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ABSTRACT 

 

 

 

 

The process of the creation of texture images derived from a windowed 

GLCM coupled with the calculation of Haralick features for each window is a time 

intensive process due to the intense number of calculations involved. This study 

examines and seeks to quantify the expected increase in processing speed when 

migrating this algorithm from a traditional serial implementation to a parallel 

implementation of the same function using modern Graphical Processing Units and 

the effects of certain parameters such as window size and image size. The 

components of texture images and some of the factors relating to the efficiency of 

CUDA code are described. The problem domain was analysed and a serial version of 

texture window analysis was implemented and checked for accuracy by comparing it 

to code written in Matlab. The serial code was tested on a 2.4 Ghz Intel core i5 

processor while the parallel code was tested on two different GPU cards, a GeForce 

310M and a GeForce GTX 620. The final (fastest) implementation used three 

kernels. Two of these performed gray scale conversion and intensity scaling while 

the third performed the entire GLCM construction and feature extraction. The results 

showed that a single large kernel could outperform the collection of small kernels 

that was used in the alternative implementation. As a result of parallel 

implementation, texture analysis of a 2048 x 2048 pixels image was found to be up 

to 44 times faster than the serial version using the GeForce 310M and even faster on 

the GeForce GTX 620. 
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ABSTRAK 

 

 

 

 

Proses membentuk imej-imej tektur dari tetingkap GLCM berserta pengiraan 

ciri-ciri Haralick adalah satu proses yang lama kerana ia melibatkan banyak 

pengiraan. Dalam penyelidikan ini, pengukuran kepantasan dalam pemprosesan 

tersebut dikaji apabila algoritma tradisional sesiri dilaksanakan secara selari 

menggunakan Unit Pemprosesan Grafik yang moden. Peningkatan kepantasan 

apabila parameter seperti penambahan saiz tetingkap dan saiz imej juga diselidik. 

Kajian ini juga menjelaskan tentang komponen imej-imej tektur dan faktor yang 

berkaitan dengan penggunaan kod CUDA secara optimum. Masalah dalam kajian ini 

dianalisis termasuk perlaksanaan analisis tersebut terhadap tingkap-tingkap tektur 

versi sesiri. Ketepatan hasil kerja diperiksa dengan membandingkannya dengan kod 

yang ditulis menggunakan Matlab. Kod sesiri diuji menggunakan pemproses Intel 

Core i5, 2.4 GHz. Kod selari diuji menggunakan GPU yang berbeza, GeForce 310M 

dan Geforce GTX 620. Kajian menggunakan tiga kernel untuk melaksanakan 

pemprosesan membentuk imej-imej tektur dan pengiraan ciri-ciri Haralick didapati 

paling pantas. Dua kernel yang pertama memproses penukaran imej berwarna kepada 

imej hitam-putih/kelabu dan melaksanakan pengskalaan imej kelabu tersebut. Kernel 

ketiga memproses penghasilan GLCM bagi setiap imej pixel dan melakukan 

pengiraan untuk mendapatkan ciri-ciri Haralik. Keputusan menunjukkan bahawa 

penyelesaian menggunakan satu kernel yang menyelesaikan masalah yang banyak 

adalah lebih baik daripada penyelesaian menggunakan banyak kernel yang 

menyelesaikan masalah yang kecil. Perlaksanaan selari menggunakan GeForce 310M 

bagi 2048x2048 imej pixel adalah 44 kali lebih pantas berbanding perlaksanaan 

secara sesiri dan keputusan ujian menggunakan GeForce GTX 620 adalah jauh lebih 

pantas. 
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CHAPTER 1 

 

 

 

 

PROJECT OVERVIEW 

 

 

 

 

1.1 Introduction 

 

 

The history of computer graphics goes back to the 1960s. After the IBM PC 

was introduced in 1981 the world had a standard platform for computing and the PC 

game industry was born. Graphic processing was initially performed by the CPU 

which also had to handle everything else until dedicated graphic accelerators started 

being built which offloaded some of these tasks from the CPU. The formulation of 

OpenGL in 1989 was a step towards the standardization of graphics implementation, 

along with the definition of the concept of a graphics pipeline.  

 

 

The graphics pipeline could make 3D graphic games look far more realistic 

and responsive. Texturing and pixel shading are some of the elements in the graphics 

pipeline that contributed to the success of 3D graphic games like Quake and Doom. 

In 1999 fast interactive 3D graphics had became a full reality when billion of 

transistors were built into the hardware of the first Graphics Processing Unit (GPU) 

by NVidia which embodied all the stages of the graphics pipeline. Today, the GPU is 

widely used not only in personal computers and workstations but also in embedded 

systems, mobile phones  and game consoles.   

 

 

Modern GPUs are extremely efficient for graphics computation compared to 

a general-purpose CPU. The CPU has a single threaded architecture that allows 

multiple processes to be run through the same single-threaded pipeline which access 

their specific data through a single memory interface. In contrast, the GPU 

http://en.wikipedia.org/wiki/Embedded_system
http://en.wikipedia.org/wiki/Embedded_system
http://en.wikipedia.org/wiki/Mobile_phone
http://en.wikipedia.org/wiki/Game_console
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architecture uses stream processing from (up to) thousands of stream processors 

running in parallel with multiple memory models. The GPU is designed to handle 

large streams of graphic data and is able to process the computations much faster 

because the processing is done concurrently. As the requirements for graphical 

processing grew, the GPU evolved into a device able to run generic computation of a 

non graphical equally well as long as the problem required large amounts of data and 

could be mapped to the stream concept.   

 

 

The benefit of using GPUs to process images is not a new issue. Work has 

been done to examine the performance of GPUs and research related to image 

processing and GPU performance dates back to early 2000. Early papers included 

Strzodka et. al.[1] implementing a motion estimation algorithm that provides dense 

estimates from optical flow where they get a 2.8 times speed increase on a GeForce 

5800 Ultra GPU, while Hadwiger et al.[2] presented a review of GPU image 

segmentation in medical imaging application for data visualization. 

 

 

Not all parallelizable applications have been able to benefit from the 

advantage of the parallelized architecture of GPU.  In order to benefit significantly to 

this parallelism the data has to be independent, aligned, and have regular data access.  

 

 

In this project we investigate and study the creation of Gray Level Co-

Occurrence Matrices (GLCM) on image of a variety of sizes. The GLCM has been 

widely used to extract texture features from images. Texture feature extraction and 

comparison is used in applications as diverse as remote sensing, medical image, 

recognition of materials such as wood and granite, finger print analysis, depth 

analysis and many more. The GLCM is analysed by extracting the Haralick texture 

feature set in order to make all these applications a reality. Finally, doing this using a 

sliding window creates “texture images” which is a method of image segmentation 

based on texture. 

 

 

Haralick’s texture features are statistical features that reduce GLCM data to a 

few statistical data values that give information about the area being analysed. These 
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will be explained in chapter 2. Computation of the GLCM and extracting the 

Haralick texture feature set is very heavily computationally intensive, thus time 

consuming. Doing these calculations repeatedly on a sliding window across an image 

magnifies the level of computation incredibly with each pixel being processed a large 

number of times. In this report these computations will be implemented both in the 

traditional serial method, and in parallel, on an Acer Aspire notebook using an 

NVidia GeForce 310M graphical processor and a 2.4GHz Intel Core i5-450M 

processor. 

 

 

 

 

1.2 Problem Statement 

 

 

 The data in GLCMs forms a sparse array which leads to an irregular data 

access pattern. This may make it harder to get an efficient parallel 

implementation of algorithms to be processed by a GPU. The identification of 

algorithms to make parallel, and how, is necessary in order to exploit the 

benefit of having a GPU. 

 

 

 In parallel implementations, there is an overhead associated with setting up 

and managing parallel programming units. If there is only small amount of 

work to perform the overhead can outweigh the performance benefit.  

Another issue to be considered is coordinating the data which is required to 

when the workload is shared between the CPU and GPU or if there is a need 

to work in a concerted manner. The more coordination that is required the 

poorer the performance of parallel programming. Thus the decision of such 

algorithm must consider the overhead and coordination of data in order to 

achieve better performance. 

 

 

 Decision on which algorithms to make parallel and which should stay 

sequential. Some problems are excellent targets to be parallelized but others 

are better to be performed sequentially. A well planned mix of parallel and 

sequential code offers the possibility of getting optimum performance.  In 
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order to make informed decisions, measurement tools are needed to help in 

deciding which approach gives the best performance gain. 

 

 

 GLCMs are two dimensional histograms where the bins are accessed by the 

intensity of each pixel versus the intensity of a given neighbour. 

Traditionally, because of the limitation of computing power, the distance is 

usually limited to a single value, d=1 which is computed in horizontal and/or 

vertical directions. Computation for a range of distance such as 2, 3 and more 

could possibly capture new information and have significant impact. 

 

 

 For a texture image there are many GLCMs to be computed and features 

extracted. Computation is very intensive as many matrices need to be 

computed as well as the additional feature calculations. The computation 

intensity will increase with the square of the image size (side). The 

computation of the Haralick statistical feature set is equally time consuming.  

 

 

 

 

1.3 Objectives 

 

 

The objective of this study is described as follows:- 

 

 

 To evaluate the effect of migrating computationally complex algorithms 

i.e. GLCMs and feature extraction to form texture images from a 

traditional architecture to parallel implementation using GPU.  

 

 

 To compute GLCM and Haralick’s texture features to create texture 

images for any given image size with varying windows sizes. 
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1.4 Scope of the study 

 

 

The following is the scope of this study:- 

 

 

 To understand GLCM, and Haralick’s texture features and texture images 

and implement it using Processing  for an initial proof of concept of serial 

computation.  

 

 

 Program the implementation for varying parameters such as distance and 

window size in Processing to examine the effect of changing these 

features. 

 

 

 Study parallel programming in CUDA. Implement texture images from 

GLCM and Haralick’s feature extraction in both CUDA and serial code. 

 

 

 To study how to convert the serial implementation to parallel and 

optimization on the parallel programming. At the same time convert the 

Processing code to Visual C++ to allow fair comparison with the CUDA 

version since Processing is Java based and so does not produce native 

code. 

 

 

 

 

1.5 Thesis Organization 

 

 

This thesis is organized into 5 chapters. 

 

 

Chapter one (this chapter) provides the introduction of GPU, discussion of 

problem statement, project objectives, scope of study and thesis organization. 
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Chapter two presents a literature review of GLCMs covering prior work that 

is related to this project, an explanation of GPU architecture and an understanding 

CUDA. 

 

 

Chapter three describes the project methodology and provides a full 

discussion about the flow of the work. This includes creating GLCMs and Haralick’s 

feature computation and an introduction to the CUDA programming model. 

 

 

Chapter four evaluates the results of the work. The accuracy of the algorithms 

for extracting the GLCMs and Haralick features, test results and the performance 

gain that was obtained from moving from serial to parallel. In this chapter the 

performance gains will be compared based on image size will be presented followed 

by a discussion of any problem that will be encountered. 

 

 

The last chapter is the conclusion of all chapters, and provides explanation for 

future works and recommendations for future study.  

 

 

 

 

1.6 Summary 

 

 

Since parallel computing has been proposed as the way forward for intensive 

computing, this project will attempt to quantify the benefit that will be gained from 

using parallel processing. Making use of the benefit of parallel programming by 

using graphics processors is expected to enable us to compute these algorithms faster 

especially when the image size is huge. That being the case, we hope to be able to 

identify some real life applications that this work may make possible by bringing 

such computations into real time. 
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