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ABSTRACT 

The purpose of this research was to investigate the temperature and energy 

input dependency of Nd:YAG laser performance pumped by flashlamp. A 

commercial laser rod Nd:YAG crystal was utilized as a gain medium. The laser rod 

was placed parallel to a linear flashlamp filled with xenon gas at 450 Torr. The 

Nd:YAG crystal together with the flashlamp were flooded with a coolant comprising 

of a mixture of 60% ethylene glycol and 40% distilled water which covers a range of 

temperature from -30C to +60C. Spectroscopic properties of the Nd:YAG rod 

under pulsed flashlamp pumping was investigated from the output fluorescence 

spectrum of the flashlamp radiation and the Nd:YAG rod. The linewidth of each 

fluorescence line was measured for estimation of effective emission cross section and 

saturation intensity. The influence of temperature and input energy on fluorescence 

emission cross section of Nd
3+

:YAG crystal was studied. The cross section was 

found to decrease as the temperature and the input energy were increased. The inter-

stark emission showed Lorentzian line shape indicating homogeneous broadening. 

This was attributed to the thermal broadening mechanism of the emission line. The 

spectral widths and shifts of the emission lines for the three and four level inter-Stark 

transitions within the respective intermanifold transitions of 
4
F3/2→

4
I9/2 and 

4
F3/2→

4
I11/2 were investigated over the range of 0 to 75 J. The emission lines for the 

4
F3/2→

4
I9/2 transitions shifted towards a longer wavelength and broadened, while the 

positions and linewidths for the 
4
F3/2→

4
I11/2 transitions remained unchanged with 

increasing input energy. Finally the temperature dependence of quasi three level laser 

transitions for long pulse Nd:YAG laser was also investigated. The laser 

performance at 938.5 nm and 946.0 nm were also found to be inversely proportional 

with temperature and the slope efficiency was unchanged to temperature. The 

reduction was due to the mechanism of phonon scattering as well as broadening 

effect as the temperature increases. 
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ABSTRAK 

Tujuan penyelidikan ini ialah untuk mengkaji pergantungan suhu dan tenaga 

masukan terhadap prestasi Nd:YAG laser yang dipam dengan lampu kilat. Rod laser 

komersial kristal Nd:YAG digunakan sebagai medium perolehan. Rod laser 

diletakkan selari  dengan lampu kilat linear yang mengandungi gas xenon pada 

tekanan 450 Torr. Kristal Nd:YAG bersama lampu kilat ditenggelamkan dalam 

penyejuk yang mengandungi campuran 60% etilena glikol dan 40% air suling yang 

meliputi suhu daripada -30C hingga +60C. Sifat spektroskopi rod Nd:YAG di 

bawah pengepaman lampu kilat denyut dikaji daripada spektrum pendarfluor 

keluaran sinaran lampu kilat dan rod Nd:YAG. Lebar garis setiap garis pendarfluor 

diukur untuk anggaran keratan rentas pancaran berkesan dan keamatan tepu. 

Pengaruh suhu dan tenaga masukan terhadap keratan rentas pancaran pendarfluor 

bagi kristal Nd
3+

:YAG dikaji. Keratan rentas didapati berkurang apabila suhu dan 

tenaga masukan bertambah. Pancaran inter-Stark menunjukkan bentuk garis 

Lorentzian yang menandakan pelebaran homogen. Ini disebabkan oleh mekanisma 

pelebaran terma bagi garis pancaran. Lebar dan anjakan spektrum bagi garis 

pancaran peralihan tiga dan empat aras peralihan inter-Stark di antara peralihan 

pancarongga bagi 
4
F3/2  

4
I9/2 dan 

4
F3/2  

4
I11/2 dikaji meliputi julat 0 hingga 75 J. 

Garis pancaran bagi transisi 
4
F3/2  

4
I9/2 beranjak ke arah satu panjang gelombang 

yang lebih panjang dan melebar, sementara posisi dan lebar garis bagi transisi 
4
F3/2 

 
4
I11/2 tetap tidak berubah dengan pertambahan tenaga masukan. Akhirnya 

pergantungan suhu pada transisi laser kuasi tiga aras untuk laser Nd:YAG denyut 

panjang juga dikaji. Prestasi laser pada 938.5 nm dan 946.0 nm juga didapati 

berkadar songsang dengan suhu dan kecerunan kecekapan didapati tidak berubah. 

Pengurangan ini disebabkan oleh mekanisma serakan fonon dan kesan pelebaran 

spektrum apabila suhu meningkat.   
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CHAPTER 1  

1 INTRODUCTION 

1.1 Overview 

The word LASER stands for Light Amplification of Stimulated Emission of 

Radiation. The principle of the stimulated emission in addition to absorption and 

spontaneous emission was first introduced by Albert Einstein in 1916. He explained 

that in the presence of the field of excited photons, other atoms were stimulated to 

emit additional photons. The frequency of the emitted radiation was related to the 

difference in the atomic energy levels (Natarajan 2005). 

Generally speaking, a laser constructed from three principle parts, a pump 

source, a gain medium, and an optical resonator which includes two or more mirrors, 

as shown in Fig. 1. 

In this research xenon filled flashlamp was used as a pump source, because it 

is the most efficient gas at converting electrical energy to optical energy and it is 

cheaper than other gasses (Perlman 1966; Koechner 2006). The flashlamp power 

supply was based on the series simmer mode triggering method and energized the 

flashlamp with high energy. A Nd:YAG crystal is used as laser medium which is a 

neodymium (Nd
3+

) doped yttrium aluminum garnet (YAG). The Nd:YAG can 

produce more than 30 laser lines in the near-IR spectral region (Koechner 2006). 
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An optical resonator was aligned in a simplest form contained two parallel 

mirrors placed in between the gain medium which provide feedback of the light. The 

mirrors were coatings to determine their reflectivity properties. 

For terrestrial applications, laser systems are mainly used in temperature 

range from -60 to 60
˚
C (Rapaport 2000). Other optical elements in a typical laser 

resonator (e.g. mirrors, beam splitters, etc) show no variation in optical properties 

over a wide range of temperature. However, ambient temperature and the heat 

generated by the gain medium of flashlamp pumping lead to thermal broadening and 

shifted of laser lines which seriously effect on gain amplification, threshold power, 

frequency stability, and thermal tunability of the lasers and obstruct the lasing 

performance (Sardar 1998; Sardar 2000; Rapaport 2002; Zhao 2005). 

In this research laser performance of Nd:YAG laser pumped by flashlamp 

was investigated. 

 

Figure 1.1 Schematic diagram of flashlamp pumped Nd:YAG laser . 

1.2 Problem Statement 

Nowadays most simultaneous generation of multi-wavelength are generated 

by diode pump solid state lasers. The drawbacks of these operations is that they are 

continuous or quasi continuous. These operations are difficult to control and in 

addition they have low peak power (Saiki 2011). 
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 Furthermore in quasi three level lasers, in which the ground level has 

significant thermal population, laser transition suffering from significant re-

absorption. This phenomenon increases the internal loss in the gain medium and 

therefore population inversion would emerge at strong pump intensities. As a result 

additional heat is generated on the crystal (Lupeia 2002; Eichhorn 2008). 

Some parameters such as laser threshold, output power, internal loss, 

linewidth of the laser line are dependent on temperature, hence heat generation can 

dramatically influence the laser performance (Sardar 1998; Dong 2003; Dong 2005; 

Turri 2009). Furthermore in most high power solid state lasers variation of emission 

cross section with temperature has a serious affect on the laser performance. 

Consequently extra heat leads towards damaging optical components in intracavity 

and vary stability of the output energy over the temperature range of interest. 

Furthermore in increasing the power of the laser normally involve in increasing the 

pump power. To date no many works have been reported on the influence of 

temperature base on the voltage of falshlamp or the input energy of the laser. 

Therefore the novel work claimed from this study is dependent on these results.  

1.3 Research Objective 

Since Nd
3+

:YAG laser performance is dependent on the temperature and 

pumping energy (Pourmand 2012) careful investigation on the phenomena of 

linewidths and shifts of several lines of 
4
F3/2→

4
I11/2 and 

4
F3/2→

4
I9/2 intermanifold 

transition lines is required. In addition changes of laser output energy with 

temperature also is a crucial issue in solid state laser materials. 

Accurate information on temperature effects would be possible to deal with 

varying stability of the output energy over the temperature range of interest. Thus for 

investigation to achieve these objects, the following works was performed: 
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i. Investigation on spectroscopy properties of flashlamp and the Nd:YAG 

rod in different temperatures and input energies.  

ii. Investigation on broadening effect and shifted of center line at different 

temperature and input energies. 

iii. Estimation of stimulated emission cross section of the Nd:YAG quasi 

three level laser at different temperature and input energy. 

iv. Align of an optical resonator to produce simultaneous generation of 938 

and 946 nm wavelengths. 

v. Characterize the performance of quasi three level laser transitions for 

long pulse Nd:YAG laser at various temperature. 

1.4 Scope of Study 

This study basically focused on both aspects, theoretical and experimental 

work based on Nd:YAG laser system. The system comprises of two parts. The first 

part is energizing a laser crystal and stabilizing the stimulating emission of 

fluorescence radiation. The second part is measurement of fluorescence and laser 

radiation by spectrometer. 

A commercial laser rod Nd:YAG laser crystal is utilized as a gain medium. 

The doping level of the laser rod is 1 at. % with dimension of 4 mm in diameter and 

70 mm in length. The laser rod is enclosed in a ceramic reflector. The laser rod is 

placed parallel to a linear flashlamp filled xenon gas at 450 Torr. The rod is excited 

using side pumping technique by a homemade power supply (Zainal 2010). The 

driver is triggered by simmer mode technique. A capacitor bank with capacitance of 
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150 F is charged by maximum voltage of 1000 V thus the input energy is varied 

between 0 to 75 J. 

Intensive emitted light by flashlamp dissipates heat to the laser rod and the 

flashlamp itself. Therefore the Nd:YAG crystal together with the flashlamp are 

flooded with a coolant comprised of the mixture of 60 % ethylene glycol and 40 % 

distilled water. Such particular coolant covers the range of temperature from -30 C 

to +60 C. A thermocouple is connected to the heat sink of alumina ceramic to 

measure the temperature of cooling system. 

The fluorescence radiation after pumping is emitted at one end of the laser 

rod. The light is detected by a CCD camera. The spectroscopic properties were 

analyzed via a Wavestar version 1.05 software. The resolution of this detection 

system is 0.5 nm so it can resolve most of the transition lines appeared from the 

pumping rod. 

The dual wavelength laser operation at 938 and 946 nm are generated 

simultaneously by using laser resonator mirrors precise coating at 946 nm with 

reflectivity at 75 %. 

1.5 Significance of study 

A variety of laser materials has been developed, among which the most 

standard host is the yttrium aluminum garnet (YAG). Owing to remarkable laser 

properties of Nd
3+

 doped YAG crystal, such as high mechanical strength, thermal 

conductivity, optical transparency over a wide spectral region, adequate fluorescence 

lifetime for storage energy and high stimulated emission cross section, it has been 

utilized for a long time in solid-state laser industry (Kumar 2004). 
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During the last decade wavelengths in the blue light region have attracted 

much attention because of their practical applications such as high density data 

storage, colour displays, Raman spectroscopy, underwater communication, high 

resolution printing and medical diagnostics. One important way to produce blue 

lasers is resulted from either second harmonic generation of 946.0 and 938.5 nm 

wavelengths or sum frequency generation of 946.0 with 938.5 nm in quasi three level 

Nd:YAG laser (Dimov 1991; Wang 1999) . Therefore the stimulated emission cross 

section and output energy for two lines of 938.5 and 946 nm were quantified as a 

function of temperature and input energy. These observations are new and may 

contribute towards new design architecture of quasi three level laser systems. 

Therefore the stimulated emission cross section and output energy for two 

lines of 938.5 and 946 nm were quantified as a function of temperature and input 

energy. These observations are new and may contribute towards new design 

architecture of quasi three level laser systems. In addition a critical parameter in such 

a laser system design is a fundamental understanding of the temperature and input 

energy dependent mechanisms or material properties that ultimately contribute to a 

change in laser performance. 

Several works have been done on spectroscopic properties and stimulated 

emission cross section of Nd:YAG crystals at the major line of 1064 nm pumped by 

diode lasers. However, to the best of our knowledge, few studies have been 

conducted on the main lines of quasi three level lines at 938 and 946 nm wavelengths 

induced by a flashlamp pumped Nd:YAG laser. Therefore, in this thesis we reported 

the experimental evidence that stimulated emission cross section of Nd:YAG crystal 

at these wavelengths was affected by the temperature and the input energy. In 

addition input energy dependency of intensity, linewidth and wavelength position of 

quasi three level and four level system transitions was investigated. However, to the 

best of our knowledge similar studies has not been reported up to now. Finally, in the 

present research simultaneous oscillation of dual wavelength Nd:YAG laser at 938 

and 946 nm pumped by flashlamp was introduced. Besides, laser performance of 

quasi three level transitions at 938 and 946 nm versus temperature and input energy 

was studied.  
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