
i

 PERFORMANCE STUDY OF PARALLEL IMPLEMENTATION OF TEXTURE

IMAGES USING GLCM

SALAMIAH BINTI ESA

A project report submitted in partial fulfilment of the

requirements for the award of the degree of

Master of Engineering (Electrical - Electronics & Telecommunications)

Faculty of Electrical Engineering

Universiti Teknologi Malaysia

JUNE 2013

iii

This thesis dedicated to my beloved family, and all who have helped me along the

way.

iv

ACKNOWLEDGEMENT

 I would like to offer my appreciation and gratitude to the following:

Allah Subhanahu Wa Ta’ala for the many blessings that I have received in my life

and helping me to overcome the challenges in this project.

To my supervisor, Dr Usman Ullah Sheikh for his patient guidance, understanding

and advice and who helped me clearly focus my objectives in pursuing this project.

To Mr. David Appleton who helped me understand the basic of programming and

image processing.

v

ABSTRACT

The process of the creation of texture images derived from a windowed

GLCM coupled with the calculation of Haralick features for each window is a time

intensive process due to the intense number of calculations involved. This study

examines and seeks to quantify the expected increase in processing speed when

migrating this algorithm from a traditional serial implementation to a parallel

implementation of the same function using modern Graphical Processing Units and

the effects of certain parameters such as window size and image size. The

components of texture images and some of the factors relating to the efficiency of

CUDA code are described. The problem domain was analysed and a serial version of

texture window analysis was implemented and checked for accuracy by comparing it

to code written in Matlab. The serial code was tested on a 2.4 Ghz Intel core i5

processor while the parallel code was tested on two different GPU cards, a GeForce

310M and a GeForce GTX 620. The final (fastest) implementation used three

kernels. Two of these performed gray scale conversion and intensity scaling while

the third performed the entire GLCM construction and feature extraction. The results

showed that a single large kernel could outperform the collection of small kernels

that was used in the alternative implementation. As a result of parallel

implementation, texture analysis of a 2048 x 2048 pixels image was found to be up

to 44 times faster than the serial version using the GeForce 310M and even faster on

the GeForce GTX 620.

vi

ABSTRAK

Proses membentuk imej-imej tektur dari tetingkap GLCM berserta pengiraan

ciri-ciri Haralick adalah satu proses yang lama kerana ia melibatkan banyak

pengiraan. Dalam penyelidikan ini, pengukuran kepantasan dalam pemprosesan

tersebut dikaji apabila algoritma tradisional sesiri dilaksanakan secara selari

menggunakan Unit Pemprosesan Grafik yang moden. Peningkatan kepantasan

apabila parameter seperti penambahan saiz tetingkap dan saiz imej juga diselidik.

Kajian ini juga menjelaskan tentang komponen imej-imej tektur dan faktor yang

berkaitan dengan penggunaan kod CUDA secara optimum. Masalah dalam kajian ini

dianalisis termasuk perlaksanaan analisis tersebut terhadap tingkap-tingkap tektur

versi sesiri. Ketepatan hasil kerja diperiksa dengan membandingkannya dengan kod

yang ditulis menggunakan Matlab. Kod sesiri diuji menggunakan pemproses Intel

Core i5, 2.4 GHz. Kod selari diuji menggunakan GPU yang berbeza, GeForce 310M

dan Geforce GTX 620. Kajian menggunakan tiga kernel untuk melaksanakan

pemprosesan membentuk imej-imej tektur dan pengiraan ciri-ciri Haralick didapati

paling pantas. Dua kernel yang pertama memproses penukaran imej berwarna kepada

imej hitam-putih/kelabu dan melaksanakan pengskalaan imej kelabu tersebut. Kernel

ketiga memproses penghasilan GLCM bagi setiap imej pixel dan melakukan

pengiraan untuk mendapatkan ciri-ciri Haralik. Keputusan menunjukkan bahawa

penyelesaian menggunakan satu kernel yang menyelesaikan masalah yang banyak

adalah lebih baik daripada penyelesaian menggunakan banyak kernel yang

menyelesaikan masalah yang kecil. Perlaksanaan selari menggunakan GeForce 310M

bagi 2048x2048 imej pixel adalah 44 kali lebih pantas berbanding perlaksanaan

secara sesiri dan keputusan ujian menggunakan GeForce GTX 620 adalah jauh lebih

pantas.

vii

CHAPTER TITLE PAGE

DECLARATION ii

DEDICATION iii

ACKNOW LEDGEM ENTS iv

ABSTRACT v

ABSTRAK vi

TABLE OF CONTENTS vii

LIST OF TABLES x

LIST OF FIGURES xi

LIST OF ABBREVIATIONS xiv

LIST OF SYMBOLS xvi

LIST OF APPENDICES xvii

1 PR O JEC T OVERVIEW 1

1.1 Introduction 1

1.2 Problem Statement 3

1.3 Objective 4

1.4 Scope of the Study 5

1.5 Thesis Organization 5

1.6 Summary 6

2 LITERATURE REVIEW 7

2.1 Introduction 7

2.2 Parallel Computation 7

2.2.1 Types of Parallel Computing 9

TABLE OF CONTENTS

ix

5 CONCLUSION AND PROPOSALS FO R FUTURE

W O RK 81

5.1 Conclusion 81

5.2 Future Work 82

REFERENCES

Appendices A-D

83

86-135

x

LIST OF TABLES

TABLE NO. TITLE PAGE

3.1 Target machine for devel opment 55

4.1 Detail CPU Vs GPU result for image size 1024x1024 71

4.2 Comparison with previous works 80

xii

2.18 Creating a texture image, (a) window mapping to
(b) output pixel 28

2.19 (a) ASM and (b) Entropy texture images 29

2.20 Threads 34

2.21 A Thread block is a group of threads 35

2.22 A grid is group of Thread blocks 35

2.23 2D of grid, blocks and threads 36

2.24 3D of threads 37

2.25 GPU Memory hierarchy 39

2.26 Illustration of GPU memory model. (a) Local memory,
(b) is shared memory and (c) is global memory [13] 40

2.27 CUDA memory hierarchy [27] 40

2.28 Haralick features computation [20] 42

3.1 Original image 46

3.2 Texture images of Haralick features 46

3.3 Generating GLCMs for image 18x21 pixels 47

3.4 Texture map for an image of 1024x1024 pixels 48

3.5 Process Flow Chart 50

3.6 Intensity scale 50

3.7 Overall GLCM computation process 51

3.8 Manual calculation of Haralick feature using a spreadsheet 52

3.9 Manual Calculation of correlation 53

3.10 The calculation of Haralick features 54

3.11 The calculation of correlation 54

3.12 The process flow of GPU implementation 56

3.13 Data coalescence 59

3.14 Thread divergence (a) code (b) diagram 60

3.15 (a) Multiplication vs. (b) a faster accumulation 61

3.16 Register and memory usage 61

3.17 Occupancy information and profiler 62

3.18 CUDA Profiler 63

3.19 CUDA occupancy calculator 67

4.1 Input Images 68

4.2 Screen shot of CPU timings for image 1024 x 1024 pixels 71

4.3 Screen shot of CUDA timings for image size
1024 x 1024 pixels 72

4.4 CPU result 73

4.5 GPU result 74

4.6 Computation time of GLCM and Haralick features for both
CPU and GPU versus image size 75

4.7 Computation time of GLCM and Haralick features for
all images on CPU 75

4.8 Computation time of GLCM and Haralick features for
all images on GPU 76

4.9 GeForce GT 620 execution time 77

4.10 Results validation using Matlab 79

4.11 Results validation using spreadsheet 79

xiii

xiv

ABS - Air-lock breaking system

ALU - Arithmetic logic unit

ASM - Angular second moment

CAD - Computer aided design

CPU - Centre processing unit

CUDA - Compute unified device architecture

1D - One dimensional

2D - Two dimensional

3D - Three dimensional

GLCM - Grey level co-occurrence matrix

GPU - Graphics processing unit

GPGPU - General-purpose graphics processing unit

IBM - International business machine

IEEE - Institute of Electrical and Electronic Engineers

MIMD - Multiple input multiple data

OpenCL - Open computing language

OpenGL - Open graphics language

PC - Personal computer

PDF - Probability density function

PPM - Portable pixel map

PPE - Power processor element

RGBA - Red green blue alpha

LIST OF ABREVIATIONS

xv

SIMD

SIMT

SPE

V2

Single instruction multiple data

Single instruction multiple threads

Synergistic processing element

Version two

LIST OF SYMBOLS

Distance

Row

Column

Probability

Variance

Mean

Count of occurrence

xvii

LIST OF APPENDICES

APPENDIX TITLE PAGE

A Source Code (CUDA & CPU) 86

B Batch files for test Automation 107

C Test Results 109

D CODE (Processing-Texture Images) 133

CHAPTER 1

PROJECT OVERVIEW

1.1 Introduction

The history of computer graphics goes back to the 1960s. After the IBM PC

was introduced in 1981 the world had a standard platform for computing and the PC

game industry was born. Graphic processing was initially performed by the CPU

which also had to handle everything else until dedicated graphic accelerators started

being built which offloaded some of these tasks from the CPU. The formulation of

OpenGL in 1989 was a step towards the standardization of graphics implementation,

along with the definition of the concept of a graphics pipeline.

The graphics pipeline could make 3D graphic games look far more realistic

and responsive. Texturing and pixel shading are some of the elements in the graphics

pipeline that contributed to the success of 3D graphic games like Quake and Doom.

In 1999 fast interactive 3D graphics had became a full reality when billion of

transistors were built into the hardware of the first Graphics Processing Unit (GPU)

by NVidia which embodied all the stages of the graphics pipeline. Today, the GPU is

widely used not only in personal computers and workstations but also in embedded

systems, mobile phones and game consoles.

Modern GPUs are extremely efficient for graphics computation compared to

a general-purpose CPU. The CPU has a single threaded architecture that allows

multiple processes to be run through the same single-threaded pipeline which access

their specific data through a single memory interface. In contrast, the GPU

http://en.wikipedia.org/wiki/Embedded_system
http://en.wikipedia.org/wiki/Embedded_system
http://en.wikipedia.org/wiki/Mobile_phone
http://en.wikipedia.org/wiki/Game_console

2

architecture uses stream processing from (up to) thousands of stream processors

running in parallel with multiple memory models. The GPU is designed to handle

large streams of graphic data and is able to process the computations much faster

because the processing is done concurrently. As the requirements for graphical

processing grew, the GPU evolved into a device able to run generic computation of a

non graphical equally well as long as the problem required large amounts of data and

could be mapped to the stream concept.

The benefit of using GPUs to process images is not a new issue. Work has

been done to examine the performance of GPUs and research related to image

processing and GPU performance dates back to early 2000. Early papers included

Strzodka et. al.[1] implementing a motion estimation algorithm that provides dense

estimates from optical flow where they get a 2.8 times speed increase on a GeForce

5800 Ultra GPU, while Hadwiger et al.[2] presented a review of GPU image

segmentation in medical imaging application for data visualization.

Not all parallelizable applications have been able to benefit from the

advantage of the parallelized architecture of GPU. In order to benefit significantly to

this parallelism the data has to be independent, aligned, and have regular data access.

In this project we investigate and study the creation of Gray Level Co-

Occurrence Matrices (GLCM) on image of a variety of sizes. The GLCM has been

widely used to extract texture features from images. Texture feature extraction and

comparison is used in applications as diverse as remote sensing, medical image,

recognition of materials such as wood and granite, finger print analysis, depth

analysis and many more. The GLCM is analysed by extracting the Haralick texture

feature set in order to make all these applications a reality. Finally, doing this using a

sliding window creates “texture images” which is a method of image segmentation

based on texture.

Haralick’s texture features are statistical features that reduce GLCM data to a

few statistical data values that give information about the area being analysed. These

3

will be explained in chapter 2. Computation of the GLCM and extracting the

Haralick texture feature set is very heavily computationally intensive, thus time

consuming. Doing these calculations repeatedly on a sliding window across an image

magnifies the level of computation incredibly with each pixel being processed a large

number of times. In this report these computations will be implemented both in the

traditional serial method, and in parallel, on an Acer Aspire notebook using an

NVidia GeForce 310M graphical processor and a 2.4GHz Intel Core i5-450M

processor.

1.2 Problem Statement

 The data in GLCMs forms a sparse array which leads to an irregular data

access pattern. This may make it harder to get an efficient parallel

implementation of algorithms to be processed by a GPU. The identification of

algorithms to make parallel, and how, is necessary in order to exploit the

benefit of having a GPU.

 In parallel implementations, there is an overhead associated with setting up

and managing parallel programming units. If there is only small amount of

work to perform the overhead can outweigh the performance benefit.

Another issue to be considered is coordinating the data which is required to

when the workload is shared between the CPU and GPU or if there is a need

to work in a concerted manner. The more coordination that is required the

poorer the performance of parallel programming. Thus the decision of such

algorithm must consider the overhead and coordination of data in order to

achieve better performance.

 Decision on which algorithms to make parallel and which should stay

sequential. Some problems are excellent targets to be parallelized but others

are better to be performed sequentially. A well planned mix of parallel and

sequential code offers the possibility of getting optimum performance. In

4

order to make informed decisions, measurement tools are needed to help in

deciding which approach gives the best performance gain.

 GLCMs are two dimensional histograms where the bins are accessed by the

intensity of each pixel versus the intensity of a given neighbour.

Traditionally, because of the limitation of computing power, the distance is

usually limited to a single value, d=1 which is computed in horizontal and/or

vertical directions. Computation for a range of distance such as 2, 3 and more

could possibly capture new information and have significant impact.

 For a texture image there are many GLCMs to be computed and features

extracted. Computation is very intensive as many matrices need to be

computed as well as the additional feature calculations. The computation

intensity will increase with the square of the image size (side). The

computation of the Haralick statistical feature set is equally time consuming.

1.3 Objectives

The objective of this study is described as follows:-

 To evaluate the effect of migrating computationally complex algorithms

i.e. GLCMs and feature extraction to form texture images from a

traditional architecture to parallel implementation using GPU.

 To compute GLCM and Haralick’s texture features to create texture

images for any given image size with varying windows sizes.

5

1.4 Scope of the study

The following is the scope of this study:-

 To understand GLCM, and Haralick’s texture features and texture images

and implement it using Processing for an initial proof of concept of serial

computation.

 Program the implementation for varying parameters such as distance and

window size in Processing to examine the effect of changing these

features.

 Study parallel programming in CUDA. Implement texture images from

GLCM and Haralick’s feature extraction in both CUDA and serial code.

 To study how to convert the serial implementation to parallel and

optimization on the parallel programming. At the same time convert the

Processing code to Visual C++ to allow fair comparison with the CUDA

version since Processing is Java based and so does not produce native

code.

1.5 Thesis Organization

This thesis is organized into 5 chapters.

Chapter one (this chapter) provides the introduction of GPU, discussion of

problem statement, project objectives, scope of study and thesis organization.

6

Chapter two presents a literature review of GLCMs covering prior work that

is related to this project, an explanation of GPU architecture and an understanding

CUDA.

Chapter three describes the project methodology and provides a full

discussion about the flow of the work. This includes creating GLCMs and Haralick’s

feature computation and an introduction to the CUDA programming model.

Chapter four evaluates the results of the work. The accuracy of the algorithms

for extracting the GLCMs and Haralick features, test results and the performance

gain that was obtained from moving from serial to parallel. In this chapter the

performance gains will be compared based on image size will be presented followed

by a discussion of any problem that will be encountered.

The last chapter is the conclusion of all chapters, and provides explanation for

future works and recommendations for future study.

1.6 Summary

Since parallel computing has been proposed as the way forward for intensive

computing, this project will attempt to quantify the benefit that will be gained from

using parallel processing. Making use of the benefit of parallel programming by

using graphics processors is expected to enable us to compute these algorithms faster

especially when the image size is huge. That being the case, we hope to be able to

identify some real life applications that this work may make possible by bringing

such computations into real time.

83

REFERENCES

[1] R. Strzodka and C. Garbe, “Real-time motion estimation and visualization on

graphics cards,” in ProceedingsIEEE Visualization 2004, 2004, pp. 545–552.

[2] M. Hadwiger, WK Jeong, H. Pfister and J. Beyer Strzodka, “GPU-Accelerated

brain connectivity reconstruction and visualization in large scale electron

micrograph,” GPU Computing Gems, Emerald Edition 2011, pp. 793–812.

[3] Wilson, Gregory V (1994). "The History of the Development of Parallel

Computing". Virginia Tech/Norfolk State University, Interactive Learning

with a Digital Library in Computer Science. Retrieved 2008-01-08.

[4] John L. Hennessy and David A. Patterson. Computer Architecture: A

Quantitative Approach. 3rd edition, 2002. Morgan Kaufmann, ISBN 1-55860-

724-2. Page 43.

[5] J. M. Rabaey. Digital Integrated Circuits. Prentice Hall, 1996.

[6] A. Downton and D.Crookes, Electronics & Communication Engineering

 Journal, June 1998.

[7] David Luebke, GPU Architecture: Implication and Trends, Nvidia Research,

 Siggraph 2008.

[8] Timothy G. Mattson, Beverly A. Sanders and Berna L.Massingill, Pattern for

 parallel programming, 2005, pg 9-10, Addison-Wesley.

[9] CUDA C Programming Guide, pg 153, Nvidia, www.nvidia.com .

http://ei.cs.vt.edu/~history/Parallel.html
http://ei.cs.vt.edu/~history/Parallel.html
http://en.wikipedia.org/wiki/John_L._Hennessy
http://en.wikipedia.org/wiki/David_A._Patterson_(scientist)
http://en.wikipedia.org/wiki/Special:BookSources/1558607242
http://en.wikipedia.org/wiki/Special:BookSources/1558607242
http://www.nvidia.com/

84

[10] CUDA C Programming Guide, pg 76-77, Nvidia, www.nvidia.com .

[11] Guochun Shi, Volodymyr Kindratenko, Rob Kooper and Peter Bajcsy. GPU

 Acceleration of an Image Characterization Algorithm for Document Similarity

 Analysis. 2011 IEEE

[12] Ashwin M, Aji, Liqing and Wu-Chun, GPU-RMAP : Accelerating Short-Read

 Mapping on Graphics Processor, 2010, IEEE.

[13] Cliff Woolley, CUDA Overview, pg 11, Nvidia Developer Technology Group,

 Nvidia.

[14] Nan Zhang, Jian-li Wang and Yun-shan Chen. Image Parallel Processing

 Based on GPU. 2010 IEEE

[15] Bi-Hui Wang,Hang-Jun Wang, Heng-nian Qi, Wood recognition based on

 GLCM, 2010, International conference on computer application and system

 modelling.

[16] Mari Partio, Bogdan Cramariuc, Moncef Gabbouj, and Ari Visa, “Rock

 Texture Retrieval using gray level Co-occurrence Matrix” Tempere University

 of Technology

[17] Amjad Ali, Xiaojun JNing, Nasir Saleem, GLCM-based fingerprint

 recognition algorithm, 2011, IEEE.

[18] Markus Gipp, Guillermo Marcus, Nathalie Harder, Apichat Suratanee, Karl

Rohr, Rainer Konig, Reinhard Manner, Haralick’s texture Features Computed

by GPUs for Biological Application, IAENG International Journal of

Computer Science, 2008

[19] Dr. N.P.Rath, Prasanjeeta, Janyadatta, Depth Analysis of Monocular Natural

 Scenes using GLCM, 2012, 4
th

 International conference on intelligent and

 advanced system.

http://www.nvidia.com/

85

[20] Asadollah Shahbahrami, Tuan Anh Pham, Koen Bertels, Parallel

 implementation of Gray Level Co-occurrence Matrices and Haralick texture

 features on cell Architecture, 2011, Springer Science + Business Media.

[21] Yong Hu, Chun-xia Zhao, Hong-nan Wang, Directional analysis of texture

 Image using Gray level co-occurrence Matrix, 2008, IEEE.

[22] Jing Yi Tau, Yong Hour Tay, Phoii Yee Lau, One-dimensional GLCM for

texture classification, 2008, IEEE.

[23] M. Abolghasemi, H. Aghainia, K.Faez, M.A. Mehrabi, LSB Data Hiding

Detection Based on Gray Level Co-Occurrence Matrix (GLCM), 2008,

International Symposium on Telecommunications.

[24] http://www.fp.ucalgary.ca/mhallbey/contrast.htm

[25] Yu Jian, Texture image segmentation based on Gaussian Mixture Models and

GLCM, 2010. IEEE.

[26] Cuda_OpenCV GPU architecture.pdf

[27] http://www.online-utility.org/image_converter.jsp?outputType=PPM

[28] Hillis, W. Daniel, and Guy L. Steele, Jr. 1986. "Data Parallel

 Algorithms." Communications of the ACM 29 (12)

[29] http://www.cse.nd.edu/courses/cse60881/www/lectures/logsum.pdf

[30] Introduction to Parallel Programming (CS344)

http://www.udacity.com/course/cs344

http://www.fp.ucalgary.ca/mhallbey/contrast.htm
http://www.online-utility.org/image_converter.jsp?outputType=PPM
http://www.cse.nd.edu/courses/cse60881/www/lectures/logsum.pdf
http://www.udacity.com/course/cs344

