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ABSTRACT

This thesis presents system identification and development of an adaptive
robust control strategy based on discrete sliding mode control (DSMC) with zero phase
error tracking control (ZPETC) for an electro-hydraulic actuator (EHA) system. A
linear type actuation of the EHA system using a single-ended cylinder controlled by
a servo valve was considered in the experimental design. In the system identification
process, EHA system was modelled using parametric linear time varying equations
with parameters that were identified using recursive and non-recursive identification
techniques. An identification process that recursively computes the dynamic model
was performed using recursive least square with varying forgetting factors and the
estimated linear model was validated through statistical approaches. From the
identification process, a non-minimum phase model of EHA system with a high
sampling time was obtained. To formulate the control algorithm for the EHA
system, a robust feedback control theory with feedforward structure was employed
to overcome the non-minimum phase problem in EHA system. The algorithm was
also subjected to model uncertainty and non-linear characteristics. As a result, a new
robust controller with an integrated design scheme based on DSMC and ZPETC was
developed using a reaching law technique where parameters of the controller had been
analytically determined. Subsequently, the new adaptive control strategy was improved
by enhancing DSMC and ZPETC that are adaptable with variations in the parameters
of EHA system. In simulation and experimental studies, an optimal linear-quadratic-
regulator (LQR) and a proportional-integral-derivative (PID) were implemented in
the position tracking control as comparisons with the proposed robust controller. A
comprehensive performance evaluation with quantitative measures of the tracking
performance is presented and the results show that the robust system performance was
achieved with DSMC under different operating system conditions. The findings also
demonstrated that the new adaptive DSMC with ZPETC structure has reduced the
control effort and gave a better performance in terms of tracking accuracy as compared
to the conventional DSMC, LQR and PID controllers.
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ABSTRAK

Tesis ini mengemukakan pengenalpastian sistem dan pembangunan sebuah
teknik kawalan tegap mudah suai berdasarkan kawalan ragam lincir diskret
(DSMC) dengan teknik kawalan ralat penjejak fasa sifar (ZPETC) untuk sistem
penggerak elektro-hidraulik (EHA). Sebuah penggerak jenis linear bagi sistem
EHA menggunakan silinder berhujung tunggal yang dikawal oleh injap servo telah
dipertimbangkan di dalam rekabentuk ujikaji. Di dalam proses pengenalpastian sistem,
sistem EHA dimodelkan menggunakan persamaan linear berparameter masa berubah
dengan parameter tersebut telah dikenalpasti menggunakan teknik pengenalpastian
rekursif dan tidak rekursif. Sebuah proses pengenalpastian yang mengira secara
rekursif model dinamik telah dijalankan menggunakan kuasa dua terkecil rekursif
dengan faktor pemadaman berubah dan anggaran model linear tersebut telah disahkan
melalui pendekatan statistik. Daripada proses pengenalpastian, sebuah model fasa
tidak minima sistem EHA telah diperolehi dengan persampelan masa tinggi. Bagi
perumusan algoritma kawalan untuk sistem EHA, teori kawalan suap balik tegap
dengan struktur suap depan telah digunakan untuk mengatasi masalah fasa tidak
minima di dalam sistem EHA. Algoritma tersebut juga mengalami ketidakpastian
model dan ciri tidak linear. Hasilnya, sebuah pengawal tegap baru dengan
skim rekabentuk berintegrasi berdasarkan DSMC dan ZPETC telah dibangunkan
menggunakan teknik hukum mencapai di mana parameter pengawal telah ditentukan
secara beranalitik. Kemudiannya, sebuah strategi kawalan mudah suai baru ditambah
baik dengan peningkatan DSMC dan ZPETC yang boleh suai terhadap perubahan
parameter di dalam sistem EHA. Di dalam kajian penyelakuan dan ujikaji, sebuah
pengatur-kuadratik-linear (LQR) optima dan kadaran-kamiran-terbitan (PID) telah
dilaksanakan di dalam kawalan penjejak kedudukan sebagai perbandingan dengan
pengawal tegap yang dicadangkan. Penilaian prestasi komprehensif dengan sukatan
kuantitatif bagi prestasi penjejak dikemukakan dan keputusan menunjukkan bahawa
prestasi sistem tegap telah dicapai dengan DSMC bagi keadaan sistem yang berbeza.
Penemuan ini juga menunjukkan bahawa DSMC mudah suai baru dengan struktur
ZPETC telah mengurangkan usaha pengawal serta memberi prestasi yang lebih baik
dalam terma ketepatan penjejakan berbanding pengawal konvensional DSMC, LQR
dan PID.
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CHAPTER 1

INTRODUCTION

1.1 Introduction to Electro-hydraulic Actuator System

Electro-hydraulic actuator (EHA) system emerge in fluid power technology
was greatly developed from the beginning of the 20th century where the works were
first introduced by French physicist, Blaise Pascal in 1663. Brief but very interesting
histories of fluid in technology or known as hydraulic system can be referred in various
books such as in Merritt (1967). Tracked back to the invention of the water clock by
Alexanderian inventor Ctesibios in about 250 B. C., this is a great invention based
on the principle of hydraulic mechanisms back to several centuries ago. Following
the invention, the idea was widely used in early 1763 for industrial applications using
water as the working fluid after the invention of steam engine by James Watt. It was
written in histories, the importance and advantageous of fluid control systems which
are very crucial in the development of modern technology.

There are many unique elements and advantages of EHA system over rival
actuators such as pneumatic and electrical motor. The main advantages of fluid power,
which led to its prominent feature, is the good ratio between forces delivered by the
actuator over the weight and its size. The lighter and smaller compact structure of the
EHA system has made this actuator very suitable to be used especially in transportable
industrial field. The combination between electrical and hydraulic devices also
rendered EHA system to be more flexible by implementing in real application with
advanced control strategies.
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1.2 Research Background

The source of power in the EHA system which distributed fluid under pressure
is used to generate the necessary movements in different applications particularly
for the linear and rotary machines which are typically referred as cylinders or
motors, respectively. The movement is the desired end function to lift, shift,
press, orient and clamp depending on the type of applications. As the reasons and
advantages as discussed by Merritt (1967), the increased usage of EHA system has
brought demands of high performance for position and force control to diverse of
applications. The EHA system is particularly used in applications where high response,
linear movements and accurate positioning with heavy weight or load are usually
required. Recently, EHA system has become progressively popular in various types of
engineering equipment. The typical engineering application fundamentals such pulling
or pushing are employed in earth moving equipment, manufacturing equipment and
flight applications. Moreover, these actuators are also widely used in industrial field
that involved textile industries, automotive engineering, agricultural machinery and
military equipment in defence technology.

In the literatures, intensive works have been found concerning EHA system
in the construction applications. As stated in Cetinkunt et al. (2004), the size of
the world market in EHA system is estimated about 30 to 35 billion dollars per
year. It is approximately thirty percent of that market belongs to the construction
equipment industry. The construction equipment has started developing progressively
in heavy engineering industry these days. The uses of EHA system in construction
equipment increased the operator safety and reduced its physical effort in handling
such applications that were formerly required to manipulate bulky valve handles. There
are two major types of construction machinery equipped with EHA system operating
in huge numbers which are the wheel type loader and the excavator.

In general, the main purpose of the wheel type loader is to load material
from a pile to a truck at a construction area. In the development of wheel loader
as reported in Fales et al. (2005), virtual reality based human-in-the-loop real-time
simulation for a wheel loader control system is implemented in the simulator which
consists of hydraulic actuator acts as a main part in the wheel loader application. More
recent works has been studied by Fales and Kelkar (2009) in simulation environment
which are concerning on wheel loader applications as an automatic bucket levelling
mechanism. Alaydi (2008) also implemented the hydraulic actuator with pump-
controlled system which is operated in a single bucket excavator. The employment
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of EHA system in the high power mining excavators and forestry equipments are
generally to increase the efficiency of its performance.

In the initial works of EHA system for industrial machine tools, Lee and
Srinivasan (1989) implemented the hydraulic actuator in mechanical material testing
machine. As discussed in Renn and Tsai (2005) and Pluta (2008), press machines are
the most commonly utilised in industrial machine tools especially for metal forming.
It was also clarified by Chiang et al. (2005) the importance of using EHA system
in moulding machines in order to simultaneously achieve high energy efficiency and
also high accuracy of the force control response. The experimental works by Tsai et al.

(2009) presented an ultra high-speed plastic injection moulding machine by controlling
the injection speed with hydraulic actuator.

In the present flight technology, most of the modern high-performance aircraft
commonly used fly-by-wire in their flight control systems. In these aircraft systems,
the pilot send electrical signals through flight control computers to achieve the desired
trajectory. Di Rito et al. (2008) has performed hardware-in-the-loop simulations of
the fly-by-wire flight control systems. In that works, EHA system was mainly used in
designing the simulator platform. In Guo et al. (2008), a parallel robot manipulator was
constructed as a spatial platform mechanism. This type of manipulator was originally
used as a flight simulator. Karpenko and Sepehri (2009) also had applied EHA system
in their research works mainly in hardware-in-the-loop simulator for flight control
applications. Then, the research was continued in a year later by Karpenko and Sepehri
(2010b) where the hydraulic actuator was operated as a flight surface actuator of a
high-performance aircraft.

Some applications especially in automotive industry is very crucial where the
actuators are used as an active part in the system in order to drive the passive part. Chen
and Zeng (2003) used the hydraulic actuator in torsion bar suspension systems where
in the test rig, the EHA system was used to generate several road disturbances. Sam
et al. (2004) implemented the hydraulic actuator in the active suspension system where
a quarter-car model was adopted in the simulation studies. Similar concept has been
revealed by Ayalew (2008) in the development of the road simulators which enable the
in-laboratory evaluation of vehicle structural durability and vehicle dynamics for ride
comfort without having to run the vehicle’s drive train on an actual road surface. It
can also be used in the assessment of pavement damage and the study of road-vehicle
interaction. It was found in Witters and Swevers (2010), that they started to develop the
continuously variables using the electro-hydraulic semi-active dampers in improving
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the suspension technology.

From the discussions and motivation in the current applications of the EHA
system, it was found that the importance of hydraulic actuator is really significant in
the technology development nowadays. In the engineering design approach, modelling
and control are the most important processes in realizing the advanced technology. In
general, it is difficult to establish or identify an accurate dynamic models where the
EHA system inherently have many uncertainties, highly non-linear and time-varying
which makes the modelling and controller designs becoming more complicated. Non-
linear flow and pressure characteristics, backlash in control valve, actuator friction,
variations in the trapped fluid volume due to piston motion and fluid compressibility
are major sources of non-linearity in the actuation system (Jelali and Kroll, 2003).
These difficulties have motivated the researchers and academia to conduct further
investigations on the actuator performance before the implementation of various
potential applications in the industries. To solve those engineering issues, several
research works focusing on the hydraulic actuator have been carried out.

According to Merritt (1967), a typical EHA system consists of a pump, control
valve and a hydraulic actuator. The actuator can be either a cylinder providing linear
motion or hydraulic motor providing rotary motion. EHA system combines together
with the versatile and precision available from electrical technique of measurement
and signal processing with the superior performance which high pressure hydraulic
mechanism can be provided when moving heavy loads and applying large forces.
Hence, the EHA system control problem might be grouped into force and position
control as an innermost loop of control systems.

There are few numbers of work discussing the problem of force control in
EHA system (Alleyne and Liu, 1999, 2000; Sohl and Bobrow, 1999). This type of
control is very useful for certain applications that required force as an output from
the hydraulic actuator. Furthermore, some applications only need certain amount
of force to be exerted to the applied system. In recent works by Truong and Ahn
(2011), force control of EHA system was applied in press machine operation. Another
example on application that required force as an output from the EHA system is
an active suspension system (Sam et al., 2004). However, in contrast, hydraulic
positioning control is more attractive due to its wide range of applications. From the
discussion above, construction machinery, machine tools, aircraft systems and robotic
applications usually need an accurate positioning control from the actuator. It can be
seen from the literature that several number of publications have been published among
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academia and researcher regarding the problem of position control using EHA system.
Therefore, the research study will be focused on various types of control strategies of
EHA system particularly in position tracking control.

1.3 Problem Statement

The problem statement of this study is expressed as follow:

“an identification process and adaptive robust controller are necessary to
control the EHA system due to its nonlinearities and uncertain characteristics”.

1.4 Research Objectives

The objectives of this research are as follows:

(i) To obtain a dynamic model of the EHA system in state space form using
system identification technique.

(ii) To design a robust controller based on discrete-time sliding mode control with
feed-forward approach that will overcome non-minimum phase problem in
EHA system.

(iii) To design an adaptive control strategy based on the discrete-time sliding
mode control with feed-forward approach that will overcome the time-
varying in EHA system’s parameters.

(iv) To implement and evaluate the tracking performance of an EHA system with
proposed control strategy through simulation and experimental study.

1.5 Scope of Work

This thesis addresses the position tracking problem for the developed EHA
system workbench in the laboratory. The scope of this research are as follows:
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(i) The position tracking is conducted for the linear type of motion using single-
ended cylinder and controlled with a servo valve.

(ii) Due to the limitation of hardware construction, bandwidth of the EHA system
for the identification process and tracking control is limited to 1 Hz.

(iii) The maximum supply pressure is regulated at 8× 106 Pa which is assumed to
be the nominal operation of the EHA system.

(iv) The robustness and adaptive tests are conducted at 8 × 106 Pa and limited to
50 % of nominal pressure which is 4× 106 Pa.

(v) Robustness of the PID and LQR controllers with the zero phase error tracking
controller based on the discrete sliding mode control technique is analysed in
a comparative manner by considering the tracking error and control signals.

Theoretical verification of the discrete sliding mode controller on its stability
and reachability condition will be accomplished by using the reaching law method.
The performance of the EHA system will be analysed by using extensive computer
simulation and experimental studies that will be performed using MATLAB and
SIMULINK software.

1.6 Contributions of the Research Work

From the literature study, it is evidenced that there are significant outstanding
issues related to the identification and control of EHA system particularly for
positioning that need to be further investigated. From the problem statements and
the importance of the research as discussed previously, several contributions can be
made in the vicinity of identification and control strategy. These are also reflected in
several journal and conference papers arising from this research study as detailed in
Appendix A. The main research contributions from this study are as follows:

(i) A new robust controller with integrated design scheme based on discrete-
time sliding mode control and zero phase error tracking control for the non-
minimum phase EHA system.

(ii) A new adaptive control strategy with the enhancement of discrete-time sliding
mode control and zero phase error tracking control that adaptable to the
variation in the EHA system’s parameters.
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1.7 Organization of the Thesis

Chapter 2 presents the literature study on the EHA system particularly for
trajectory position tracking control. The discussion based on control strategies that
have been implemented by the prominent researchers ranging from the linear control
to non-linear control as well as intelligent control strategies. The review is discussed
in details with the comprehensive exploration to the main contributions as proposed in
the methodology section.

Chapter 3 deals with the modelling of an EHA system. Firstly, the physical
representation of the dynamic model of the EHA system is outlined. Secondly, the
mathematical representation of the dynamic model and its assumptions for position
tracking control are composed. Then, the state space representation of the dynamic
model of the hydraulic actuators will be presented. Based on the dynamic models of
the actuators, the state space representation of the hydraulic actuator will be derived.
Finally, variations in load and supply pressure that represent the uncertainties and
disturbances in the EHA system will be presented.

In Chapter 4, the system identification theory and parameter estimation process
are presented. The design of the non-recursive and recursive identification with
the selection of the input signals and effects on forgetting factor will be discussed.
Results on the identification process also will be presented in this chapter before the
implementation of the developed model in proposed controller design. Lastly, the
experimental design of the developed workbench for EHA system will be presented.

Chapter 5 presents the proposed new control strategy for EHA system based
on the sliding mode control approach. Theory of SMC will be discussed first in this
chapter. The discrete-time sliding mode controller is proposed to improve the EHA
system and the proposed controller will be evaluated to determine its stability and
reachability condition. Then, the two-degree-of-freedom structure will be presented
for minimum and non-minimum phase EHA system. With the same control structure,
an adaptive scheme is then introduced with the proposed robust controller design.

Chapter 6 presents the results and discussion based on the adaptive DSMC
approach. This single-input-single-output model which suffers from the non-minimum
phase condition due to the slow sampling time will be analysed. It will be shown
that the proposed adaptive DSMC is able to overcome such conditions and improve
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the performance of the EHA system. The stability and reachability conditions of
the sliding surface and controller also will be discussed. Several simulation and
experimental results will be presented and discussed based on this chapter to study
and verify the performance of the proposed controller.

The summary of the research findings and the recommendation of future
research based on this study will be presented in Chapter 7.
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