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ABSTRACT 
 
 
 
 

Three series of phosphate glass with composition (59.5-x)P2O5-40MgO-

xAgCl-0.5Er2O3 (0.0≤x≤1.5 mol%), (59.5-x)P2O5-40MgO-xAgCl-1.5Er2O3 

(0.0≤x≤1.5 mol%) and (69.7-x)P2O5-30MgO-0.3Er2O3-xAgCl, where x=0 or 0.5 

mol% were prepared using melt quenching technique. The amorphous nature of the 

glass was confirmed using the X-ray diffraction (XRD) method. The homogeneous 

distribution of spherical Ag nanoparticles (NPs) (average size of 37 nm) in the glassy 

matrix was evidenced from the transmission electron microscopy (TEM) analyses. 

The UV-VIS-NIR absorption spectra showed 7 bands corresponding to 4I13/2, 4I11/2, 

4I9/2, 4F9/2, 4S3/2, 2H11/2, 4F7/2 transitions. The absorption spectrum of Er3+ ions free 

glass sample containing Ag NPs displayed a prominent surface plasmon resonance 

(SPR) band located at ~528 nm. The infrared to visible frequency up-conversion 

(UC) emission under 797 nm excitation showed two emission bands of green (4S3/2-
4I15/2) and red (4F9/2-4I15/2) corresponding to Er3+ transitions. An enhancement in UC 

emission intensity of both green and red bands was observed in the presence of silver 

NPs either by increasing annealing time or by NPs concentration. The enhancement 

of UC emission was understood in terms of the intensified local field effect due to 

silver NPs. For first series of samples, the Judd-Ofelt parameters (Ω2, Ω4 and Ω6) 

were calculated and were found to lie in the range (8.05-9.20) ×10-20 cm2, (2.00-2.58) 

×10-20 cm2 and (1.05-2.30) ×10-20 cm2 respectively. These parameters were used to 

estimate the important parameters such as radiative transition probability (A), 

stimulated emission cross-section (휎 ), radiative life time (τR) and branching ratio 

(βR) for the excited levels of Er3+ ions in the glass. Furthermore, the value of Ω2 for 

the studied glasses was found to be higher than that of glasses reported in the 

literature. These relatively higher values of Ω2 reflect low symmetry and high 

covalency around the Er3+ ions. These phosphate glass nanocomposites can be 

potentially used as photonic and plasmonic materials. 
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    ABSTRAK 
 
 
 
 
Tiga siri kaca fosfat dengan komposisi (59.5-x)P2O5-40MgO-(x)AgCl-

0.5Er2O3 (0.0 ≤ x ≤1.5 mol%), (59.5-x)P2O5-40MgO-(x)AgCl-1.5Er2O3 (0.0≤ x ≤1.5 

mol%) dan (69.7-x)P2O5-30MgO-0.3Er2O3-(x)AgCl, dengan x = 0 atau 0.5 mol% 

telah disediakan menggunakan teknik pelindapan leburan. Sifat amorfus kaca telah 

ditentusahkan menggunakan kaedah pembelauan sinar-X (XRD). Zarah sfera Ag 

bersaiz nano dengan saiz purata 37 nm di dalam matrik kaca yang tertabur secara 

homogen dapat dilihat di bawah melalui mikroskop transmisi elektron (TEM). 

Spektra penyerapan UV-VIS-NIR menunjukkan tujuh jalur yang berpadanan dengan 

transisi 4I13/2, 4I11/2, 4I9/2, 4F9/2, 4S3/2, 2H11/2, 4F7/2. Spektrum penyerapan kaca tanpa Er3+ 

menghasilkan jalur resonan plasmon permukaan (SPR). Up-conversion (UC) pada 

julat lembayung boleh nampak di bawah pengujaan 797 nm menunjukkan adanya 

dua jalur pancaran iaitu hijau (4S3/2-4I15/2) dan merah (4F9/2-4I15/2). Pertambahan 

keamatan pancaran UC bagi kedua-dua warna hijau dan merah dapat dicerap dengan 

kehadiran zarah nano Ag sama ada dengan pertambahan masa sepuhlindap atau 

pertambahan kepekatan zarah nano. Pertambahan pancaran UC dapat difahami 

kerana terdapatnya kesan medan setempat disebabkan oleh zarah nano Ag. Untuk siri 

sampel pertama, parameter Judd-Ofelt (Ω2, Ω4 and Ω6) telah dihitung dan didapati 

masing-masing bernilai dalam julat (8.05-9.20)×10-20cm2, (2.00-2.58)×10-20 cm2 dan 

(1.05-2.30)×10-20 cm2. Parameter ini kemudian digunakan untuk menganggarkan 

kebarangkalian peralihan radiatif (A), keratan rentas pancaran terangsang (휎 ), 

jangka hayat radiatif (τR) dan nisbah cabangan (βR) untuk aras tenaga teruja dalam 

kaca. Tambahan lagi, nilai Ω2 bagi kaca yang dikaji didapati lebih tinggi berbanding 

dengan kaca lain yang dilaporkan. Nilai Ω2 yang secara relatifnya lebih tinggi 

mencerminkan simetri yang rendah dan sifat kovalen yang tinggi di sekeliling ion 

Er3+. Komposit nano kaca fosfat berpotensi untuk digunakan sebagai bahan fotonik 

dan plasmonik.  
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CHAPTER 1 
 
 
 
 

INTRODUCTION 

1.1 Introduction 

Glass is a non-crystalline solid material that exhibits a glass transition. It is 

typically brittle and usually transparent. Phosphate glass is a type of optical glasses 

that consists of metaphosphates of different metals. As appears from the name in 

phosphate glass, the glass former is P2O5 and it can be used with different modifiers 

such as magnesium oxide (MgO), aluminum oxide (Al2O3) etc. Usually, P2O5 

crystallizes in four forms. The most common consists of P4O10. 

 
 
Phosphate glasses can be used as laser gain media, in the form of optical 

fibers or in bulk lasers. They have their unique advantage of accepting a high 

concentration of rare-earth (RE) ions such as Er3, Yb3+ and Nd3+ without any 

unwanted effects such as clustering or quenching etc. 

 
 
Optical properties and functionalities of metallic nanostructures are different 

from those of bulk therefore they have got considerable attention [1-4]. Since in bulk 

metals there is no separation between conduction and valence bands, hence electrons 

are least confined producing the conducting behaviour of the metal. In case of 

nanostructures, due to the decrease in the size the electrons are more confined hence 

the metallic nature converts into semiconducting and then into insulating. During 

these transformation regimes, many novel characteristics are likely to happen which 

are noticeable. 
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Surface plasmon resonance is a phenomenon in which free electrons are 

collectively excited from one surface of the metallic nanoparticle (NP) to the other. 

Plasmonics is the new rapidly growing branch of science in which optical behavior 

as well as the potential applications of metallic nanostructures are analyzed and 

understood [4]. In photoluminescence of lanthanides ions the excitation energy is 

converted into emission energy which is the major principle for the modern 

technologies such as solid state lasers, optical communications, sensing and display 

systems etc. 

 
 
Understanding and quantifying the upconversion (UC) luminescence in rare 

earth (RE) doped phosphate glasses is receiving special attention due to the potential 

application in full color display, laser antiforgery and bio-label to cite a few [5-11]. 

The UC efficiency critically depends on host matrix and the amount of doped rare 

earth ion that may be altered by eight orders of magnitude in different matrix. 

Therefore, the choice of appropriate host matrix is crucial for efficient UC 

luminescence [8]. The chemical durability of the phosphate glasses becomes 

comparable with the silicate glasses when additional network forming oxides and one 

or more network modifying oxides are added to them [11, 12]. In addition to good 

mechanical and thermal stability the optical properties of phosphate glasses include 

excellent transparency [13]. These favorable features make phosphate glasses useful 

in optical devices. Moreover, phosphate matrix can dissolve considerable amounts of 

alkaline earth, transition metal and RE ions [14].  

 
 
In solids, RE ions can be excited under ultraviolet (UV) excitation either by 

charge transfer states (CTS) transitions [15] or by host excitation induced energy 

transfer [16]. For majority of the RE-doped glasses, whole of the energy is nearly 

lost to the glass matrix therefore this process has a low efficiency, consequently most 

RE-doped glasses under high energy UV radiation excitation are low-efficiency 

phosphors. Substantial amount of literature exists on the study of nanometer-sized 

metal particles in glasses because of their non-linear properties including magnetism 

[17], optical non-linearity [18] and electrical properties [19]. The presence of 

quantum size behavior is attractive due to its applicability in photonic devices. 

Understanding the mechanism of interaction between the metallic NPs and the rare 
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earth ions is prerequisite for the development of photonic devices. Phenomena of 

interaction of light with rare earth doped glasses embedded with metallic NPs is 

gaining paramount importance due to the possibility of applications ranging from 

surface-enhanced Raman spectroscopy to metal-enhanced luminescence [20-22]. The 

small absorption cross-section of most of the RE ions requires ways to increase it for 

applications. One way is to achieve it by energy transfer from a species with a large 

absorption cross-section to the rare earth ions. The other route is by using two or 

more rare earth ions together or by using rare earth ions with metallic NPs [23]. 

Avoiding the concentration quenching effect to get enhanced optical properties, 

glasses containing small amount of rare earth ions embedded with metallic NPs are 

found to be favourable.  

 
 
Phosphate based glasses can be used in many applications such as optical 

data transmission, sensing and laser technologies [24]; therefore they are widely 

studied recently. Among the different characteristics of phosphate glass, some of 

them are high transparency, low dispersion, high solubility for RE ions and low glass 

transition temperature etc. [25]. 

 
 
These glasses can be used for hermetic sealing technology [26, 27] due to 

their low glass transition temperature and large thermal expansion co-efficient 

compare to silicate glasses. Additionally, phosphate glasses are recommended as 

solid state ionic conductors and laser hosts [28]. The study of optical properties of 

RE ions in low-dimensional semiconductors is primarily focused in recent years due 

to their applications in optoelectronic devices [29-33]. The excitation of RE ions is 

proposed to occur due to the recombination of photo generated carriers that results 

the energy transfer to RE ions in or near the nanocrystal.  

 
 
For the upconversion fluorescence, among the rare earth ions, Er3+ is the most 

widely used as well as one of the most efficient ions [34]. Due to the ability of the 

NPs to control the optical fields on the nanometer scale they are of great interest. The 

optical properties of plasmon resonance, such as peak wavelength, full-width at half 

maximum (FWHM) depend on the material, size, shape and structure of the NPs, as 
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well as on the surrounding media [35]. Interestingly, the observation of surface 

enhanced Raman spectra and fluorescence enhancements [36, 37] geared up the 

study of optical properties of nanocomposite materials, such as Er3+ doped glasses 

containing small silver particles. Glasses doped with RE ions and metallic NPs have 

been investigated due to their applications as optical devices [38]. In RE doped 

glasses containing small metallic particles, any significant influence on the 

absorption and photoluminescence (PL) rate of the RE ions due to these small 

particles should be of electronic origin. The electromagnetic (EM) mechanism which 

is produced by plasmon excitation at the Mie resonance frequency can be regarded as 

an additional interaction due to the high field gradients nearby the metallic particles. 

However, in order to avoid the concentration quenching and to make the devices 

with enhanced optical properties, the concentration of the RE has to be low enough. 

One possible route of minimizing this quenching effect is to modify the environment 

felt by the RE ion [39-41]. Therefore, glasses containing the small amount of RE 

ions embedded with metallic NPs are of considerable interest, because the 

luminescence efficiency may increase many times when the optical frequency of the 

excitation beam and/or the luminescence frequency are near resonance with the 

surface plasmon frequency of the NPs [42]. This enhancement is due to the large 

local field acting on the ions positioned near the NPs.  

 
 
The luminescence [42-47] and non-linear properties [42, 48-50] of glasses 

containing both RE and metallic nanoparticles (NPs) can be enhanced due to the 

presence of these nanostructures. There is a further enhancement in the emission 

when the excitation beam wavelength becomes in resonance with the plasmon 

wavelength of the NPs [51, 52]. 

 
 
It is well known that for the enhancement in the luminescence efficiency, 

there should be an optimum distance between the NPs and RE ions. If the distance 

between them is very small, then quenching can occur instead of enhancement. 

 
 
Nevertheless one negative aspect of phosphate based glasses is their 

hygroscopicity, due to which the quantum efficiency (QE) of RE ions can be 
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rigorously affected. The atmospheric moisture and the starting materials are the 

causes of inclusion of hydroxyl group but can be minimized by changing the 

composition and preparation method [53-55]. 

1.2 Background 

Due to the exceptional optical properties of RE ions and their photonic 

applications, nonradiative energy transfer processes involving these ions in solids 

have been vastly studied. Generally certain applications (such as the mechanism of 

anti-stokes emitters) are supported by energy transfer (ET) processes however, in the 

case of RE based lasers it is unfavourable because laser threshold may be increased 

by the interactions among the active ions. 

 
 
Specifically, the study of ET mechanism in glasses having frequency gap in 

the visible region has earned large attention because some glasses may present 

efficient visible luminescence when doped with RE ions. Due to many reasons 

phosphate based glasses are a good choice to study these effects, some of which 

includes large transmittance window (from the visible to the infrared region), low 

cutoff phonon energy, high refractive index (~2.0) and large chemical stability.  

 
 
Presence of NPs inside the glass matrix containing RE ions can enhance the 

luminescence efficiency as reported by many authors [56-59]. In all the cases this 

enhancement is attributed to the large local field on the RE ions present within the 

vicinity of metallic NPs and by the energy transfer from metallic NPs to the RE ions. 

 
 
The introduction of semiconducting and metallic NPs in RE doped glasses 

have been utilized to enhance the luminescence intensity provided that the excitation 

or luminescence wavelength is near to the surface plasmon resonance (SPR) 

wavelength for metallic NPs and must be greater than optical band gap energy for 

semiconducting NPs respectively. For instance Malta et. al [60] reported 

enhancement in Eu3+ luminescence in a fluoroborate glass with silver NPs in 1985. 
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In nanophotonics this approach of getting enhanced luminescence is getting 

renewed attention. However in literature only few glasses are studied such as 

tellurium and germanate based glasses and not many examples of other glasses being 

investigated by this approach. Furthermore, for luminescence enhancement by the 

effect of surface plasmon, chalcogenide glasses based on chalcogen elements: S, Se, 

and Te generally mixed with elements such as Ge, Ga, Sb, As, etc. are important 

candidates. 

 
  
On the other hands only few reports are found on metallic NPs embedded, RE 

doped phosphate glasses. The matrices where the phenomenon of enhanced 

luminescence is observed are usually silicate or tellurite glasses. On the contrary 

phosphate glass which is widely used in photonic applications mainly because of its 

advantageous mechanical properties and ability to accept higher concentration of RE 

ions is not much exploited in the field of plasmonics or nanophotonics. Especially no 

report is found in the literature in which metallic NPs are embedded inside the 

phosphate glass matrix with RE ions. This has motivated us to a deeper study into the 

effect of the matrix on such luminescence enhancement and energy transfer 

processes. 

1.3 Problem Statement 

To achieve enhanced optical characteristics in phosphate glasses, the 

concentration of RE ions should be low enough to avoid quenching effect. To 

enhance UC luminescence, many routes have been reported in the literature such as 

using two or more RE together or by doping metallic NPs with RE. Therefore glasses 

co-doped with metallic NPs and RE are of particular interest. 

 
 
Inspite of many experiments on phosphate glasses the basic understanding on 

the unusual non-linear optical properties is still lacking. Consequently, the local field 

effect due to metallic NPs around the RE ions that possibly enhances the non-linear 

optical properties requires further investigation. However, there is a lack of 

systematic theory and not many experiments have been reported to explain the 
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influence of embedded NPs in the erbium doped phosphate glass as well as influence 

of heat treatment. Also there is still lack of report on the effect of metallic NPs on 

Judd-Ofelt intensity parameters. Furthermore, there is insufficient data available in 

literature in which stimulated emission cross-section is calculated with and without 

metallic NPs and a comparison is made. 

1.4 Objectives of the Study  

Some of the objectives of the present study are 

 

(i) To synthesize a series of RE doped phosphate glass samples with and 

without silver NPs by melt quenching method. 

 

(ii) To characterize them using X-ray diffraction (XRD), transmission 

electron microscope (TEM) imaging, infrared (IR), UV-VIS and 

photoluminescence (PL) spectroscopy. 

 

(iii) To determine Judd-Ofelt intensity parameters with and without silver 

NPs and make a comparison. 

 

(iv) To determine stimulated emission cross-section with and without 

silver NPs and make a comparison. 

 

(v) To explain the mechanism behind the variation in Er3+ luminescence.   

1.5 Scope of the Study 

A wide range of phosphate based glasses have been intensively studied. 

However, only a few reports have been found in the literature describing the effect of 

silver NPs on the optical properties of phosphate glass. 
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In this study the optical properties of magnesium-phosphate glass co-doped 

with Er3+ and silver NPs are studied. The glass is prepared with certain compositions 

with and without silver NPs. In addition, heat treatment is accomplished to analyze 

its influence on red and green emissions of Er3+. The amorphous nature of the glass 

is investigated by XRD. The existence of silver NPs inside the glass host is 

confirmed by TEM analysis. Optical characterization is accomplished by PL and 

UV-VIS-NIR absorption spectroscopy. 

 
 
The present study is highly relevant from applied viewpoint of technology for 

preparing better and efficient glasses having superior optical performances, with 

controlled dopants and NPs. This study is fundamentally important for understanding 

the mechanism responsible for structural and optical properties in nanoamorphous 

materials.  

 
 
It is strongly believed that this systematic experimental methodology of 

careful sample preparation, spectroscopic studies and theoretical analysis could make 

accurate quantitative estimate regarding the nonlinear optical and structural behavior 

in these nanoglasses. Through these investigations the mechanism of the linear and 

nonlinear optical behaviors will be clearly understood. 

1.6 Thesis Outline 

A short introduction on the importance of metallic NPs embedded host 

glasses is presented in the first chapter along with specific objectives, in addition to 

these; significance and statement of the problem of the study have been discussed in 

this chapter. In chapter 2 literature review has been presented concisely. In chapter 3 

the dealing of electromagnetic radiations with metal is discussed thoroughly as well 

as the introduction of plasmons is introduced. The spectroscopic properties of 

trivalent erbium (Er3+) will be discussed. The energy level diagram of electronic 

arrangement of erbium ion will be explained and probable mechanisms such as 

energy transfer and relaxation processes will be clarified in chapter 3. In chapter 4 
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the experimental procedures to prepare and characterize the samples are given. 

Applied techniques to synthesize the glass samples will be established and various 

spectroscopic studies to investigate the optical properties of proposed samples will be 

introduced. 

 
 
Chapter 5 will express the results of different analysis on phosphate glass 

samples doped with Er3+ ion and silver NPs. The analyses contain a range of 

experiments such as FTIR, UV-VIS-IR absorption and PL spectroscopy. The Judd-

Ofelt theory is also applied according to theoretical study in chapter 3. The effect of 

heat treatment is given to establish a new method to enhance the effect of silver NPs 

by growing and nucleating them inside the glass matrix. A discussion to each study is 

followed in the same section. 

 
 
Based on the results, given in 5th chapter, some conclusions are made which 

are presented in chapter 6 along with future recommendations. This dissertation will 

end by the list of published journal papers [Appendix A] and least square reduced 

fitting method [Appendix B]. 
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