DEVELOPMENT OF A COMPUTER SOFTWARE FOR OPTIMAL DESIGN AND RETROFIT OF HEAT EXCHANGER NETWORK IN A CHEMICAL PROCESS PLANT

OOI BOON LEE

A thesis submitted in fulfilment of the requirements for the award of the degree of Master of Engineering (Chemical)

Faculty of Chemical and Natural Resources Engineering Universiti Teknologi Malaysia

JANUARY 2005

To my Beloved Dad, Mum and Sister

ACKNOWLEDGEMENTS

I would like to express my most sincere gratitude to my supervisor, Assoc. Prof. Dr. Zainuddin bin Abdul Manan for his guidance and supervision of this research work. Without his guidance, I believe this research would not have been completed.

My sincere appreciation also extends to all my colleagues and friends who have provided assistance. Their views and tips have been very useful indeed. I gratefully acknowledge the Ministry of Science and Technology for providing financial for this research support through IRPA grant (vot: 74057). Lastly but certainly not the least, I am indebted to my parents and sister for their endless support.

ABSTRACT

Heat-MATRIX, a computer software for heat exchanger network design and retrofit based on the techniques of Pinch Technology and MATRIX (MAximising Total area Reuse In an eXisting process) has been proposed. Heat-MATRIX is a software to utilise the MATRIX technique which has been carefully tailored for use in an existing process plant. The software is a *Microsoft Windows*-based programme that has been developed to automate, and rapidly as well as efficiently assist the design and retrofit of heat exchanger network. Given a set of candidate process streams with potential for heat exchange, *Heat-MATRIX* would automatically generate the design targets -i.e. the heat recovery Pinch temperatures, the minimum hot and cold utility targets; both graphically and numerically. In addition, it can also automatically generate the optimal utility combination for a given process, and allow the automatic design of heat exchanger network to achieve the energy targets. Besides that, *Heat-MATRIX* provides a new tool named Exergy Block Diagram for analysis a retrofit of an existing plant's heat recovery network. At this stage, the software would automatically generate all probable heat exchange matches and eliminate the infeasible heat transfer matches. In network evolution, Heat-MATRIX also provides a more significant method in terms of cost savings through Path Optimisation. The software would plot a curve of total annual cost versus shifted heat load. From the curve, the software would search for the optimal heat load to be shifted along heat exchanger path.

ABSTRAK

Heat-MATRIX ialah satu perisian komputer untuk rekabentuk rangkaian pindahaba yang berdasarkan dua teknik iaitu Pinch Technology dan MATRIX (MAximising Total area Reuse In an eXisting process). Heat-MATRIX merupakan satu perisian yang menggunakan teknik MATRIX. Program yang berasaskan Microsoft Windows ini ditulis untuk membantu rekabentuk rangkaian pindahaba dengan pantas dan automatik. Diberi satu set aliran proses dengan pindahaba yang berpotensi, *Heat-MATRIX* akan menghasilkan sasaran rekabentuk secara automatik, termasuk suhu Pinch, sasaran minimum bagi utiliti panas dan sejuk melalui kaedah grafik dan berangka. Tambahan lagi, program ini dapat menghasilkan gabungan utiliti optimal bagi proses tertentu secara automatik dan membenarkan rekabentuk rangkaian pindahaba dilakukan secara automatik yang mencapai sasaran tenaga minimum. Di samping itu, *Heat-MATRIX* menyediakan satu alat panduan baru yang bernama Exergy Block Diagram untuk pembaikkan rangkaian pindahaba dengan menggunakan teknik MATRIX. Dalam peringkat ini, program ini akan menghasilkan semua kemungkinan pasangan alat pindahaba dan mengabaikan pasangan pindahaba yang tidak sesuai. Dalam rekabentuk rangkaian pindahaba, *Heat-MATRIX* juga menggunakan satu teknik *Path Optimisation* yang lebih berkesan dalam aspek penjimatan kos. Perisian ini akan menghasilkan lengkuk jumlah kos tahunan melawan haba yang dipindah. Daripada lengkuk ini, perisian ini berupaya menentukan haba pemindahan optima dalam rangkaian pindahaba.

TABLE OF CONTENTS

CHAPTER		TITLE	PAGE
	THE	SIS STATUS CERTIFICATION FORM	
	SUP	ERVISOR'S CERTIFICATION	
	TITI	LE PAGE	
	DEC	LARATION	ii
	DED	ICATION	iii
	ACK	NOWLEDGEMENTS	iv
	ABS	TRACT	v
	ABS	TRAK	vi
	TABLE OF CONTENTS LIST OF TABLES LIST OF FIGURES NOMENCLATURE		vii
			X
			xiii
			xviii
	LIST	COF APPENDICES	XX
1	INT	RODUCTION	1
	1.1	Research Background	1
	1.2	Traditional Design Approach versus	
		Pinch Technology Approach	4
	1.3	The Significance of a Pinch Software	5
	1.4	Problem Statement	5
	1.5	Objectives of This Research	6
	1.6	Research Scopes	6
	1.7	Research Contributions	7
	1.8	Summary of Thesis	8

THE	ORY AND LITERATURE REVIEW	10
2.1	Introduction	10
2.2	Chemical Process Design	10
2.3	Pinch Technology	11
	2.3.1 Example Application of Pinch	
	Analysis Technique	13
2.4	Heat Exchanger Network (HEN) Design	
	to Achieve the Minimum Utility Target	16
2.5	Exergy Analysis	19
2.6	The New MATRIX Technique	20
2.7	Approach of MATRIX Technique	20
	2.7.1 Stage 1: Match Identification	21
	2.7.2 Stage 2: Match Screening	27
	2.7.3 Stage 3: Network Evolution	29
2.8	Available Pinch Software for Heat	
	Integration	33
	2.8.1 SuperTarget	33
	2.8.2 PinchExpress	35
	2.8.3 Aspen Pinch	36
2.9	Limitations of Current Pinch Software	37
MET	HODOLOGY	39
3.1	Introduction	39
3.2	An Example Process for Heat	
	Integration	40
3.3	Algorithm for Construction of	
	Composite Curves	40
	3.3.1 Plotting the individual hot and	
	cold composite curves	42
	3.3.2 Plotting the hot curves and cold	
	curves on a T- ΔH diagram	45
	3.3.3 Algorithm for Problem Table	
	Cascade	46

	3.4	Algorithm for Construction of the	
		Grand Composite Curve	49
	3.5	Algorithm for Multiple Utility System	
		Design	50
	3.6	Estimation of Utility Costs	57
	3.7	Algorithm for Automatic Construction	
		of Heat Exchanger Network	59
	3.8	Algorithm for Construction of the	
		Exergy Block Diagram	64
	3.9	Algorithm for Elimination of Infeasible	
		Heat Transfer Match	67
	3.10	Algorithm for Path Optimisation	69
	3.11	Summary	72
4	RESU	ULTS AND DISCUSSION	75
	4.1	Introduction	75
	4.2	Case Study 1 – Multiple Utility Design	75
	4.3	Case Study 2 – Threshold Problem	81
	4.4	Case Study 3 – Automatic Heat	
		Exchanger Network Design	86
	4.5	Case Study 4 – Retrofit of a Palm Oil	
		Refinery	89
	4.6	Case Study 5 – Tjoe's Retrofit Project	100
		4.6.1 Economic Analysis of TRP Case	
		Study	117
5	CON	CLUSIONS	125
	5.1	Conclusions	125
	5.2	Future Works	127
REFERENCES			128
APPENDICES			132

LIST OF TABLES

TABLE NO.	TITLE	PAGE
1.1	Comparison between the old and new tariff rates (Source: Tenaga Nasional Berhad, Malaysia, 2003)	3
2.1	Example of a Match-Matrix	27
3.1	The thermal data extracted for pinch analysis study	41
3.2	Table of hot stream population	43
3.3	Table of cold stream population	44
3.4	Shifted supply and target temperatures	46
3.5	Net enthalpy change (ΔH_i) between temperature intervals	47
3.6	Heat flow at each temperature interval (T _{int})	50
3.7	The results for ΔH_{uti} for the hot utilities	55
3.8	The results for ΔH_{uti} for the cold utilities	56
3.9	Annual steam utility costs (Dougles, 1988)	58
3.10	Match Matrix after elimination of infeasible match	69
4.1	Stream data for case study 1	76
4.2	Cost of utilities for case study 1	79
4.3	Cost of multiple utilities for case study 1	80
4.4	Summary of utilities cost	80
4.5	Stream data for case study 2	81

4.6	Cost of utility for case study 2	85
4.7	Stream data for case study 3	86
4.8	Thermal data for the hot and cold blocks	91
4.9	Match-Matrix for palm oil refinery	92
4.10	Match-Matrix with H3 filtered out	93
4.11	The final match in Match-Matrix	93
4.12	A new Match-Matrix for hot and cold block matches based on Figure 4-19	97
4.13	Thermal data for the hot and cold blocks for the TRP case	102
4.14	The Match-Matrix for TRP case	104
4.15	The new Match-Matrix after C3 is split	106
4.16	The Match-Matrix after H5 is filtered out	106
4.17	The Match-Matrix after H3 is filtered out	107
4.18	The Match-Matrix after H1 is filtered out	107
4.19	The Match-Matrix after H6 is filtered out	108
4.20	Heat transfer area of the heat exchangers in the retrofitted TRP network based on the MATRIX	
	approach	110
4.21	Heat transfer area of the heat exchangers in the retrofitted TRP network based on the MATRIX	
	approach (after C1 split)	112
4.22	Heat transfer area for TRP base case design	117
4.23	Heat exchanger thermal and area data for TRP case study on Pinch method	119
4.24	The modifications proposed for the TRP case study on Pinch method	120

4.25	Thermal and area data for TRP case study using	
	MATRIX techniques.	121
4.26	The modifications proposed for the TRP problem	122
4.27	Total heat transfer area and utility consumption for	
	the TRP case study	123
4.28	Comparison of the network modification and utility	
	saving after retrofit	123
4.29	Comparison of the payback period for different	
	techniques	124

LIST OF FIGURES

FIGURE NO.	TITLE	PAGE
1.1	Average monthly crude oil prices from January	
	1978 through September 2003 (Source: Plains	
	Marketing, L.P.)	2
1.2	Traditional design approach	4
1.3	Pinch Technology Approach	4
2.1	The onion diagram showing the hierarchy of process	
	design	11
2.2	The overall procedure for Pinch analysis	12
2.3	Process 'A'	13
2.4	Streams for process 'A' represented on a	
	temperature (T) versus enthalpy (ΔH) diagram	13
2.5	The T versus ΔH diagram with overlapping between	
	the hot and cold process streams	15
2.6	Process 'A' after heat integration between the	
	reactor effluent and the feed stream	16
2.7	The grid diagram representing the hot and cold	
	streams for possible heat exchange	17
2.8	Criteria for stream matches above the pinch	18
2.9	Concept of Exergy Analysis	19
2.10	Stages in the MATRIX retrofit technique	21
2.11	The example of exergy block diagram	22

2.12	The exergy block diagram for every 10°C	
	temperature decrease	23
2.13	EBD for cold stream C1, steam A and steam B	24
2.14	Temperature-feasibility for stream matches obtained	
	from the EBD (Lim, 2002)	26
2.15	Algorithm for Network Evolution	30
2.16	Loop-Breaking for heat exchanger network	31
2.17	Shifting load for path optimisation	32
2.18	Path Optimisation Curve	32
2.19	The interface of SuperTarget	34
2.20	Energy penalties graph in PinchExpress	35
2.21	The interface of Aspen Pinch	36
3.1	A candidate process for heat integration	40
3.2	A composite hot stream (b) result from the enthalpy	
	combination of two hot streams (a)	42
3.3	Construction of the hot composite curve	43
3.4	Construction of the cold composite curve	44
3.5	Hot and cold composite curves plotted together	45
3.6	Problem table cascade	48
3.7	Construction of the grand composite curve	49
3.8	The grand composite curve	50
3.9	Using grand composite curve for multiple utility	
	design	51
3.10	Selection of the type of utility	51
3.11	Algorithm for the determination of energy load for	
	multiple utility	53

3.12	Determination for energy load (ΔH_{uti}) for each	
	utility level	55
3.13	Balanced grand composite curve	57
3.14	Total annual utility cost	59
3.15	Algorithm for HEN design above the pinch	60
3.16	HEN design above the pinch	61
3.17	Algorithm for HEN design below the pinch	62
3.18	HEN design below the pinch	63
3.19	HEN design above and below the pinch	64
3.20	Heat exchangers' temperature profiles	64
3.21	Algorithm for building the Exergy Block Diagram	65
3.22	An example data for exergy analysis	66
3.23	The exergy block diagram	67
3.24	The algorithm to eliminate infeasible heat transfer	
	match	68
3.25	Path Optimisation Curve	70
3.26	Results of path optimisation	70
3.27	Results of path optimisation by Lim (2002)	71
3.28	Algorithm for path optimisation	71
3.29	Algorithm for the development of <i>Heat-MATRIX</i>	73
4.1	Composite Curves at various ΔT_{min} for case study 1	77
4.2	Grand composite curve for case study 1	78
4.3	Balanced grand composite curves with single hot and single cold utility	78
4.4	Balanced grand composite curve with multiple utilities	79
4.5	Composite Curves for default ΔT_{min} for case study 2	82

4.6	Composite curves for ΔT_{min} of 7°C	83
4.7	Grand composite curves for case study 2	84
4.8	Balanced grand composite curve for MP steam	84
4.9	Balanced grand composite curve for LP steam	85
4.10	Composite curves for case study 3	87
4.11	Grid diagram for HEN for case study 3	88
4.12	Temperature profiles for the heat exchangers	88
4.13	Process flow diagram of a palm oil refinery	89
4.14	Grid diagram representing the existing HEN for the palm oil refinery case study	90
4.15	The hot and cold blocks for retrofit analysis	90
4.16	The EBD for palm oil refinery	92
4.17	The retrofitted network generated using Match- Matrix	94
4.18	The EBD showing the hot block H4 (a) before and (b) after heat load reduction	95
4.19	Grid diagram represent after C2-H4 breakage	96
4.20	Redrawn EBD for unmatched block in Figure 4-19	96
4.21	Grid diagram representation of the palm oil refinery heat exchanger network	97
4.22	Path optimisation diagram for palm oil refinery retrofit project	98
4.23	The final retrofitted heat exchanger network for palm oil refinery plant	99
4.24	Simplified process flow diagram for the palm oil refinery retrofit solution	99
4.25	Grid diagram representation for the base case study from Tjoe's Retrofit Project (TRP).	100

4.26	Targeted heat exchanger represent in "blocks" for	
	retrofit process	101
4.27	The exergy block diagram for the TRP	103
4.28	The grid diagram to show the location of the	
	alternative stream split	105
4.29	The EBD after C3 is split.	105
4.30	Grid diagram representation for the initial network	
	for TRP	109
4.31	EBD for C1-H2 match sowing the exergetic	
	efficiency	110
4.32	EBD for C1-H2 match showing exergetic efficiency	
	(after C1 split)	111
4.33	Retrofitted TRP network based on the MATRIX	110
	approach	113
4.34	Grid diagram representation of the TRP network	114
	after loop breaking	114
4.35	Option A and B for path optimisation	115
4.36	Optimum load for TRP case study	116
4.37	The final retrofitted network based on MATRIX	
	technique after loop breaking and path optimisation	116
4.38	Grid diagram Representation for final retrofit	
	scheme of TRP by Tjoe and Linnhoff (1986)	119
4.39	Grid diagram representation for the final TRP	
	network using MATRIX	121

NOMENCLATURE

Symbols

θ	specific exergy, (kW/°C)
ΔEx	exergy changes, (kW)
ΔH	enthalpy changes, (kJ)
$\Delta H_{uti(j)}$	energy load of j th utility
ΔT_{int}	interval temperature difference, (°C)
ΔT_{min}	minimum allowable temperature difference, (°C)
FCp	flow rate (kg/s) × heat capacity (kJ/kg. $^{\circ}$ C), or
	heat capacity flow rate, (kW/°C)
Q	energy load of heat exchanger, (kW)
Q _{Cmin}	minimum cold utility requirement, (kJ)
Q_{Hmin}	minimum hot utility requirement, (kJ)
Qi	heat flow at <i>i</i> th interval
T _{int(i)}	temperature at i^{th} interval
T_{lm}	log mean temperature, (dimensionless)
To	reference temperature, (298.15 K)
Ts	supply temperature, (°C)
T _T	target temperature, (°C)
T _{uti(j)}	shifted inlet temperature of j^{th} utility

Abbreviation

BGCC	balanced grand composite curves
CW	cooling water
EBD	exergy block diagram
GCC	grand composite curves

HEN	heat exchanger network
HP	high pressure
LP	low pressure
MATRIX	MAximising Total area Reuse In an eXisting process
MER	maximum energy recovery
MP	medium pressure
Refri	refrigeration

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
A	Costs of cooling water	133
В	Calculation costs of utilities	135
С	Tariff rates from Tenaga Nasional Berhad	137

CHAPTER 1

INTRODUCTION

1.1 Research Background

In view of the continuous increase in oil price for the past few years, energy conservation has become a prime concern for process industry. Atkinson reported in 1987, more than half of the investment for the chemical process industry in United Kingdom was directed towards retrofit of existing plants. This statistics show that process retrofit is important in chemical process industry. Douglas (1988) defined the process of retrofit or revamping as follows:

- Minor changes in the interconnections between process equipment
- Replacement of one or more pieces of equipment by some other equipment
- Change in the size of one or more pieces of equipment in an existing process.

In a typical refinery plant system, it is estimated that about 60% of the supply of energy leaves in the form of heated water and air. However, these losses can be reduced by several percent (Frantisek, 1992). The cost of the heating and cooling media is one third of the total operating cost of the plant (Samarjit and Pallab, 1999). This underlines the importance of optimal and efficient heat recovery for a plant. Cost savings on the facilities to accomplish the desired heat exchange between the hot and cold media became one of the main issues which was brought up by Samarjit and Pallab in 1999.

From Figure 1.1, we have noticed that the crude oil price increased from USD 15 to USD 40 per barrel from the year 1979 to 1980. Over the past few years (i.e. from 1999 to 2003), the crude oil price increased from USD 10 to a peak of USD 33 and returned to USD 28 per barrel. In Malaysia, the price of crude oil has increased further after the announcement of the increase in electricity tariff in the year 2001. A comparison between the tariffs before and after the increment is shown in Table 1.1.

Figure 1.1: Average monthly crude oil prices from January 1978 through September 2003 (Source: Plains Marketing, L.P.)

In view of the rising fuel price and utility costs for process plants, hence, it became critical to look for solutions to reduce a plant's operating costs and increase the profit margin for a company.

Table 1.1: Comparison between the	old and new	tariff rates	(Source:	Tenaga
Nasional Berhad, Malaysia, 2003)				

TARIFF CATEGORY		Unit	New Rates	Old Rates	% Increment
1	Tariff B - Low Voltage Commercial Tariff				
	For all units	sen/kWh	28.8	27	6.7%
2	Tariff C1 - Medium Voltage General Commercial Tariff				
	For all unit	sen/kWh	20.8	19	9.5%
3	Tariff C2 - Medium Voltage Peak/Off- Peak Commercial Tariff				
	For all unit during Peak Periods	sen/kWh	20.8	19	9.5%
	For all unit during Off-Peak Periods	sen/kWh	12.8	11	16.4%
4	Tariff D - Low Voltage Industrial Tariff				
	For all units	sen/kWh	23.8	22	8.2%
5	Tariff E1 - Medium Voltage General Industrial Tariff				
	For all units	sen/kWh	18.8	17	10.6%
6	Tariff E2 - Medium Voltage Peak/Off- Peak Industrial Tariff				
	For all unit during Peak Periods	sen/kWh	18.8	17	10.6%
	For all unit during Off-Peak Periods	sen/kWh	10.8	9	20.0%
7	Tariff E3 - High Voltage Peak/Off- Peak Industrial Tariff				
	For all unit during Peak Periods	sen/kWh	17.8	16	11.3%
	For all unit during Off-Peak Periods	sen/kWh	9.8	8	22.5%

Pinch Technology has been a very well-established tool for the design of heat exchanger network (HEN) in chemical process synthesis and has become much more than just an energy-saving tool (Linnhoff, 1993). The technique can be used to accurately predict the potential energy savings and the capital cost targets before design. Development of rigorous software programmes like PinchExpress, SuperTarget, Aspen Pinch has proved to be very useful in the analysis and improvement of complex industrial processes with speed and efficiency.

1.2 Traditional Design Approach versus Pinch Technology Approach

The traditional design approach is depicted in Figure 1.2 (Ahmad *et al.*, 2000). The core of the process is designed with fixed flow rates and temperatures, yielding the heat and mass balances for the process. Then, the design of a heat recovery system is completed. Next, the remaining duties are satisfied by the use of the utility system. In the traditional approach, each of these tasks is performed independently of the others.

Figure 1.2: Traditional design approach

Process integration using pinch technology offers a novel approach to generate targets for minimum energy consumption before the heat recovery network design. Heat recovery and utility system requirements and constraints are taken into consideration during the design of the core process. Interactions between the heat recovery and utility systems are also considered (see Figure 1.3). The pinch design can reveal opportunities to modify the core process to improve heat recovery. The pinch approach is unique because it treats all processes with multiple streams as a single, integrated system. This method helps to optimise the heat transfer equipment during the design of the equipment.

Figure 1.3: Pinch Technology Approach

1.3 The Significance of a Pinch Software

The development of pinch software has begun in the early 90's. A person applying the techniques of pinch technology for process design will need to perform plenty and rigorous calculations and generate many graphical illustrations. All the onerous works will become easy with the advent of a computer software. This is because, a computer is capable of making logical decisions at speeds of millions, and even billions, of times faster than human being. Therefore, an engineer can consider many different heat integration alternatives faster, towards the aim of finding out the best design.

1.4 Problem Statement

Even though the procedure for the optimal design of heat recovery network has been very well-established, the available techniques and the software for improving an existing heat recovery network in process plants have many key limitations.

Many popular approaches including Pinch Analysis technique are too dependent on ΔT_{min} as the decision variable for retrofit, giving rise to rigid retrofit solutions that are either too complex to implement or not flexible enough to address the existing process constraints.

Given a set of process streams that requires cooling (hot streams) and another set of streams that requires heating (cold streams) with their respective supply temperatures (T_s), target temperatures (T_T) and heat capacity flowrates (F x C_p), it is desired to rapidly and efficiently design a new heat recovery network, as well as analyse and retrofit an existing network to maximise energy efficiency at the minimum total cost. As the tasks of the design, analysis and retrofit of heat recovery network involve graphical techniques as well as rigorous and repetitive computations; a rapid, efficient, and in some cases automated approach is truly vital. A computer software is proposed to achieve the outlined goals.

1.5 Objectives of This Research

This research aims to develop a user-friendly computer software for the rapid and efficient

- 1. generation of an optimal heat exchanger network to achieve maximum energy recovery.
- analysis and retrofit of an existing heat recovery network using the new MATRIX (MAximising Total area Reuse In an eXisting process) technique.

1.6 Research Scopes

The scopes of the research include

- 1. The development of algorithms to automatically generate and calculate the
 - pinch temperatures,
 - minimum hot and cold utility consumption,
 - minimum number of heat exchanger units,
- 2. Design of heat recovery network

This involves automatic and semi automatic synthesis of the heat recovery network to achieve the minimum utility targets predicted.

3. Optimal utility placement

Once the heat exchanger network is designed, it is necessary to search for the most economical combination of hot and cold utilities. The software is designed to generate the optimal utility combination for a given process; i.e. the one that yields the cheapest utility mix in terms of the amount (load) and quality (level).

4. Retrofit of heat recovery network

Given an existing process heat exchanger network, the software would systematically analyse it for inefficiencies and propose ways to improve the existing structure. A visualisation tool based on the new technique named MATRIX assist designers to improve the current network.

5. Path Optimisation

Path optimisation involves final evolution of the retrofitted heat recovery network. The software would plot a curve of the total annual cost versus heat load shifted along heat exchanger path. Then, it automatically finds the optimal shifted heat load and hence, the final retrofitted network based on minimum total annual cost for a retrofit design.

1.7 Research Contributions

The contributions of this research can be summarised as follows:

1. This is the first software that uses two techniques; pinch technology and MATRIX as the basic concept to solve the problem of heat exchanger network. Pinch technology can be used to accurately calculate the potential energy saving in grassroots design. The MATRIX technique which has been developed in UTM would provide another option of HEN retrofit as a simple and practical alternative to the well-established pinch approach.

- 2. The development of a new algorithm to find the optimum shifted heat load for the generation of final heat recovery network with the minimum total annual cost.
- 3. As far as our search in the open literature has revealed, this is the first locally developed user-friendly computer software for heat exchanger network (HEN) design. The basic concept of HEN design is based on pinch technology and the new MATRIX technique.

1.8 Summary of Thesis

This thesis contains five chapters.

Chapter 1 provides the introduction and background of the research, problem statement, overall objective of the research, and the scopes of research.

Chapter 2 reviews the relevant theory and critically analyses the previous work related to the research. The concepts of pinch technology and the new MATRIX approach are explained here. The subsequent section covers the development of software for heat integration.

Chapter 3 describes the algorithm involved in the development of the pinch software. This begins with the construction of the composite curves and the algorithm for problem table to get the minimum energy requirements and the pinch temperatures. Then, the multiple utilities design is performed. This is followed by an explanation of the algorithm for heat exchanger network design. The next section describes the algorithm for Exergy Block Diagram for exergy analysis. The last section presents the methodology for path optimisation in retrofit design.

Chapter 4 discusses the results of the research through a demonstration of the capability of the software on five selected cases study. The first case study compares the single utility with the multiple utilities design. The second case study discusses

the "threshold problem" design. The third case study demonstrates the automatic heat exchanger network design. The fourth case study uses the new MATRIX technique for the retrofit of a palm oil refinery. Finally, the fifth case study uses MATRIX to solve the Tjoe's retrofit project.

Chapter 5 concludes the research with some highlights of the unique features of the software developed for HEN design. Finally, the future works to be completed is discussed.

REFERENCES

- Ahmad, S., Hall, S. G., Morgan, S. W. and Parker, S. J. (2000). *Practical process Integration – An Introduction to Pinch Technology*. Aspen Technology, Inc.
- Ahmad, S., Linnhoff, B. and Smith, R. (1990). Cost Optimum Heat Exchanger Networks-2. Targets and Design for Detailed Capital Cost Models. *Computer* and Chemical Engineering. 14(7): 751-767.
- Atkinson, R. (1987). Planning and Implementing Plant Revamps. *Chemical Engineering*. March. 51-56.
- Douglas, James M. (1988). Conceptual Design of Chemical Process. New York: McGraw-Hill. 569.
- Frantisek, M. (1992). Process Plant Performance- Measurement and Data Processing for Optimisatio and retrofits. England: Ellis Horwood.
- Gundersen, T. and Grossmann, I.E. (1988). Improved Optimisation Strategies for Automated Heat Exchanger Network Synthesis through Physical Insight. AIChE Annual Meeting. Washington D.C.: Paper No. 81g.
- Hohmann, E. C. (1971). Optimum Network for Heat Exchanger. University of Southern California: Ph.D. Thesis.
- Kotas, T. J. (1986). Exergy Method of Thermal And Chemical Plant Analysis. Chem. *Eng. Res. Des.* 64: 212-229.
- Kotas, T. J. (1995). *The Exergy Method of Thermal Plant Analysis*. Great Britain: Anchor Brendon Ltd.

- Lim, F. Y. (2002). *MATRIX A New Systematic Technique for Retrofit of Heat Exchanger Network*. Universiti Tehnologi Malaysia: Master Thesis.
- Lim, F. Y. and Manan, Z. A. (2001). Development of A Systematic Technique for Simultaneous Reduction of Energy and Water in Chemical Process Plants. *Proceedings of 15th Symposium of Malaysian Chemical Engineers*. September 11-12. Johor Bahru, Malaysia, 477-483.
- Linnhoff, B. (1993). Pinch Analysis: A State-of-the-Art Overview. *Trans. IChemE*. 71: 503-522.
- Linnhoff, B. (1998). *Introduction to Pinch Technology*. England: Linnhoff March Targeting House Gadbrook Park.
- Linnhoff, B. and Ahmad, S. (1990). Cost Optimum Heat exchanger Networks-1. Minimum Energy and Capital Using Simple Model for Capital Cost. *Computers* and Chemical Engineering. 14(7): 729-750.
- Linnhoff, B., and Flower, J. R. (1978). Synthesis of Heat Exchanger Networks. *AIChEJ*. 24: 633.
- Linnhoff, B., and Vredeveld, D. R. (1984). Pinch Technology has come of age. *Chemical Engineering Progress*. July. 33-40.
- Linnhoff, B., Townsend, D. W., Boland, D., Hewitt, G. F., Thomas, B. E. A., Guy, A. R. and Marshland, R. H. (1982). User Guide on Process Integration for The Efficient Use of Energy. Rugby, UK: IChemE.
- Manan, Z. A. (2003). Maximising Energy Saving In The Process Inductry Using Pinch Analysis. Universiti Teknologi Malaysia, Kuala Lumpur, Malaysia.
- Manan, Z. A. and Ooi, B. L. (2001). A Software for Energy Optimisation Using Pinch Analysis. Proceedings of 15th Symposium of Malaysian Chemical Engineers. September 11-12. Johor Bahru, Malaysia, 266-270.
- Ooi, B. L. (1999). Persekitaran Rekabentuk Proses Kejuruteraan Kimia. Universiti Teknologi Malaysia. Projek Sarjana Muda.

- Sama, D. A. (1996). Heat Exchanger Network Optimization Strategy Based on Reducing the Number of Heat Exchangers. Proceedings of The Third Biennial European Joint Conference on Engineering Systems Design & Analysis (ESDA '96). Montpellier, France. 1: 173-183.
- Samarjit, C. and Pallab, G. (1999). Heat Exchanger Networks Synthesis: The Possibility of Randomisation. *Chemical Engineering Journal*. 72: 209-216.
- Smith, R. (1995). Chemical Process Design. New York: McGraw-Hill.
- Smith, R. and Linnhoff, B. (1988). The Design of Separators in The Context of Overall Process. *Trans. IChemE, ChERD.* 66: 195-228.
- Tjoe, T.N. and Linnhoff, B. (1986). Using Pinch Technology for Process Retrofit. *Chemical Engineering Journal*. 93: 47-60.
- Umeda, T., Itoh, J. and Shiroko, K. (1978). Heat Exchanger System Synthesis. *Chemical Engineering Progress*. 25: 70-76.
- Varbanov, P. S. and Klemes, J. (2000). Rules for Paths Construction for HENs Debottlenecking. *Applied Thermal Engineering*. 20: 1409-1420.
- Yusof, F. M. (1994). Retrofit dan pengurangan kesan pengotoran di dalam proses penapisan minyak kelapa sawit melalui rekabentuk rangkaian penukar haba yang lebih baik. Universiti Teknologi Malaysia: Projek Sarjana Muda.

Aspen Pinch. Aspen Technology, Inc. home page, http://www.aspentech.com/includes/product.cfm?IndustryID=0&ProductID=68

Costs of Doing Business. Malaysian Industrial Development Authority home page, http://www.mida.gov.my/costs.html

Introduction to Pinch Technology. Linnhoff March home page, http://www.linnhoffmarch.com

Pinch Technology: Basic for the Beginners. Cheresources, Inc. home page, http://www.cheresources.com/pinchtech1.shtml

PinchExpress. Linnhoff March home page, http://www.linnhoffmarch.com/software/pinchexpress.html

SuperTarget. Linnhoff March home page, http://www.linnhoffmarch.com/software/supertarget/intro.html