DISCRIMINATION BETWEEN CAT AND DOG HAIRS USING NUMERICAL MORPHOLOGY

LATISYA BINTI AZHAR

A project report submitted in partial fulfillment of the requirements for the award of the degree of Master of Science (Forensic Science)

> Faculty of Science Universiti Teknologi Malaysia

> > NOVEMBER 2009

Specially dedicated to my parents Mahani Idrus & Azhar Bahaman and my beloved siblings

ACKNOWLEDGEMENT

Praise to Allah S.W.T. for His Mercy in giving me the strength to complete this project. I would like to express my utmost gratitude to my supervisor Associate Professor Dr. Mohd Shahru Bahri and cosupervisor Mr. Baktiar Kassim for their guidance and encouragement throughout this project. I wish to thank Associate Professor Dr Umi Kalthom Ahmad for her advice and constant ideas that helped me sailed through the difficult times in this project.

I would also like to acknowledge the staff in Forensic Analytical Laboratory Universiti Teknologi Malaysia (UTM), namely Mr Mohd Nazri Zainal, Mr. Mohd Shahrir Abdul Rahman from Institute of Medical Molecular Biotechnology, Universiti Teknologi Mara (UiTM), Mr. Naeim Mohd. Din and other staff at Jabatan Kimia Malaysia (Johor Branch) for their help during my analysis. My heartful thanks also goes to Dr Tan Vetrinar at Global Pets in Taman Nusa Bestari and other personnel involved in the sampling activity, for their cooperation.

My sincerest gratitude to my colleague, Ayathull Dhalayla Mohd Jar for her assistance and support throughout this project. This project might not be accomplished without the moral support and assistance of many other people especially my fellow postgraduate members either directly or indirectly to this project.

Last but not least, a special thanks goes to my family for always standing by my side, encouraging me throughout all this years.

ABSTRACT

Cats and dogs are universal pets that can be easily found in Malaysia. Due to the constant hair loss, a lot of cat and dog hairs are encountered in the household, their surroundings and adhere onto clothing or the body of the owner or anyone came into contact without being noticed. These hairs are sometimes the only available evidence found at crime scene. In this study, hair samples from seven types of cats and thirteen types of dog breeds were collected. Difference between two species was analyzed using three types of microscope; compound microscope, stereomicroscope, and scanning electron microscope. Numerical morphology employ six measurements on hair samples which are (length, (Len), maximum width (MaxWid), medulla width (MedWid), width at 1/3 of proximal hair shaft (proWid), medullary index (MI) and hair width index (HWI). The statistical tests of *t*-test and *f*-test show significant differences between cat and dog hairs based on Len, MaxWid and MI. In this study, morphology features examination between several other animals from different animal species found in Malaysia were also carried out. Result of the study showed unique morphologies based on cuticle pattern and medulla characteristics. Outcome of this research has provides a standard reference of morphology features that could help forensic scientist to identify the species origin of unknown hair samples frequently obtained as exhibit in the Malaysian Forensic Laboratory.

ABSTRAK

Kucing dan anjing merupakan haiwan peliharaan yang universal di Malaysia. Bulu ini akan mengalami keguguran pada sela waktu tertentu. Sampel bulu haiwan ini, mudah dijumpai di persekitaran kawasan rumah.atau terlekat pada pakaian atau badan pemilik dan sesiapa yang bersentuhan dengan haiwan ini tanpa disedari. Dalam sesetengah kes forensik bulu haiwan berkemungkinan besar menjadi bukti utama yang diperolehi di tempat kejadian jenayah. Dalam kajian ini, sampel rambut dari tujuh jenis kucing dan tigabelas jenis baka anjing diperolehi sebagai sampel kajian. Perbezaan antara dua spesies in dikaji menggunakan kaedah mikroskopik iaitu kompaun mikroskop, stereomikroskop dan imbasan elektron mikroskop. Pengiraan morfologi menggunakan enam ukuran ke atas bulu iaitu panjang (Len), lebar maximum (MaxWid), lebar medulla (MedWid), lebar bahagian 1/3 proximal (proWid), indeks medulla (MI) dan indeks ketebalan rambut (HWI) diukur. Analisis statistik menggunakan ujian-t dan ujian-f, menunjukkan terdapat perbezaan yang nyata antara kucing dan anjing berdasarkan pada ukuran Len, MaxWid dan MI. Selain itu hasil pemerhatian ke atas ciri morfologi dan perbandingan antara haiwan yang berlainan spesies yang terdapat di Malaysia menunjukkan corak kutikel dan susunan medula bagi sampel bulu adalah unik. Kajian ini dapat menghasilkan rujukan piawai bagi ciri morfologi yang dapat membantu ahli forensik mengenal pasti spesies rambut yang tidak diketahui asal-usulnya.

TABLE OF CONTENTS

CHAPTER	TITLE	PAGE
	SUPERVISOR DECLARATION	Ii
	AUTHOR DECLARATION	Iii
	DEDICATION	Iv
	ACKNOWLEDGEMENT	V
	ABSTRACT	Vi
	ABSTRAK	Vii
	TABLE OF CONTENTS	Viii
	LIST OF TABLES	Xi
	LIST OF FIGURES	Xii
	LIST OF ABBREVIATIONS	Xv
	LIST OF SYMBOL	Xvi
	LIST OF APPENDICES	Xvii
1	INTRODUCTION	1
	1.1 Background of Study	1
	1.2 Problem Statement	2
	1.3 Scope of Study	2
	1.4 Objectives of Research	3
	1.5 Significance of The Study	3
	1.6 Hypothesis Statement	3

viii

LIT	ERAT	URE RI	EVIEW	4	ļ
2.1	Mam	nal Hair		4	
2.2	Hair N	Morpholo	gy	6)
	2.2.1	Cuticle		7	,
	2.2.2	Cortex		10	0
	2.2.3	Medulla	l	10	0
2.3	Hair (Growth C	ycle	11	1
2.4	Cats			14	4
	2.4.1	Types o	f Cats	14	4
		2.4.1.1	Persian Cat	14	4
		2.4.1.2	Norwegian Forest Cat	15	5
		2.4.1.3	Siamese Cat	16	6
		2.4.1.4	Domestic Shorthair Cat	17	7
		2.4.1.5	African Wild Cat	18	8
		2.4.1.6	Turkish Angora Cat	19	9
		2.4.1.7	Tiffany Cat	19	9
	2.4.2	Cat's Co	oat Pattern	20	0
		2.4.2.1	Tabbies Pattern	20	0
		2.4.2.2	Pointed Pattern	22	2
		2.4.2.3	Torties Pattern	23	3
2.5	Dogs			24	4
	2.5.1	Golden	Retriever Dog	25	5
	2.5.2	Maltese	Dog	26	6
	2.5.3	Pomera	nian Dog	27	7
	2.5.4	Poodle	Dog	28	8
	2.5.5	Shih Tz	u Dog	29	9
	2.5.6	German	Shepherd Dog	30	0
	2.5.7	Bull Ter	rrier Dog	31	1
	2.5.8	Pug Dog	5	32	2
	2.5.9	Pit Bull	Dog	32	2
	2.5.10) Dachshi	und Cross Dog	33	3

2

ix

2.5.11 American Cocker Spaniel Dog	34
2.5.12 Siberian Husky Dog	34
2.5.13 Saint Bernard Dog	35

ME	THODOLOGY	36
3.1	Materials and Apparatus	36
3.2	Collection of Hair Samples	37
3.3	Sample Preparation	37

3.4	Numerical Morphology	37
3.5	Microscopic Observation	39
3.6	Statistical Evaluation	39

3.8	Summary of Research Methodology	40

4	RE	SULTS AND DISCUSSION	41
	4.1	Statistical Evaluation of Numerical Morphologies	41
		4.1.1 Relationships of between Cat and Dog	42
	4.2	Morphological Features Examination	44
		4.2.1 Root and Tip appearance	45

3.7 Comparative Study

4.2.2	Color of Hair Samples	46
4.2.3	Medulla Structures Examination	47
	4.2.3.1 Medullary Index (MI)	50
4.2.4	Cuticle Pattern Observation	52

5	CO	NCLUSIONS AND RECOMMENDATIONS	57
	5.1	Conclusion	57
	5.2	Recommendations	58
REFERENCES			59

х

LIST OF TABLE

TABLE NO.	TITLE	PAGE
3.1	Morphology features characteristic to be observed in this study	39
4.1	Numerical morphology of cat and dog hairs	42
4.2	Hypothesis statement for variables tested in this study	43
4.3	Summary of statistical analysis test.	43

LIST OF FIGURES

FIGURE NO.	TITLE	PAGE
2.1	Diagram of cross section of the skin showing hair follicles in skin.	5
2.2	Cross section of a hair shaft	7
2.3	Types of cuticular margins of hair	8
2.4	Types of scales pattern; (a) Coronal scales, (b) Spinous scales and (c) Imbricate scales	9
2.5	Medulla patterns of hair	10
2.6	Medulla patterns of cats' hair	11
2.7	The growth cycle of hair; (a) Anagen phase, (b) Catagen phase, and (c) Telogen phase	13
2.8	A Persian cat	15
2.9	Appearance of Norwegian Forest cat.	16
2.10	Two types of Siamese cat; (a) Traditional, (b) Apple-head	17
2.11	Appearance of African wild cat	18
2.12	Tiffany cats	19
2.13	Cats with Tabby coat pattern; (a) Mackerel pattern, (b) Classic pattern, (c) Spotted pattern and (d) Ticked pattern.	21

2.14	Cat with colorpoint pattern	22
2.15	Cat with tortoise coat pattern.	24
2.16	A Golden Retriever dog	26
2.17	A Maltese dog	26
2.18	Pomeranian dogs	27
2.19	A poodle dog with continental clip pattern.	29
2.20	A Shih Tzu dog	29
2.21	A German Shepherd dog	30
2.22	Appearance of Bull Terrier dog	31
2.23	A Pug dog.	32
2.24	A Pit Bull dog	33
2.25	Types of Dachshund cross dog coat (a) short haired, (b) long-haired, and (c) wire-haired.	33
2.26	An American Cocker Spaniel dog with a black nose.	34
2.27	A Siberian Husky dog	35
2.28	A Saint Bernard dog	35
3.1	Measurements and index to be calculated in this study.	39
3.2	Flow chart of research activity	40
4.1	Telogen phase under different magnification; (a) 50x and (b) (400x)	45
4.2	Hair samples in anagen phase viewed under 50x magnification	46
4.3	Medulla structure of six types of cat breed viewed under 200x magnification.	47

4.4	Medulla structure of six types of dog breeds viewed under 200x magnification.	48
4.5	Medulla pattern of hair for. (a) Cat, (b) rabbit, (c) 'Lotong Cenaka', (d) monkey, (e) horse and (f) dog ; all viewed under 400x magnification.	49
4.6	MI value within breeds for; (a) cat and (b) dog	51
4.7	MI of six different types of animals	52
4.8	SEM micrographs of scale pattern of different breeds of cat. (a) Tiffany, (b) TA, (c) AWC, (d) DSH, (e) ASH and (f) NWF viewed under 2000x magnification	54
4.9	The scale pattern of different types of dog; a) SH, (b) GR, (c) Pug, (d) DC, (e) BT and (f) PB under 2000x magnification.	55
4.10	SEM micrographs of scale pattern of different animal species. (a) rabbit, (b) monkey, (c) horse, (d) donkey, (e) cat and (f) dog viewed under 2000x magnification.	56

xiv

LIST OF ABBREVIATIONS

ANOVA	-	Analysis of Variance
Len	-	Length
MaxWid	-	Maximum width
MedWid	-	Medulla width
proWid	-	Width at the one third of proximal hair shaft
HWI	-	Hair width index
MI	-	Medullary index
SEM	-	Scanning electron microscope
DSH	-	Domestic short hair cat
ASH	-	American short hair cat
AWC	-	African wild cat
ТА	-	Turkish angora
NWF	-	Norwegian forest cat
PB	-	Pit bull dog
BT	-	Bull terrier
ACS	-	American cocker spaniel dog
SH	-	Siberian husky dog
GR	-	Golden retriever dog
DC		Dachshund Cross

LIST OF SYMBOLS

p	-	Significant confidence level
®	-	Registered mark
\leq	-	Less than or equal to

LIST OF APENDICES

APPENDIX	TITLE	PAGE
А	Output of Student <i>t</i> -test of two samples mean between cat and dog hairs	63
В	Output of analysis of variance (ANOVA) between cat and dog hairs	64

xvii

CHAPTER 1

INTRODUCTION

1.1 Background of Study

Numerous types of physical evidence are encountered during criminal investigation. Hair is one of the most familiar evidence being submitted to a forensic laboratory. In some forensic cases, animal hair can be the only available evidence found at a crime scene (Katz, 2005). Cats and dogs are universal pets which can be easily found in some homes in Malaysia. Due to the constant hair loss, a lot of cat's and dog's guard hairs can be found in the household, their surroundings and adhered onto clothing or the body of the owner or anyone who came into contact (Muller et al., 2008). This associative evidence is particularly useful in crimes of burglary or armed robbery and other cases which typically involve the recovery of animal hair. It can also provide information of the suspects/victims workplace. The numerical features of hairs samples were observed, four measurements (length (Len), maximum width (MaxWid), hair width at proximal one third of hair shaft (proWid), medulla width (MedWid)) and two indices (hair width index (HWI) and medulla index (MI)) were examined. Based on statistical comparison of the numerical morphology features, the cat and dog guard hairs can be differentiated. This study also investigated the morphological features; color, root appearance, medulla structure, scale/cuticle pattern, and tip appearance were examined. Comparative studies were made between cat, dog, and several others types of animal guard hair based on their morphology features.

1.2 Problem Statement

Cats and dogs are the most popular domestic animals that many people keep as pets and can easily be found anywhere even by the roadside, stall, streets and markets. The animals continuously lose their hairs especially their guard hairs which can spread out fast in their surroundings, household and entangled to clothing unintentionally without being noticed by the owner (Muller *et al.*, 2008). These hairs could be used by a forensic laboratory as evidence, linking a suspect with a crime. However to date, there are limited studies that provide information on the discrimination between cats and dogs guard hair using statistical comparison of numerical morphology. In Malaysia, such studies have not been reported.

1.3 Scope of Study

This research emphasized on the forensic comparison between domestic cat and dog guard hairs from various breed commonly found in Malaysia. Observation of morphology features; numerical features (measurements and indices) were conducted by using stereomicroscope, compound microscope and scanning electron microscope. The morphology characteristic and numerical features were statistically compared using *t*-test and ANOVA in order to discriminate between various breed of cats and dogs. Comparison of morphological features among cats, dogs and other animal hairs were also conducted to improve the discrimination between the hair samples.

1.4 **Objectives of Research**

The aims of this study are:

- i. To discriminate between cats and dogs guard hairs using statistical comparison of their numerical morphology features.
- ii. To compare morphology features among cats, dogs and other animals' hair.

1.5 Significance of The Study

Cats and dogs hairs could be evidently discriminated statistically based on their numerical features. Morphological examination among other animals can also distinguish the species of either dogs or cats from the unknown hair samples. This information is useful for forensic scientists in crime laboratories such as Jabatan Kimia Malaysia (JKM) and private organization such as Society for the Prevention of Cruelty to Animals (SPCA) in the identification of unknown hair samples submitted for evidence in court cases.

1.6 Hypothesis Statement

The numerical feature differences can be used to discriminate between cat and dog guard hair. The morphological features of other animal hair widened up the scope of the study. This in turn will provide extra information in the identification of a particular species which can link the animal hair with the victim, the suspect or the crime scene.