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ABSTRACT

Cursive handwriting is the most natural way for humans to communicate and
record information. The developments of automatic systems that are capable of
recognizing human handwritings offer a new way of improving human-computer
interface and of enabling computers to perform repetitive tasks of reading and
processing handwritten documents more efficiently. The aim of this thesis is to
design an offline handwritten word recognition system based on the hybrid of
Artificial Neural Network (ANN) and Hidden Markov Model (HMM). The Input
space segmentation (INSEG) approach proposes various ways to segment word into
characters. This approach creates the problem of junks — character hypotheses that
are not true characters. Two training approaches have been introduced, namely
character level discriminant training and word-level discriminant training. The latter
shows integration of the ANN and HMM by using the gradient descent algorithm.
Different topologies of the ANN have been investigated for modeling of junks.
Three isolated word databases, namely, IRONOFF, AWS and SRTP, have been used
as the evaluation of the proposed system. Experimental results have shown that the
ANN-HMM hybrid with word-level discriminant training consistently yield better
recognition accuracy compared to character level discriminant training and discrete
HMM-based recognition system. It achieves recognition accuracy of 97.3%, 88.4%,
90.5% and 95.8%, on IRONOFF-196, IRONOFF-1991, SRTP-Cheque, and AWS,

respectively.
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ABSTRAK

Tulisan sambung atau kursif merupakan satu cara yang paling mudah dan
senang bagi manusia untuk berkomunikasi dan mencatatkan maklumat.
Pembangunan satu sistem yang berkeupayaan untuk mengecam tulisan manusia
membuka peluang baru untuk memperbaiki perantaramukaan di antara manusia dan
komputer. Selain daripada itu, ia juga dapat membolehkan komputer melakukan
kerja yang berulangan untuk membaca dan memproses dokumen bertulis dengan
berkesan. Tujuan tesis ini adalah untuk merekabentuk and membangunkan sebuah
sistem pengecaman perkataan bertulis yang berasaskan hibrid antara Rangkaian
Neural (ANN) dan Model Markov Tersembunyi (HMM). Pengsegmentasi INSEG
mencadangkan pelbagai cara untuk mengsegmentkan perkataan kepada aksara-
aksara. Process ini menyebabkan masalah junk — hipotesis aksara yang bukan aksara
benar. Dua cara pembelajaran telah diperkenalkan iaitu pembelajaran diskriminasi
peringkat aksara dan pembelajaran diskriminansi peringkat perkataan. Cara
pembelajaraan kedua itu menunjukkan persepaduan kedua-dua teknik ANN and
HMM dengan mengunakan algoritma penurunan kecerunan (gradient descent).
Pelbagai topologi ANN telah diperiksa untuk mengkaji kebolehannya untuk
pemodelan junk. Tiga pangkalan data perkataan bertulis, iaitu IRONOFF, AWS and
SRTP telah digunakan untuk menilai keberkesanan sistem yang dicadangkan.
Keputusan ujikaji-ujikaji yang telah dijalankan menunjukkan model hibrid ANN-
HMM dengan cara pembelajaran diskriminasi berperingkat perkataan sentiasa
menghasilkan keputusan yang lebih baik berbanding dengan pembelajaran
diskriminasi berperingkat aksara serta sistem pengecaman berdasarkan HMM
diskret. Ia mencapai ketepatan pengecaman 97.3%, 88.4%, 90.5% dan 95.8% pada
IRONOFF-196, IRONOFF-1991, SRTP-Cheque dan AWS.
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RESUME

L’écriture manuscrite, notamment cursive, permet aux Hommes de
communiquer et de conserver l’information d’une maniére trés naturelle et
spontanée. Le développement de systémes automatiques capables de reconnaitre
I’écriture ouvre de nouvelles perspectives pour les interfaces Homme-machine ainsi
que pour le traitement trés rapide de masses de documents en automatisant les taches
de lecture de ceux-ci. L’objectif de cette thése est de concevoir un systtme de
reconnaissance hors-ligne de mots manuscrits basé sur un systéme hybride de type
réseau de neurones artificiels (ANN) et modéles de Markov cachés (HMM).
L’approche de segmentation proposée (INSEG) conduit a de multiples
segmentations du mot en caracteres. Cela induit un probléme de représentation d’une
classe « poubelle » (junks) pour représenter toutes les hypothéses de segmentation
qui ne correspondent pas a de vrais caractéres. Deux approches d’apprentissage sont
introduites, un apprentissage discriminant au niveau caractére et un apprentissage
discriminant au niveau mot. Cette derniére permet de coupler I’apprentissage du
HMM et de I’ANN par un algorithme de descente de gradient. Plusieurs topologies
ont été étudiées pour modéliser la classe « poubelle ». Trois bases de mots isolés, a
savoir, IRONOFF, AWS et SRTP, ont été utilisées pour évaluer le systéme proposé.
Les résultats expérimentaux obtenus montrent que le syst¢tme hybride ANN-HMM,
utilisé avec un apprentissage discriminant au niveau mot, surclasse a la fois le
systéme hybride avec apprentissage discriminant au niveau lettre et un systéme
HMMs discrets. Les performances de reconnaissances obtenues sont respectivement
de 97.3%, 88.4%# 90.5% et 95.8%, sur les bases IRONOFF-196, IRONOFF-1991,
SRTP-Cheque, et AWS.
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CHAPTER 1

INTRODUCTION

1.1  Background

One of the most common and natural medium of communication for human
beings is through handwritings. Even with the introduction of new technologies,
handwriting persists as an effective means of communication and information

recording in our daily life.

On the other hand, the computer, which was created in the mid nineteenth
century, with the initial intention to help performing complex mathematical
calculations, has now emerged as a popular and important tool in most of the
corporations and organizations. It has been used extensively to perform repetitive
and routine tasks to increase productivity and efficiency of an organization.
Although current computer technology has gone so far in terms of processing speed,
it still offers an unnatural way of communication between human and computer. We
still need to learn a set of input methods to adapt ourselves before we can use the
computer efficiently. Therefore, having a computer with the ability to interact with
human in a more natural way, such as the ability to recognize our speech and
handwritings, might further increase the usage of the computers in the area where

current computer technology are not accessible.

Although research in optical character recognition (OCR) has started quite

some time, research in unconstraint handwriting recognition has only gain much



attention since the early 80 [Nagy, 2000]. Many of the successfully commercialized
of handwriting recognition systems are still limited in application which can be
applied to small and specific vocabularies, such as bank cheque reading and postal
address interpretation [Augustin, et al, 1998] [Guillevic, et al, 1995] [Knerr, et al,
1997]. Usage in other applications especially those required large lexicons, such as

recognizing handwritten notes, are, however, still not available.

1.2 Problems

Figure 1.1 shows various styles of handwriting for the word “six”. For word
recognition purpose, all the examples shown belong to only one class out of all
classes available in our known vocabulary. The examples shown in the figure only
unveil very small portion of the handwriting styles for the word “six”. By only
looking at the variability of each example of this particular class, we shall realize
that to design a system that can recognize handwritings is indeed an extremely
challenging task. From this example, we also realize the incredible recognition
capability that humans have. Albeit its slow processing speed, our brain can still
perform real-time handwriting recognition task that even the fastest computer can

hardly achieve.

> S {)Q DUse
YD i Yo

Figure 1.1. Various handwriting styles for the word “six”



The problems and difficulties of handwriting recognition task can be

generally summarized into five categories:

e Nature of the handwriting signals
¢ Handwriting styles
e  Writer dependency
e Size of vocabulary

e Language

The following subsections elaborate in detail each of the problems

mentioned.
1.2.1 Nature of the Handwriting Signals

Depending on the nature of the applications, there are two different types of
handwriting signals that can be retrieved from the input sources: offline handwriting

signal and online handwriting signals.

Offline handwriting recognition deals with the problem of reading the
handwritings at some point in time after they were written. The handwriting is
typically captured and digitized from a paper by a scanner or camera. Thus, it is in

the form of two-dimensional set of pixels with binary, gray-scale or color value.

On the other hand, an online system uses a graphic tablet to enter the

handwriting. The data from the tablet is one-dimensional temporal signals
{x(t), y(t)} , 1.e. coordinates sampled at a constant interval in time, . Information

that can be retrieved by the system is the relative position of each point, velocity of

the pen along its trajectory, and whether the pen is currently lifted or touching the
tablet.

As the online signals record the temporal sequence of handwriting, we can
easily transform the online signals into offline signals. However, it is quite difficult,

if not impossible, to generate online signals from offline signals. In other words,



online handwriting signals contain more information, and thus, online handwriting
recognition is regarded easier to solve in terms of recognition accuracy than its

offline counterpart.

Nevertheless, handwriting recognition system for offline and online signals
represent different perspective of challenges and applications. As online handwriting
recognition is usually applied in direct interface with the user, it often requires real-
time recognition response, immediately after the user finished writing a word. Apart
from that, it also needs to handle recognition with very large vocabulary. This
represents a challenge to the system especially when the recognition engine is built

on a less powerful computational platform with stringent memory constraint.

Conversely, offline handwriting recognition systems normally perform the
task at the back-end. Although the recognition speed is an important issue, it can be
overcome by high-speed computers. Nonetheless, in most offline scenarios, there is
no control on the type of writing medium and instrument used. The artifacts of the
complex interactions between mediums, instruments and subsequent operations such
as scanning and binarization present additional challenges to algorithms for offline

handwriting recognition.

1.2.2 Handwriting Styles

miitU U el n willion

@

()
W&u{m m\A,QLCW\/ Wwéw
(e

© @

Figure 1.2. Different types of handwriting styles. (a) Box discrete characters.

(b) Spaced discrete characters. (c) Run-on discretely written characters. (d)

Pure cursive handwriting. (¢) Unconstraint handwriting.



Handwriting styles vary depending on the constraint applied on applications.

Figure 1.2 displays five main types of handwriting styles:

e Boxed discrete characters.
For applications like automatic form processing, normally users are
requested to write each isolated capital letter in the pre-printed rectangles.
These “boxed discrete characters” do not require character segmentation as
the position of each isolated character is known. Handwritten characters can
be extracted from the rectangles and can be recognized by a character

recognizer.

e Spaced discrete characters.
The “spaced discrete characters” are separately written. Each character does
not have ink traces to link with its neighboring characters. Only simple
character segmentation algorithm is needed to retrieve each isolated

character.

e Run-on discretely written characters.
For this type of handwriting, each character is written one after another.
There may be ink traces that link between neighboring characters due to the

writing speed.

e Pure cursive handwriting.
This is the handwriting style that is usually being taught in the school. Each
character has to be nicely link with its neighboring characters. In the cursive
handwriting, diacritic marks such as i-dots and t-bar are written after the

main part of the word.

e Unconstraint handwriting.
This is the most frequently encountered handwriting style in our daily life. It

is a mixture of spaced discrete, run-on discrete and cursive handwriting.



1.2.3

Writer Dependency

Handwriting styles are extremely diverse for individuals, depending on the

geographical region, native handwriting and so on. It is much more difficult to

design a system to recognize many people’s handwritings than that of a single

author. There are three levels of difficulties:

1.24

Mono-scriptor.
For mono-scriptor system, the handwriting recognition system is trained and
tested on the same scriptor. As the handwriting of the same writer is

normally similar, the handwriting recognition accuracy is usually higher.

Multi-scriptor.
Another tougher problem is the multi-scriptor system, where the handwriting
recognition system has to deal with different person’s handwriting. The

training and testing data sets are from the same group of scriptors.

Omni-scriptor/Scriptor Independent.

The toughest problem is the omni-scriptor system, where the handwriting
recognition system has to deal with handwriting styles that it has never seen
during the design or training stage. During design stage, the system is trained
with onset of available database from one group of scriptors. However, it will
be tested on a fresh database from an entirely different group of scriptors.
This posed a great difficulty to the system. This is usually the problem for a

real commercial handwriting recognition system.

Vocabulary Size

Table 1-1. Different categories of problems based on size of vocabulary

Category Vocabulary Size Applications
Small and specific <100 _ Legal Amount Recognition
Limited but dynamic <1000 Address Recognition

Large >1000 General Applications




According to [Steinherz et al, 1999], one can classify the nature of the
vocabulary or lexicon size into three main categories as shown in Table 1-1. The size
of vocabulary has significant influence on the design of a handwriting recognition
system. As the size of vocabulary grows, the chances to have more words that are
similar increase, thus, more confusion occur. Therefore, as the vocabulary size
increased, we would expect performance and speed of a particular recognizer to

degrade.

1.2.5 Language

There are many different languages used in this world. Three most widely
used handwritten languages are Latin-based languages, e.g. English or French,
Chinese language and Arabic language. English alphabet has 52 letters (lower and
upper case). French has all English alphabets plus 24 more alphabets with diacritical
marks (lower and upper case). In English or French, the position and size of the
letters is important. Upper case letters sit on the baseline and are full size. Lower
case letters are smaller and most are about half the height of upper case letters.
Handwritten English or French words are normally separated spatially. Letters
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within a word, however, are not usually separated spatially. For letters like “t”, “i”,
“i”_etc., when written cursively, crosses (for “t”) and dots (for “i”, “j”, etc) tend to
be delayed and thus they are not written exactly above of the main part of the

characters.

Chinese has a much larger set of characters (alphabets). A complete
vocabulary of Chinese characters is about 50,000. A more basic vocabulary that is
sufficient for normal reading purpose is around 3,000 to 5,000 characters [Tappert et
al, 1990]. A Chinese character has an average of 8-10 strokes: the simplest having
one stroke and the most complicated contains more than 30 strokes. If written
cursively, strokes are connected and shapes may deform from the basic style.
Japanese language use Hiragana, Katakana, and Kanji. The first two groups are
phonetic alphabets, and each has 46 full-size characters. The strokes of these
characters are less than the one in Chinese character. Kanji are subset of Chinese

characters. It has 6,349 characters as defined by Japanese Industry Standard but



daily usage limited to around 2,000. Chinese and Japanese characters are usually

written in block; thus, there is less character segmentation problem.

Arabic alphabet consists of 29 letters. However, due to the dependency of the
shape of a character on its position in a word, the number of character shapes
increases from 29 to about 60. Arabic is written from right to left. Handwritten
Arabic words usually include vertical combinations of characters called ligatures.
This feature makes it difficult to determine the boundaries of the characters. [Amin,
1997]

Different languages of handwriting pose different kind of recognition
problems. For this thesis, only the English and French language will be looked into
detail.

1.3  Applications of Handwriting Recognition

There have been significant growth in the application of handwriting
recognition systems in both online and offline domain during the past decade. The
most important of these has been in bank cheque processing and handwritten address
interpretation, whereas popularity of cellular phones and personal digital assistants
(PDAs) lately has contributed to the online handwriting recognition on electronic

appliances. The following sections describe the major applications in details.



1.3.1 Bank Cheque Pocessing
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Figure 1.3. Various recognition processes to be performed to automate back

cheque processing.

An automated bank cheque processing system is one that uses a computer
system to replace the human operator for processing bank cheques automatically in
an efficient way. The system is able to recognize the amount of cheques based on the
courtesy amount, as well as the legal amount written on them. Apart from that, it is
also able to recognize the date written on cheque. An automated bank cheque
recognition system reduces laborious and repetitive human data entry, thus increase

the productivity and efficiency of a bank.

Figure 1.3 illustrates an example of a cheque. In order to automate the
cheque reading, various recognition processes are needed. The most important
process is the courtesy amount recognition to recognize the amount of payment. To
further verify the amount written, text written on the legal amount field is
recognized. Date, signature, serial number and the payee name, are also need to be

recognized or verified to make sure that it is a valid cheque.

There are substantial research challenges in the area of document image
analysis and recognition for bank cheque processing. Due to the complex

backgrounds and stamping noises, extraction of completely clean handwriting for
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recognition is impossible. For this, we need to rely on the robustness of the
handwriting recognition system to perform recognition with noisy inputs or to reject
if it is too noisy. Due to limited vocabulary in legal amount, it has been getting
rather promising in the development of commercial cheque-reading systems [Knerr,

et al, 1998] [LeCun et al, 1998].
1.3.2 Form Processing

Numerous government agencies or private institutions use forms to collect
data from the public. The design of the forms can be as simple as a few check boxes
for the user to select the answers, to as complex as accepting unconstraint
handwritings for particular questions. Much of this raw data must be stored
structurally in the computer to be manipulated to produce useful pieces of
information. Manual data entry is currently the bottleneck in the process, and it is
exposed to human errors. Replacing human operators in manual data entry with
reliable handwriting recognizers can indeed help produce higher and consistent
productivity. Although forms must usually be hand printed to keep the writing as
legible as possible, for human as well as for machine processing, cursive recognition

systems are very much useful in many instances.
1.3.3 Handwritten Address Interpretation

The main objective of interpreting handwritten addresses is to automate the
sorting of mail pieces. An address consists of country, state, city, street, primary
number (street number or post-office box number), secondary number (apartment or
house number) and finally the receiver’s name. The interpretation result is
represented in the form of a barcode and printed at the bottom of the envelope so

that subsequent stages of sorting can be made by a barcode reader.

Handwritten Address Interpretation can be seen as an ideal application for
scriptor-independent handwriting recognition, since it has a wide variety of
difficulty, from postcode written at predetermined locations on an envelope, up to
complete determination of an address without postcode, from discretely written

postcode up to unconstrained multiple-lines address written by a foreigner.
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134 Input Method for Electronic Appliances

With a widespread of various electronic handheld devices such as cellular
phones, personal digital assistants (PDAs), electronic appliances have inevitably
entered into our personal life and household. Current user interface of these
electronic appliances are still very crude. The most popular input method used in
today’s computing environment — keyboard, is not suitable as a convenient user
input method due to its size and cost of manufacturing. Handwriting input methods,
such as the Graffiti® on PDA powered by PalmOS®, only use uni-strokes
handwritten character recognition. Pocket PCs that come with its default Transcriber
cursive handwriting recognition software, is still yet to meet the normal user
requirement. Thus, large vocabulary online handwriting recognition system is very
much in demand in order to provide better user experience with the electronic

appliances.

1.4  Scope and Objectives

The main objective of this thesis is to construct a system that is able to
recognize isolated cursive handwritten English and French words. Although offline
handwriting recognition is used through out the thesis, the classification model can

also be applied to the online handwriting recognition.

This thesis describes a Segmentation-by-Recognition (SegRec) approach in
handling handwriting recognition. As will be mentioned in the later chapters, that it
is quite difficult, if not impossible, to develop an intelligent character segmentation
process without the knowledge of characters. Therefore, our approach employs a
simple segmentation process to segment a word into a left to right sequence of sub-
characters, and then propose various hypotheses of merge sub-characters into
characters. The main purpose of the segmentation process here is to preserve as

much handwriting information as possible at this level. The recognition process then
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try to spot the most probable segmentation based on the recognition results of each

of the character hypothesis.

For SegRec approach, apart from performing classification between each
character class, the recognizer also needs to model the character hypotheses that do
not belong to any character class, which we term it as junk. A detailed experimental

analysis in handling the junk problem will be described in this thesis.

Two fundamental training schemes for the hybrid ANN/HMM are presented
in this thesis. First is the character-level discriminant training that optimizes the
ANN at the character level and further optimizes the HMM at the word level. A
method is introduced to carefully select junk examples from the training database to
train the ANN explicitly. Another scheme is called word-level discriminant training
where the ANN is optimized at the word-level using the stochastic gradient-descent

(back-propagation) algorithm.

1.5 Thesis Layout

The thesis is divided into six chapters:

e Chapter 1 describes some background information, the challenges and
applications of the handwriting recognition as well as the objectives and

contents of the thesis.

e Chapter 2 provides literature review on handwriting recognition and
summarizes the achievements of other works in the field of handwriting
recognition. An introduction of the statistical pattern recognition system,

which is the basis of this thesis, is also presented.

e Chapter 3 describes in details the offline handwritten cursive word

recognition system that has been designed. This chapter is separated into
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four main parts, i.e. image preprocessing, segmentation, feature
extraction and recognition, which corresponds to different processing
stages in the handwriting recognition system. The last part of the chapter
discusses the combination of ANN and HMM to perform the recognition.

Chapter 4 explains the training of the hybrid ANN/HMM recognition
system. Two approaches, namely Character-level Discriminant Training
and Word-level Discriminant Training are presented. Both approaches
use popular gradient descent algorithm to optimize the parameters in the

system.

Chapter 5 presents the experiments carried out to evaluate the
performance of the system based on different training approaches and
configurations. Detailed Error Analysis on the wrongly recognized

examples is also presented.

Chapter 6 concludes about the handwriting recognition system and
summarizes what has been achieved in this research. Further works that

could be carried on from this thesis is also suggested.
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bedtween training and test recognition rate, we believe that the performance of the

recognizer can be further improved when more training examples are available.

One interesting experiment that combines recognition results of an offline
recognizer with an online recognizer can yield remarkable improvement on the
recognition performance. This indicates that the feature extraction process of both
systems is incomplete and tend to complement to each other. Further research should
be done to understand those missing features that can help produce better
recognition performance. This interesting finding shall be a motivating factor to the

online handwriting recognition research community.

The handwritten word recognition system implemented in this thesis can be
extended to recognize a phrase or sentence with minimum modifications. The only
extra duty that the sentence recognizer needs to perform is to model the ‘white
space’ between words. Although computational speed is an issue in this
implementation as a sentence recognizer, trie structure or more compact data
structure like Directed Acyclic Word Graph (DAWG) [Lifchitz et al, 2000] can be
implemented to replace current linear structure. Of course, the sentence recognizer
extended from this word recognition system is only a basic one. Further works in the
area of Natural Language Processing (NLP) should be carried out for improvement

on this sentence recognizer.
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