjal, 

mendapatkan maklumat tentang fungsi ginjal dan membantu mengesan struktur 

abnormal seperti cysts, batu karang dan jangkitan.  Namun begitu, penggunaan 

ultrabunyi dalam diagnosis ginjal sangat bergantung kepada pengendali mesin, 

dimana imej ginjal akan ditafsirkan secara berlainan bergantung kepada kebolehan 

dan pengalaman pengendali, kepelbagaian dalam persepsi individu terhadap imej 

tersebut, dan perbezaan ciri yang digunakan untuk diagnosis.  Diagnosis ginjal ini 

boleh diperbaiki dengan menggunakan teknik automatik dan sistem pengesanan 

berkomputer. Walau bagaimanapun, teknik ini masih belum dikaji dengan meluas.  

Justeru, kajian ini mencadangkan kaedah pembentukan imej grafik vektor (vector 

graphic image formation), yang membolehkan imej ultrabunyi dimanipulasikan 

untuk pelbagai kegunaan termasuk penjanaan rantau berkepentingan (ROI), 

pengesanan cysts dan pengelasan penyakit.  Pengujian algoritma ROI secara 

automatik ke atas 125 imej ginjal menunjukkan ianya mampu mencapai 89.6% 

ketepatan ROI sebenar.  Selain itu, pembentukan imej grafik vektor membantu 

mengesan dan mengasing cysts dengan ketepatan yang tinggi (nisbah kawasan positif 

= 0.9584, indeks kesamaan = 0.9439, jarak Hausdorff = 11.4018) dan masa yang 

singkat (11.4 saat).  Penilaian prestasi terhadap 50 imej cyst tunggal dan 25 imej 

pelbagai cysts memberi ketepatan sebanyak 92% dan 86.89% setiap satunya.  

Pembentukan imej grafik vektor juga membantu mengekstrak ciri yang lebih baik 

dan berjaya mengelaskan imej ultrabunyi kepada tiga kumpulan, iaitu normal, 

jangkitan dan cystic dengan ketepatan pengujian dan penentusahihan (validation) 

sebanyak 93.33% dan 91.67% setiap satunya (p<0.05).  Secara keseluruhan, kajian 

ini telah menunjukkan keputusan yang baik, dan pelaksanaan algoritma ini dalam 

diagnosis ginjal dapat memperbaiki ketepatan pengesanan sedia ada, selain 

mengurangkan campur tangan manusia dan kebergantungan terhadap pengendali. 
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 
 
 
 

1.1 Research Background 

 
 

Nowadays, kidney diseases have become more common than ever, and are 

rising throughout the world, especially due to the complication of hypertension and 

type 2 diabetis mellitus [1].  Diseases in kidney may progress to the end stage renal 

disease (ESRD) which leads to the need of renal replacement therapy (RRT) and 

hemodialysis, as well as kidney transplants [1].  In Malaysia only, according to 19th 

Report of the Malaysian Dialysis and Transplant Registry, newly registered dialysis 

patients continue to increase, from 2375 in 2002 to 5153 in 2010, and at least 5201 in 

2011 [2].  Treatments of the diseases are life saving, but demands a long term 

commitment at a very high cost.  Therefore, other than focusing on the treatment 

itself, early prevention and detection; including urine test, blood test and imaging test 

of kidney diseases should become a priority.  Early detection of kidney diseases 

allows a more effective and suitable treatment to the patient [3].  In most cases, 

patients with early stage of kidney disease can receive treatment that can delay or 

even prevent kidney damage.  In addition, early treatment can also prevent many of 

heart and vascular conditions, which may complicate kidney disease [4].  Besides 

that, early detection of kidney disease can avoid further unnecessary biopsy and 

therapy sessions [5, 6]. 

 
 

Currently, there are several types of tests that can be used to diagnose kidney 

disease.  Kidney function can be assessed by performing blood and urine tests.  
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Blood test is performed to check on the level of the waste product of blood urea 

nitrogen (BUN) [7] and creatinine [8, 9] while urine tests is performed to measure 

the level of certain substances in the urine, such as protein [10, 11], glucose, ketones, 

blood, and other substances.  Excessive amount of waste product in blood and related 

substance in urine indicate that the percentage of kidney function has reduced [7-11].  

Besides that, in order to diagnose any disorders that affect the specialized blood 

vessels of the kidney, kidney biopsy, a procedure for sampling a small portion of 

kidney tissue, is performed.  In addition, imaging tests including ultrasound [16-19], 

intravenous pyelogram (IVP), computed tomography (CT) [12-15] and magnetic 

resonance imaging (MRI) [23] scans are performed to get useful information about 

kidney size, shape and structures.  

 
 

Among all imaging techniques, the conventional ultrasound is more preferred 

to be used in the diagnosis and follow-up of patients with kidney diseases [19].  

Ultrasound is more affordable compared to the use of MRI technique, besides being 

widely available, noninvasive, painless, does not require any contrast agent as being 

used in IVP and does not expose the patient to any radiation compared to using CT 

scan [16-19].  Diagnostic capability of ultrasound is based on sound waves that travel 

along the organ and structures, reflected back and appear in a range of hypoechoic to 

hyperechoic depending on the organ and structure composition [19].  Ultrasound can 

act as an excellent way to estimate kidney size, shape and position.  Ultrasound can 

provide information about the kidney function, and help in diagnosis of structural 

abnormalities like cysts, stones, tumors, abscesses, obstructions, fluid collection, or 

infection within or around kidneys [19-21].  Besides that, the use of Doppler 

ultrasound may improve sonographic assessment of kidney dysfunction in relation to 

changes of kidney blood flow [22]. 

 
 

However, the use of ultrasound in current kidney diagnosis also has 

limitations.  A major drawback of this ultrasonography in kidney diagnosis is that 

this method is very operator dependant [24-30], in terms of locating, measuring, and 

analyzing the images.  Kidney diagnosis using ultrasound depends on the operator 

skills to locate the kidney in correct position, especially during the measurement of 

kidney size, or else the measurement would not be accurate.  Besides that, the 
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diagnosis also requires well trained and experienced operator/ sonographers in 

analyzing and interpreting the images, especially when dealing with diseases, as 

compared to normal kidney, as the kidney with diseases may develop various 

symptoms and changes in the images [19].  An ultrasound image of kidney may be 

interpreted differently by different operators and the result is relative to the operator 

expertise, variations in human perceptions of the images, as well as differences in 

features used in diagnosis.  Other imaging modalities such as CT and MRI allow the 

radiologists to get and view the stack of images of desired organs in different planes, 

while patient just lay still on the bed.  On the other hand, this US technique requires 

the operator himself to angle and position the transducer on patients’ body in correct 

position.  Different position and angle of the transducer gives different output images 

thus interpretation of the images will differ.  Another limitation is that the ultrasound 

image itself are affected by the speckle noise with variations of gray level intensities, 

and the presence of this noise makes analysis of ultrasound images, including 

locating, measuring, detecting and segmenting of desired structure or parameters 

become more complex and challenging [24, 30]. 

 
 

Concerning the limited capabilities of ultrasound in kidney diagnosis as 

mentioned earlier, it is important to develop some alternative approaches to the 

current system which perhaps can help medical doctors to do an accurate and 

effective kidney diagnosis.  Computerized method, such as computer aided diagnosis 

(CAD) system can help in minimizing the dependency of the diagnosis on operators, 

as well as can make the diagnosis become easily reproducible without or with limited 

variation in result.  Development of automatic system in locating, detecting and 

analyzing the required images can also be alternative solutions to the stated 

limitations.  Therefore, this study will concentrate on improving the current kidney 

diagnosis method by implementing certain image processing and analysis methods, 

preferably utilizing algorithm that can performed automatically, which then can be 

implemented into any computer aided diagnosis (CAD) system for better kidney 

assessment and classification.  However, it should be noted that the research into the 

use of automatic system or CAD is not toward eliminating the operators themselves, 

but much more toward providing the operators/ sonographers/ medical experts a 

second opinion and help them to increase the diagnosis accuracy, reduce the use of 
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other imaging modalities that could be harmful, avoid unnecessary biopsy, and save 

them time and effort.  

 

 

 

 

1.2 Problem Statement 

 

 

Ultrasound is often the initial imaging tool used because it can be performed 

comfortably and safely even when the kidney function is impaired.  However,  the 

role of  ultrasonography in kidney diseases detection and classification is limited by 

its dependencies on the expertise of the operators or sonographers to detect, measure, 

segment and analyze structure of kidney during diagnosis.  The use of ultrasound 

requires the operators to angle and position the transducer correctly to get better view 

of kidney.  Besides that, the ultrasound images may be interpreted differently by 

different operators and the result is relative to the operators’ skills and expertise, 

variations in human perceptions of the images, as well as differences in features used 

in diagnosis.  Not to mention the limitation in the quality of ultrasound image itself 

due to the speckle noise.  This restriction prevents ultrasonography from taking a 

prominent role in kidney diagnosis.  Hence, this study aims to help and improve the 

existing ultrasonography for detecting, analysing and classifying the kidney risk by 

proposing some new approaches on kidney image analysis based on ultrasound 

image features. 

 
 
 
 

1.3 Objectives 

 
 

There are few objectives for this research study, including: 

1. To develop an algorithm for vector graphic image formation from 

ultrasound images. 

2. To develop new algorithm for automatic region of interest (ROI) 

generation of kidney images. 

3. To develop new algorithm for automatic detection and segmentation 

of cysts in kidney ultrasound images. 
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4. To develop new features extraction technique for kidney ultrasound 

images, and evaluate the experimental result by using artificial neural 

network for kidney risk classification. 

 
 
 
 

1.4 Scope of Research 

 
 

Few scopes have been set so that the study is conducted within and heading 

toward the objectives.  This project focuses on the kidney ultrasound images (details 

of images, machines and operators are in Appendix A) where; 

1. For the development and analysis of automatic ROI generation of 

kidney ultrasound images, normal kidney ultrasound images were 

collected from the Faculty of Biosciences and Medical Engineering 

(FBME), UTM Johor Bahru by using Toshiba Aplio MX machine 

with 3.5MHz transducer. 

2. For the development of automatic kidney cysts detection as well as 

analysis of the kidney ultrasound image features, images were taken 

from patients at Gelderse Vallei Hospital, Ede, The Netherlands and 

the diagnosis was made by experts by using ultrasound machine 

Hitachi Aloka Prosound F75 with transducer 3.5MHz.  

3. For automatic detection and segmentation of kidney cysts, only cystic 

(CD) class of images was used, and for feature extraction and 

classification, all three classes were used (normal (NR), infectious 

(BI) and cystic (CD)), 

4. Kidney images with multiple diseases (kidney with both CD and BI) 

were excluded to avoid any similar information between groups. 

5. The kidney ultrasound images used in this study were in DICOM 

(Digital Imaging and Communications in Medicine) format and all 

necessity care had been taken to preserve the quality of the images. 

6. All image processing, and analysis methods applied to the kidney 

ultrasound images were implemented in MATLAB. 
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1.5 Thesis Organization 

 
 

This thesis is divided into five major chapters.  Chapter 1 includes an 

introduction, background, objectives and scope of research.  The main purpose is to 

show the motivation of this research and existing limitations of diagnosing kidney 

using ultrasound imaging.  The chapter is summarized with the novelties and 

contribution of this thesis and its feasibility.  Chapter 2 describes this thesis in terms 

of its background, history and the related works in greater detail.  The focus is on the 

introduction to kidney, reviews on kidney diagnosis, ultrasound in kidney diagnosis, 

ultrasound image features, as well as kidney ultrasound image processing.  Chapter 3 

describes the experimental design and implementation including the research 

materials, data sources acquisitions and manipulation, image processing and analysis, 

kidney feature extraction and risk classification.  Chapter 4 looks into the results and 

discussion on the proposed methods, with thorough analysis and validation.  Lastly, 

Chapter 5 provides the conclusion for the system testing and evaluation.  It also gives 

some recommendations for further improvement of the system. 

 
 
 
 

1.6 Contribution of Thesis 

 
 

Generally, some new improvements have been proposed to help sonographers 

in performing better and more accurate diagnosis of kidneys using ultrasound.  The 

implemetation of image processing techniques had been explored, together with the 

analysis and validation of proposed ideas.  The contributions of the thesis are;  

1. Development of a new vector graphic formation or image 

vectorization method.  Degradation of ultrasound image by speckle 

noise can complicate the analysis (detection, segmentation, 

classification, etc.) of the image during diagnosis, as well as 

restricting the image to be analyzed visually.  Important features may 

not be extracted due to this condition.  Development of this method, 

enables the user to manipulate the images thus helping the user to 

extract desired features for required objectives.  
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2. Development of a new algorithm for automatic generation of region 

of interest (ROI) of the kidney.  To the best knowledge of the author, 

there are no other automatic algorithms available for kidney 

ultrasound images.  This proposed algorithm can be implemented in 

real time ultrasonography and help sonographer in locating the correct 

position of the kidney.  Besides that, this algorithm can also be used 

as a pre-processing method before performing further analysis of the 

images such as segmentation of the kidney.  

3. Development of a new approach of automatic detection and 

segmentation of kidney cyst in ultrasound images, and the result has 

been fairly compared with other segmentation methods available.  Not 

only it is automatic, this algorithm can also be used to analyze images 

with multiple cysts, as well as ultrasound image of other cystic 

organs.  Tested of the algorithm to both single and multiple cysts 

images also gave high accuracy.  Compared to other available 

methods, this method is able to be executed in a very quick time with 

high accuracy. 

4. Development of new algorithm for feature extraction of kidney 

ultrasound images based on vector graphic image formation.  The 

kidney ultrasound images are classified into three classes (normal, 

infectious and cystic) using artificial neural network (ANN) which 

gives a better accuracy compared to using other commonly used 

features. 

 
 

This study is strictly technical, and its emphasis was influenced by the 

opinions of clinical collaborators.  Improvements proposed in this study for the 

purpose of kidney abnormalities detection and classification can reduce manual 

measurement, improve consistency, reduce human intervention and operator 

dependency, avoid competency factor and human errors, while producing reliably 

meaningful images and measurement, so as to support future studies in a clinical 

setting. 
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