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ABSTRACT

Direct conversion of methane, the predominant component of natural gas, to more useful
chemicals and fuels has gained considerable interest. Oxidative coupling of methane
(OCM), one of the various methane conversion processes, is a process for the formation
of mainly ethane and ethylene. OCM has the potential of being more energy efficient
compared to the energy intensive synthesis gas formation. OCM reaction using Li/MgO
catalyst is optimized using the Experimental Design from *Statsoft Statistica’ version 6.0
software. The variables in this study were operating temperature, F/W and % of Li doped
into the MQO catalyst while the responses were methane conversion and C; product
selectivity. Methane and oxygen at a molar ratio of 8 were reacted at atmospheric
pressure in a fixed-bed quartz reactor with F/W. in the range of 2520-14620 cm’g'h! and
temperature range of 592-857°C. The catalyst was loaded in the quartz reactor
sandwiched between quartz wool and heated with a vertical furnace. The product gases -
were analyzed by an on-line gas chromatograph equipped with TCD detectors using a
Porapak-N column. The Response Surface Methodology (RSM) was utilized to link one
or more responses to a set of variables when firm interaction is known. Second-degree
polynomial equation is chosen to link responses behaviours to change of variable level.
The equati‘én model is tested with ANOVA analysis with 99% degree confidence. The
RSM contour plot gives the optimum methane conversion and C, selectivity of 40.7%
(temperature = 778.0°C, F/W = 8978.0 cm’g'h! and % Li doped = 0.115) and 77.1%
(temperature = 744.9°C, F/W = 7231.8 cm’g'h™ and % Li doped = 0.095), respectively.
By means of variance analysis and additional experiments, the adequacy of this model is

confirmed.
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ABSTRAK

Subjek penukaran terus metana, iaitu komponen utama dalam gas asli kepada bahan
kimia dan bahan bakar semakin mendapat perhatian. Pengoksidaan berpasangan metana
(OCM), iaitu salah satu daripada proses penukaran metana, adalah proses untuk
menghasilkan etana dan etena. OCM mempunyai potensi tenaga yang lebih efisyen
berbanding penggunaan tenaga yang melampau dalam proses penghasilan gas sintesis.
Tujuan utama penyelidikan ini adalah untuk mengoptimisasikan tindak balas OCM
dengan menggunakan mangkin Li/MgO melalui rekabentuk eksperimen daripada perisian
Statsoft Statistica versi 6.0. Pemboleh ubah penting yang dipilih dalam kajian ini adalah
suhu operasi, halaju dan % Li yang dimasukkan ke dalam mangkin MgO. Respon yang
dipilih adalah penukaran metana dan kepemilihan C,. Metana dan oksigen pada nisbah
molar lapan bertindak balas pada tekanan atmosferik di dalam reaktor quartz dengan
halaju aliran 2520-14620 cm®g™'h™! dan suhu 592-857°C. Mangkin dimasukkan ke dalam
reactor kuartz dan diapit oleh kapas kuartz dipanaskan dalam relau menegak. Hasil |
eksperimen dianalisa menggunakan gas kromatografi sambung terus yang dilengkapi
dengan detektor TCD yang menggunakan kolum Porapak-N. Keputusan analisis
ekperimen dibuat menggunakan rekabentuk “response surface methodology” (RSM).
Rekabentuk ini berjaya menghubungkan satu atau lebih respon kepada satu set pemboleh
ubah apabila satu interaksi telah diketahui. Model persamaan ini telah diuji menggunakan
analisis Anova dengan 99% darjah keyakinan. Berdasarkan analisa varians dan
eksperimen tambahan, kejituan model disahkan. Keputusan plot kontur RSM
memberikan penukaran metana dan kepemilihan C, sebanyak 40.7% (suhu = 778.0°C,
F/W = 8978.0 cm’g'h™' and % Li dimasukkan = 0.115) dan 77.1% (suhu = 744.9°C, F/W
=7231.8 cm’g'h! and % Li dimasukkan = 0.095) masing-masing. Melalui analisis

varians dan eksperimen tambahan, ketepatan model disahkan.
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CHAPTER 1

INTRODUCTION

1.1 Gasoline demand and natural resources

Energy requirements in Asia Pacific countries, where economies have been
expanding two to three times faster than the rest of the world, are on the rise (Haseltine,.
2000). There is no doubt about the dependencies on liquid petroleum as the main energy
resource. Currently, liquid petroleum is mainly used in industries and as transportation
fuel. Liquid petroleum actually consumes about one-fourth of the total energy
consumption. Unfortunately, oil demand soars in coming years. Petroleum reserved
depleted year by year, more rapidly than they were formed, thus, creating a strong need in

searching for new alternative sources (Morgan, 2000).

On a surge of economic growth, the Asia-Pasific region has been undergoing an
unprecedented expansion in its use of oil products, from 11.5 million b/d in 1990, to 16
million b/d in 1995. Malaysia’s indigenous proven oil reserves of 3.4 billion barrels in

2000 are significantly down from 4.1 billion barrels in 1995 (Sarmidi et. al., 2001). In
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2000, Malaysia’s natural gas reserves stood at about 84.2 tcf, down from 84.7tcf in 1995,
but remain four times the size of oil reserves (Muller, 2001). By 2015, every Asian
country will be a net oil importer, apart from Brunei. Even with limited oil consumption
growth in Japan, South Korea and Taiwan, Northeast Asia will be importing 13 million
b/d of oil by 2015. Whatever new fuel technologies may be in the laboratory now, the
world’s major institutions expect demand for oil to grow by around 40 million barrels a
day (Mbd) by 2020 (Shepherd, 2001). Transport fuels are a principal factor behind the
extraordinary growth in this demand, and are likely to become more important in the
future as the population giants of China and India develop their economies. A general

scenario is forecasted by De Jong (1996) depicting the demand of fuel throughout 1960-
2020 (Figure 1.1).

3500

3000 O Diesel
Kero

2500 -

ISP

2000 -

Mt/a

1500 -

1000 -

0 | . '.;' . : d " RN .'.I.:., T [ ; e .‘ AT.
1;960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015 2020
Year

Figure 1.1: Growth in global demand of world transportation fuels (De Jong, 1996)

The oil age in South East Asia may be passing, but the gas age is well and truly
on its way. Natural gas seems to be the best alternative for the replacement of petroleum.

Research impetus has then been directed at the utilization of natural gas that seems to be



the best alternative for the replacement of petroleum (Hutching, 1992; Lunsford, 2000;
Seglin et. al., 1975). This is made possible by the development of the technology of

methane conversion to higher hydrocarbons.

Methane, is currently being used for home and industrial heating as well as for the
generation of electrical power. In many respects, methane is an ideal fuel for these
purposes because of its availability in most populated centers, its ease of purification to
remove sulfur compounds and the fact that among the hydrocarbons, it has the largest
heat of combustion relative to the amount of CO, formed. On the other hand, methane is
a greatly underutilized resource for chemicals and liquid fuels (Lunsford, 2000).
Statistics, shows approximately 11% of this gas is reinjected, and unfortunately, another
4% is flared or vented (Learcher, 1999). The known reserves are enormous and rival
those of liquid petroleum, as shown in Figure 1.2. Moreover, the reserves are increasing
more rapidly than those of liquid petroleum, and it is anticipated that this trend will

extend well into the 21 century.

Shortages of prime feedstocks for ethylene manufacture have spawned numerous
attempts to use alternate raw materials. Methane is one such raw material which is the
most abundant component of natural gas, usually comprising up to 90 mole % of the
hydrocarbon fraction. Thus, methane represents a considerably more abundant source for
ethylene than ethane or propane, the two most widely used raw materials (Bhasin, 1991)

for ethylerie production.

By far, majority of the research performed on the formation of higher
hydrocarbons, mainly ethane and ethylene, is the oxidative coupling of methane (OCM)

(Mleczko and Baerns, 1995). Interest in the direct oxidative coupling of methane has
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Figure 1.2: Proven world petroleum and gas reserved (Shell, 1999)

recently been heightened because of the feasibility of a potentially economically
attractive route for further conversions to either gasoline, distillates or other chemicals
either in a single converter or in a two-converter-in series without an intermediate
separation (Bhasin, 1991). OCM is classified as direct methane conversion and has been
the subject of interest as it has the potential of being more energy efficient because they

bypass the energy intensive step of synthesis gas formation (Kuo, 1992).

1.2. Problem Statement and Importance of study

The literature review on the technology of methane conversion to higher hydrocarbon
products has been quite extensive. For example Deboy and Hicks (1998), Conway et al.

(1991), Choudhary et al. (1997), Djaidja et al. (2000) has reported their



studies on OCM. Choudhary and Mamman (2000), Froment (2000) and Lange (2001)
looked into Steam Reforming of Methane (SRM) while Zhu and Stephanopoulos (2001)
and Lee et al. (2002) accounted for Partial Oxidation of Methane (POM). Study on CO,
Reforming of Methane (CORM) was carﬁed out by Teuner (2001), Amin et al. (2001)
and Chin (2000). Chang (1991) and Calleja et al. (1995) have reported their studies on
Fischer-Tropsch Process. In the year 2001, Anggoro (2001), Ngadi (2001), Hartog (2001)
revealed their research on Gas-To-Liquid Technology whilst Lee and Foster (1996)
reported their investigation on Direct Partial Oxidation (DPO) process. Unfortunately,
their research still led to low conversion and selectivity and is not yet commercially
viable. From this scenario, the methane conversion technology processes still needs to be

improved in order to achieve commercial viability.

The ultimate challenge is how to convert the stable CHsto C,* products with at
least 30% C, yield. The performance of catalysts and experimental parameters such as
temperature and F/W are critical in improving the methane conversion. Besides, methane
conversion and C," products selectivity also depend on the catalysts. Oxidative coupling
of methane is one of the vital technologies for methane conversion to C," product.
Therefore, by systematically arranging the parameters according to design of experiment,

an optimum result could be obtained for the OCM process.

1.3 Objective of Study:

The objective of this research is to optimize the methane conversion and C,
selectivity in oxidative coupling of methane (OCM) using Li/MgO catalyst (various
Li/Mg ratio) via Design of Experiment (DOE) from Statistica software.
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1.4.  Scope of Research

The research focuses on the application of metal oxide catalysts used in a plug-
flow catalytic reactor. The metal oxide catalysts used in this study is Li/MgO for the
oxidative coupling of methane to achieve C,'. Main concern in this experiment is to find
out the optimum condition for obtaining a higher methane conversion and higher C,

selectivity.

Initially, identification of vital independent variable, and their maximum and
minimum values were made. The independent variables are temperature, F/W and % Li
doped. Characterization of each catalytic sample will be carried out using X-ray
Diffraction (XRD), Scanning Electron Microscopy (SEM), Nitrogen Adsorption (NA),
Temperature Programmed Desorption CO, (TPD-CO,) and Fourier Transform Infrared
(FTIR). Finally, catalyst testing will be performed for the oxidation of methane to C,
using a micro packed-bed quartz reactor with 9 mm ID and 30 cm long. The experiment
will be carried out according to the arrangement set by the Design of Experiment from
Statisticé Software. Three operating parameters in the experiment will be evaluated to
reach the optimization point for the conversion of methane to ethane and ethylene. The
gas products will be analyzed using an online gas chromatography equipped with
porapak-N capillary column. Result analysis was carried out using response surface
methodology to obtain each properties of independent variables towards methane

conversion and C, selectivity.



1.5 Thesis Summary

In general the thesis discusses:

Chapter Il elaborated the various methane conversion technologies that can be
divided into two categories: indirect and direct process of methane conversion. Indirect
process consists of steam reforming of methane, partial oxidation of methane, CO,
reforming of methane, Fischer-Tropsch and, methanol to gasoline whereas direct process
consists of direct partial oxidation, oxidative coupling of methane which is discussed in
length and oxidative coupling of methane with CO,. The catalysts for OCM are
discussed as well as a table listing an overview of the OCM process. Characterization
techniques utilized in this study was briefly elaborated and they include XRD, NA, SEM,
TPD and FTIR. The design of experiment, response surface methodology (RSM),
optimum condition determination and ANOVA were also discussed at the end of the

chapter.

Chapter III discusses the methodology of the experiment. A research
methodology flow chart attached in the beginning of the chapter provides an overview of
how the research is undertaken. The preparation of catalysts and the characterization
techniques (XRD, NA, SEM, TPD and FTIR) were outlined. The methods and/or
specification of each characterization techniques were revealed. The experimental
arrangement set by the experimental design was presented in this chapter. Operating
parameters selected to be varied were temperature, F/W and % lithium doped inside the

MgO catalyst. The method and specification for GC is also noted.



Chapter IV presents the results of catalyst characterization that includes XRD,
NA, SEM, TPD-CO; and FTIR. From the results, imperative properties of the catalyst
such as basicity and surface areas were known and they were consistent with results

reported by other researchers.

Chapter V discusses the effect of operating parameters involved in the process. It
is found that all the parameters studied influences the OCM activity in terms of methane
conversion and C, selectivity. The C,H4/C,Hg ratio resulted from OCM process was also

reported. At the end of this chapter, the blank run and catalyst ageing were discussed.

Chapter VI presents the optimization and its ANOVA analysis. The relationship
between independent variables with methane conversion and C, selectivity can be
observed from the contour plot and 3-D surface plot. The correctness of the polynomial
model chosen will be proven using statistics. Via pareto chart, the most influential
independent variables and their interactions can be determined. Confirmatory
experimental results were included as well as the comparison of optimization results with

other researchers in similar field.

Chapter VII is the conclusion and recommendation section. For conclusion, we
proposed a set of operating parameters each to obtain optimum methane conversion and
C, selectivity. Recommendations were proposed for improvement in future work and its

continuation opportunities.





