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ABSTRACT 

 

 

 

In the first chapter, entitled “Enhancement of Support Vector Machines for Remote Protein 

Homology Detection and Fold Recognition,” M. Hilmi Muda, Puteh Saad and Razib M. Othman 

present a comprehensive method based on two-layer multiclass classifiers. The first layer is used 

to detect up to superfamily and family in SCOP hierarchy, by using optimized binary SVM 

classification rules directly to ROC-Area. The second layer uses discriminative SVM algorithm 

with a state-of-the-art string kernel based on PSI-BLAST profiles that is used to leverage the 

unlabeled data. It will detect up to fold in SCOP hierarchy. They evaluated the results obtained 

using mean ROC and mean MRFP. Experimental results show that their approaches significantly 

improve the performance of protein remote protein homology detection for all three different 

datasets (SCOP 1.53, 1.67 and 1.73). They achieved 0.03% improvement in term of mean ROC 

in dataset SCOP 1.53, 1.17% in dataset SCOP 1.67 and 0.33% in dataset SCOP 1.73 when 

compared to the results produced by state-of-the-art methods. 

In the second chapter “Hybrid Clustering Support Vector Machines by Incorporating Protein 

Residue Information for Protein Local Structure Prediction,” Rohayanti Hassan, Puteh Saad, and 

Razib M. Othman develop a predictive algorithm named R-HCSVM to predict protein local 

structure that works with following steps. Firstly, pre-process the input information for R-

HCSVM. There are two types of input information needed namely protein residue score and 

protein secondary structure class. ResiduePatchScore information has been introduced as new 

method to pre-process protein residue score by combining protein conservation score that 

conserved rich functional information and protein propensity score that conserved rich secondary 

structural information. Hence, the protein residue score possess strength information that able to 

avoid bias scoring. Secondly, segment protein sequences into nine continuous length of protein 

subsequence. Next step which is highlighted another novel part in their study whereas a hybrid 

clustering SVM is introduced to reduce the training complexity. SOM and K-Means are 

integrated as a clustering algorithm to produce a granular input, while SVM is then used as a 

classifier. Based on the protein sequence datasets obtained from PISCES database, they found 
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that the R-HCSVM performs outstanding result in predicting protein local structure from a given 

protein subsequence compared to other methods.   

In the third chapter “Incorporating Gene Ontology with Conditional-based Clustering to Analyze 

Gene Expression Data,” Shahreen Kasim, Safaai Deris, and Razib M. Othman proposed a 

clustering algorithm named BTreeBicluster. The BTreeBicluster starts with the development of 

GO tree and enriching it with expression similarity from the Sacchromyces genes. From the 

enriched GO tree, the BTreeBicluster algorithm is applied during the clustering process. The 

BTreeBicluster takes subset of conditions of gene expression dataset using discretized data. 

Therefore, the annotation in the GO tree is already determined before the clustering process 

starts which gives major reflect to the output clusters. Their results of this study have shown that 

the BTreeBicluster produces better consistency of the annotation.  

In the final chapter “Improving Protein-Protein Interaction Prediction by a False Positive 

Filtration Process,” Rosfuzah Roslan and Razib M. Othman aimed to enhance the overlap 

between computational predictions and experimental results with the effort to partially remove 

the false positive pairs from the computational predicted PPI datasets. The usage of protein 

function prediction based on shared interacting domain patterns named PFP() for the purpose of 

aiding the Gene Ontology Annotation (GOA) is introduced in their study. They used GOA and 

PFP() as agents in the filtration process to reduce the false positive in computationally predicted 

PPI pairs. The functions predicted by PFP() which are in Gene Ontology (GO) IDs that were 

extracted from cross-species PPI data were used to assign novel functional annotations for the 

uncharacterized proteins and also as additional functions for those that are already characterized 

by GO. As known by them, GOA is an ongoing process and protein normally executes a variety 

of functions in different processes, so with the implementation of PFP(), they have increased the 

chances of finding matching function annotation for the first rule in the filtration process as 

much as 20%. Their results after the filtration process showed that huge sums of false positive 

pairs were removed from the predicted datasets. They used signal-to-noise ratio as a measure of 

improvement made by applying the proposed filtration process. While strength values were used 

to evaluate the applicability of the whole proposed computational framework to all the different 

computational PPI prediction methods. 
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ABSTRACT 

Remote protein homology detection and fold recognition refers to 

detection of structural homology in proteins where there are small 

or no similarity in the sequence. The issues arise on how to 

accurately classify remote protein homology and fold recognition 

in the context of Structural Classification of Proteins (SCOP) 

hierarchy database and incorporate biological knowledge at the 

same time. Homology-based methods have been developed to 

detect protein structural classes from protein primary sequence 

information which can be divided into three types: discriminative 

classifiers, generative models for protein families and pairwise 

sequence comparisons. We present a comprehensive method 

based on two-layer multiclass classifiers. The first layer is used to 

detect up to superfamily and family in SCOP hierarchy, by using 

optimized binary SVM classification rules directly to ROC-Area. 

The second layer uses discriminative SVM algorithm with a state-

of-the-art string kernel based on PSI-BLAST profiles that is used 

to leverage the unlabeled data. It will detect up to fold in SCOP 

hierarchy. We evaluated the results obtained using mean ROC and 

mean MRFP. Experimental results show that our approaches 

significantly improve the performance of protein remote protein 

homology detection for all three different datasets (SCOP 1.53, 

1.67 and 1.73). We achieved 0.03% improvement in term of mean 

ROC in dataset SCOP 1.53, 1.17% in dataset SCOP 1.67 and 

0.33% in dataset SCOP 1.73 when compared to the results 

produced by state-of-the-art methods. 

Keywords 

Fold recognition; Multiclass classifiers; Remote protein homology 

detection; Support vector machines; Two-layer classifiers. 

1. INTRODUCTION 
Advances in molecular biology in past years like large-scale 

sequencing and the human genome project, have yielded an 

unprecedented amount of new protein sequences. The resulting 

sequences describe a protein in terms of the amino acids that 

constitute it and no structural or functional protein information is 

available at this stage. To a degree, this information can be 

inferred by finding a relationship (or homology) between new 

sequences and proteins for which structural properties are already 

known. Traditional laboratory methods of protein homology 

detection depend on lengthy and expensive procedures like x-ray 

crystallography and nuclear magnetic resonance (NMR). Since 

using these procedures is unpractical for the amount of data 

available, researchers are increasingly relying on computational 

techniques to automate the process. Accurately detecting 

homologs at low levels of sequence similarity (remote protein 

homology detection) still remains a challenging ordeal to 

biologists. Remote protein homology detection refers to detection 

of structural homology in proteins where there are small or no 

similarity in the sequence. To detect protein structural classes 

from protein primary sequence information, homology-based 

methods have been developed, which can be divided into three 

types: discriminative classifiers [2,10,15,16,25], generative 

models for protein families [13,21] and pairwise sequence 

comparisons [1]. Discriminative classifiers show superior 

performance when compared to other methods [16,23]. 

Support Vector Machines (SVM) and Neural Networks (NN) are 

two popular discriminative methods. Recent studies showed that 

SVM has faster training speed, more accurate and efficient 

compared to NN [4]. This classifier is uniquely different from 

generative models and pairwise sequence comparisons because it 

removes the amino acid sequence from the prediction step. The 

protein sequences are transformed into feature vectors and then 

are used to train an SVM to identify protein families. Feature 

vectors give the benefit of mapping the sequences into a 

multivariate representation and additionally do not depend on a 

single pairwise score.  

The performance of remote protein homology detection has been 

further improved through the use of methods that explicitly model 

the differences between the various protein families (classes) and 

build discriminative models. In particular, a number of different 

methods have been developed that build these discriminative 

models based on SVM and have shown, provided there are 

sufficient data for training, to produce results that are in general 

superior to those produced by pairwise sequence comparisons or 

methods based on generative models [2,10,15,16,25], [15,7].  

Motivated by positive results from Rangwala and Karypis [24] 

and Ie et al. [9], we further study the problem of building SVM 

based multi-class classification models for remote protein 

homology detection in the context of the Structural Classification 

of Proteins (SCOP) [21] protein classification scheme. We present 

a comprehensive method based on two layers multiclass 

classifiers. The first layer can detect up to superfamily and family 

in SCOP hierarchy by using optimized binary SVM classification 

rules directly to ROC-Area. The second layer of multiclass 

classifier uses discriminative SVM algorithm with a state-of-the-

art string kernel based on PSI-BLAST profiles to leverage 

unlabeled data. This will detect up to fold in SCOP hierarchy. 
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Details are explained in the methods section. We evaluated our 

result using mean ROC and mean RFP. Experimental results show 

that our approaches significantly improve the performance of 

protein remote protein homology detection. 

2. METHODS 
In this section, we will briefly explain our proposed method 

named SVM-2L to build two layers multiclass classifiers. Based 

on idea of Lorena and Carvalho [19] we tuned SVM’s parameters 

in our first layer multiclass classifier to influence their 

performance. They are the value of the regularization constant, C 

and kernel type, with its respective parameter. With the 

combination of the second layer multiclass classifier which uses 

the SVM with improved kernel based on PSI-BLAST profiles to 

leverage unlabeled data, it is expected to improve performance of 

remote protein homology detection and fold recognition by adding 

elements without overfitting. The overall steps of the SVM-2L is 

as shown in Figure 1. 

 

 

 

2.1 Experimental Datasets 
We evaluated the performance of our method using three datasets. 

The first dataset, SCOP version 1.53, we emulate the benchmark 

procedure presented by Liao and Noble [18]. The data consist of 

4352 sequences extracted from the Astral [4] database grouped 

into families and superfamilies. For each family, the protein 

domains within the family are considered positive test examples, 

and protein domains within the superfamily but outside the family 

are considered positive training examples. This yields 54 families 

with at least 10 positive training examples and five positive test 

examples. Negative examples for the family are chosen from 

outside of the positive sequences fold, and were randomly split 

into training and test sets in the same ratio as the positive 

example. 

Second dataset are derived from SCOP version 1.67 created by 

Rangwala and Karypis [25]. Datasets fd25 were designed to 

evaluate the performance of fold recognition and were derived by 

taking only the domains with less than 25% pairwise sequence 

identity, respectively. This set of domains was further reduced by 

keeping only the domains belonging to folds that contained at 

least three superfamilies and at least three of these superfamilies 

contained more than three domains. For fd25, the resulting dataset 

contained 1294 domains organized in 265 folds, 155 superfamilies 

and 46 families. 

We also tested our method on the latest version dataset from 

SCOP version 1.73. We follow the filtering step by Rangwala and 

Karypis [25] to select the dataset, which results 1597 domains 

organized in 28 folds and 167 superfamilies. We derived the 

dataset by taking only the domains with less than 95% and 40% 

pairwise sequence identity according to Astral database. This set 

of domain was further reduced by keeping only the domains 

belonging to fold that contained at least 3 superfamilies, and one 

of these superfamilies contained multiple families.  

Dataset SCOP 1.53 contains superfamilies and families only, 

while datasets SCOP 1.67 and dataset SCOP 1.73 contains up to 

folds. 

2.2 Scaling 
Scaling the datasets before applying SVM is essential. The main 

advantage is to avoid attribute in greater numeric ranges dominate 

those in smaller numeric ranges. Other than that, it is also used to 

avoid numerical difficulties during the calculations. Because 

kernel values usually depends on the inner products of feature 

vectors, e.g. the linear kernel and the polynomial kernel in which 

large attribute values might result in numerical problems. We 

linearly scale each attribute to the range [-1, 1] [19]. Testing and 

training datasets must obviously be scaled using the same method. 

Suppose to scale a certain attribute of training dataset from 

,
min max

y y[ ] to ' , '
min max

y y[ ] , where y is the raw attribute value of 

training or testing datasets. The scaled value is obtained from 

Zheng et al. [34] as follows 

' '
max min' ' ( )

min min
max min

y y
y y y y

y y

−
= + −

−
. (1) 

2.3 First Layer Classifiers 
The various one-versus-all binary classifiers were constructed 

using SVM. One of the implementations is SVMstruct [14] that 

train conventional linear classification SVM optimizing error rate 

in time that is linear in the size of the training data through an 

alternative, but equivalent formulation of the training problem. It 

implements the alternative structural formulation of the SVM 

optimization problem for conventional binary classification with 

error rate and ordinal regression. Moreover, SVMstruct used small 

memory (15500 Kilobytes) resource when training large set of 

data, which make it more efficient [21]. We used the formulation 

of the SVM optimization problem by Joachims [20] that provides 

the basis of our algorithm, both for classification and for ordinal 

regression SVM.  

 Datasets 

SCOP 1.53 SCOP 1.67 

First layer classifier 

- one-versus-all binary classifiers 

-265 folds 

-155 superfamilies 

- 46 families  

 

-28 folds 

-167 superfamilies 

-143 families 

 

-54 families 

 

Second layer classifier 

- fold recognition codes 

Prediction and evaluation 
- mean ROC and mean MRFP 

Detection of families  

and superfamilies 

 

Detection of families,  

superfamilies and fold 

 

SCOP 1.73 

Scaling 

Figure 1. Overall steps to build the classifier. 
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2.3.1 Classification 

For a given training dataset ( , ),...,( , )
1 1

x y x y
n n

with n length, Nx
i
∈ℜ

where Nℜ a radical power of large of features, N is the large 

number of features, y is stated as { 1, 1}y
i
∈ − +  training a binary 

classification SVM means solving the optimization problem [13]. 

For simplicity of the theoretical results (Eq. 2), we focus on 

classification rules ( ) sin( )Th x w x b
w

= + with 0b= , where w is the 

empty stack of constraints, T is the iterations and b is regression 

loss. A non-zero b can easily be modeled by adding an additional 

feature of constant value to each x.  

1
min

2, 0 1

nCT
w w

inw ii

+ ξ∑
ξ ≥ =

, (2)  

where {1,..., }: ( ) 1Ti n y w x
i i i

∀ ∈ ≥ −ξ . 

We adopted the formulation of [30], [33] where sum of linear 

slack variables, 
i

Σξ
 
is divided by n length to better capture how 

trade-off between training error and margin, C, scales with the 

training set size. The Eq. 3 in the following considers a different 

optimization problem, which was proposed for training SVM to 

predict structured outputs as been done by Tsochantaridis et al. 

[30]. 
1

min
2,

Tw w C
w

+ ξ
ξ≥0

,  (3)

 
where

 

1 1
{0,1} :

1 1

n n
n Tc w c y x c

i i i in ni i

∀ ∈ ≥ −ξ∑ ∑
= =

. 

While Eq. 3 has 2
n  constraints, one of each possible vector 

c=(c ,...,c )1 n  ( , ),...,( , )
1 1

x y x y
n n

, it only has one slack variable ξ  that 

is shared across all the constraints. Each constraint in this 

equation corresponds to the sum of a subset of constraints from 

Eq. 1, and the 
i

c  select the subset. 
1

1

n
c
in i

∑
=

can be seen as the 

maximum fraction of training errors possible over each subset and 

ξ
 
is an upper bound on the fraction of training errors made by hw

.  

2.3.2 Ordinal Regression 

In an example ( , )x yi i , the label 
i

y
 

indicates a rank instead of a 

nominal class in ordinal regression. We let {1,..., }y Z
i
∈  with Z 

length, so that the values 1,...,Z are related on an ordinal scale, 

without loss of generality. The goal is to learn a function ( )h x  so 

that for many pair of examples ,x y
i i

and ,x y
j j

it holds that  

( ) ( )h x h x y y
i j i j

> ⇔ > . (4) 

Given a training dataset ( , ),...,( , )
1 1

x y x y
n n

 with Nx
i
∈ℜ and 

{( , ): }P i j y y
i j

= > , formulate the ordinal regression SVM (Eq. 5). 

Denote with P the set of pairs ( , )i j  for which example i has a 

higher rank than example j, i.e. {( , ): }P i j y y
i j

= > , and let | |m P= .  

1
min

2, 0 ( , )

CTw w
ijmw i j Pij

+ ξ∑
ξ ≥ ∈

,  (5) 

where
 

( , ) :( ) ( ) 1T T
i j P w x w x

i j ij
∀ ∈ ≥ + −ξ . 

These formulations find a large margin linear function ( )h x , which 

minimizes the number of pairs of training examples that are 

swapped with respect to their desired order. As in other 

classification, Eq. 5 is a convex quadratic program. Ordinal 

regression problems have applications in learning retrieval 

functions for search engines [7, 27, 29]. Furthermore, if the labels 

y takes only two values, Eq. 5 optimizes the ROC-Area of the 

classification rule. 

2.4 Second Layer Classifiers 
We used profile-based string kernel SVM that are trained to 

perform binary classifications on the fold and superfamily levels 

of SCOP as a base for our multi-class protein classifiers. The 

profile kernel defined as a function that is used to measure the 

similarity of two protein sequence profiles based on their 

representation in a high-dimensional vector space indexed by all 

k-mers (k-length subsequences of amino acids).  

Binary one-vs-the-rest SVM classifiers that are trained to 

recognize individual structural classes yield prediction scores that 

are incomparable, so that standard ”one-vs-all” classification 

performs sub optimally when the number of classes is very large, 

as in this case. We used fold recognition codes that learn relative 

weights between one-vs-the-rest classifiers and further, encode 

information about the protein structural hierarchy for multi-class 

prediction, as to deal with this challenging problem. In large scale 

benchmark results based on the SCOP database, our method 

significantly improves on the prediction accuracy of both a 

baseline use of PSI-BLAST and the standard one-vs-all method.  

The use of profile-based string kernels is an example of semi-

supervised learning, since unlabeled data in the form of a large 

sequence database is used in the discrimination problem. 

Moreover, profile kernel values can be efficiently computed in 

time that scales linearly with input sequence length. Equipped 

with such a kernel mapping, one can use SVM to perform binary 

protein classification on the fold level and superfamily level. 

2.4.1 Fold Recognition Code 
Suppose that we have trained q fold detectors. Then, for a protein 

sequence x, we form a prediction discriminant vector

( ) ( ( ),..., ( ))
1

f x f x f x
q

=
r

. The simple one-versus-all prediction rule for 

multi-class fold prediction is ˆ arg max ( )y f x
j j

= . The problem with 

this prediction rule is that the discriminant values produced by the 

different SVM classifiers are not necessarily comparable. We 

used an approach by learning the optimal weighting for a set of 

classifiers, scaling their discriminant values and making them 

more readily comparable. To fit the training datasets, we adapt the 

coding system by learning a weighting of the code elements (or 

classifiers). The final multi-class prediction rule is 

ˆ arg max ( * ( )).y W f x K
j j

=
r

, where * denotes the component-wise 

multiplication between vectors and W is a weight vector. 

2.5 Evaluation Measures 
To assess the performance of a remote protein homology 

detection method, we consider two metrics: the Receiver 

Operating Characteristics (ROC) and median Rate of False 

Positives (RFP). ROC is a sophisticated technique that is used to 

evaluate the results of a prediction, for visualizing, organizing and 

selecting classifiers based on their performance. The 

performances in our method are measured on how precise the 

detection and classification of the sequence to its correct group. 
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Table 1:  Mean ROC (a) and mean MRFP (b) for different  

methods for family and superfamilies using SCOP 1.53 dataset. 

(a) 

Method Family Superfamily Overall 

SVM-2L 0.9998 0.9976 0.9345 

SVM Struct 0.8987 0.9521 0.8543 

SVM-Fold 0.9458 0.9424 0.9342 

SVM-Pairwise 0.4380 0.4380 

SVM-Fisher 0.4370 0.4370 

SVM-HMMSTR 0.6400 0.6400 

SVM-Ngram-LSA 0.8929 0.8992 0.9132 

SVM-Motif-LSA 0.9995 0.9897 0.9335 

SVM-Pattern-LSA 0.9964 0.9925 0.9264 

(b) 

Method Family Superfamily Overall 

SVM-2L 0.0012 0.0019 0.0015 

SVM Struct 0.0060 0.0002 0.0031 

SVM-Fold 0.0018 0.0008 0.0013 

SVM-Fisher 0.0963 0.0096 0.0486 

SVM-Pairwise 0.1173 0.1173 

SVM-HMMSTR 0.0380 0.0380 

SVM-Ngram-LSA 0.1017 0.1017 

SVM-Motif-LSA 0.9953 0.9953 

SVM-Pattern-LSA 0.0703 0.0703 

 

Table 2:  Mean ROC (a) and mean MRFP (b) for different  

methods for family and superfamilies using SCOP 1.67 dataset. 

(a) 

Method Family Superfamily Fold Overall 

SVM-2L 0.9987 0.9991 0.9876 0.9951 

SVM Struct 0.9458 0.9867 0.9753 0.9692 

SVM-Fold 0.9532 0.9986 0.9986 0.9834 

SVM-Ngram-LSA 0.9038 0.9645 0.9856 0.9513 

SVM-Motif-LSA 0.8973 0.9979 0.9884 0.9612 

SVM-Pattern-LSA 0.9234 0.9753 0.9981 0.9656 

(b) 

Method Family Superfamily Fold Overall 

SVM-2L 0.00056 0.00087 0.00065 0.00208 

SVM Struct 0.00063 0.00065 0.00074 0.00202 

SVM-Fold 0.00087 0.00045 0.00053 0.00185 

SVM-Ngram-LSA 0.00722 0.00056 0.00062 0.00840 

SVM-Motif-LSA 0.00066 0.00076 0.00034 0.00176 

SVM-Pattern-LSA 0.00099 0.00063 0.00024 0.00186 

 

The ROC curve is obtained by plotting the True Positive Rate 

(TPR) against the False Positive Rate (FPR), for the entire range 

of possible cutoff values, c. On this plot, the line through the 

origin with slope 1 would correspond to the performance of a 

similarity detection based on a random similarity score. A method 

which detects SCOP similarity better than randomly must show a 

ROC curve situated above this diagonal. 

MRFP is a RFP median value of each protein sequences grouped 

in several families. Mean MRFP is MRFP average value for entire 

set of protein sequences families. The MRFP is bounded by 0 and 

1 and is used to measure the error rate of the prediction under the 

score threshold where half of the true positives can be detected. 

These measures are used for evaluation cited in [12, 18].  

3. Results and Discussion  
As discussed in the introduction section, our research in this paper 

is motivated by the idea and work from Rangwala and Karypis 

[26] and Ie et al. [10], by which they solve the classification 

problem in the context of remote homology detection and fold 

recognition. Based on their work, we presented a two-layer 

multiclass classifiers approach called SVM-2L. We compare our  

method with other eight different methods: SVM Struct [30], 

SVM-Fold [22], SVM-Pairwise [19], SVM-Fisher [11], SVM-

HMMSTR [34], SVM-Ngram-LSA [6], SVM-Pattern-LSA [6] 

and SVM-Motif-LSA [31] that already has been used to detect 

remote protein homology. The performance of various schemes in 

term of mean ROC and mean RFP is shown in Table 1(a) and 

Table 1(b) respectively for remote protein homology detection 

using standard benchmark dataset, SCOP 1.53. We split the 

results to the group of family and superfamily. The result of 

SVM-Pairwise, SVM-Fisher and SVM-HMMSTR are retrieved 

from [34]. We use publicly available SVM-Motif-LSA to search 

sequence databases for matches to motifs. Based on our results on 

mean ROC in Table 1, it shows that our proposed method 

significantly outperforms existing state-of-the-art methods. 

Comparison of results by group of family and group of 

superfamily also clearly shows that our proposed methods are 

really efficient. This scenario is influenced by the use of large 

margin SVM classifier and its discriminative approach that we 

implemented in our framework. We find out that some of these 

results agree with previous assessments. For example, the relative 

performance of SVM-Fisher agrees with the results given by 

Jaakkola et al. [32]. Although in that work the difference was 

more pronounced and relative performance of SVM-Pairwise 

results given in [8]. 

We achieve a significant result of our proposed method on dataset 

SCOP 1.67, which is specially created for this research to detect 

fold. Our result as shown in Table 2 shows higher mean ROC 

compared with other state-of-the-art methods. Figure 2 (a) and 

Figure 2 (b) illustrate the ROC and RFP curve. Using our 

proposed method, we are able to improve about 1.17% from the 

current result. This happened as the effect of tuned the SVM’s 

parameters, which is the value of the regularization constant, C in 

our first layer multiclass classifier to prevent overfitting. We only 

compare our proposed method with five methods, which are SVM 

Struct, SVM-Fold, SVM-Ngram-LSA, SVM-Motif-LSA and 

SVM-Pattern-LSA. This is because the source code for SVM-

Pairwise, SVM-Fisher and SVM-HMMSTR are no longer 

available and we manage to get only the result that those methods 

produced. 
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(a) 

 
(b) 

 
Figure 2. Curve of Mean ROC (a) and mean MRFP (b) for 

dataset SCOP1.67. 

(a) 

 

(b) 

 
Figure 3. Curve of Mean ROC (a) and mean MRFP (b) 

for dataset SCOP1.73. 

Table 3:  Mean ROC (a) and mean MRFP (b) for different 

methods for family and superfamilies using SCOP 1.73 dataset. 

(a) 

Method Family Superfamily Fold Overall 

SVM-2L 0.9118 0.8329 0.8295 0.9019 

SVM Struct 0.8897 0.8495 0.8390 0.8871 

SVM-Fold 0.8952 0.8952 0.9363 0.8295 

SVM-Ngram-LSA 0.8746 0.8871 0.8615 0.8481 

SVM-Motif-LSA 0.8592 0.8826 0.8273 0.8733 

SVM-Pattern-LSA 0.8794 0.8979 0.8798 0.8986 

(b) 

Method Family Superfamily Fold Overall 

SVM-2L 0.0386 0.0563 0.1443 0.0238 

SVM Struct 0.0342 0.1724 0.1366 0.0304 

SVM-Fold 0.1136 0.0967 0.0945 0.0303 

SVM-Ngram-LSA 0.1390 0.1764 0.1157 0.0386 

SVM-Motif-LSA 0.1411 0.1515 0.2075 0.0495 

SVM-Pattern-LSA 0.1157 0.1600 0.4814 0.0437 

 

For dataset SCOP 1.73, we achieve improvement of 0.14% which 

is depicted in Table 3(a) and Table 3(b). The mean ROC of our 

methods improves from state-of-the-art methods as depicted in 

Figure 3(a) and Figure 3(b). Although, there is only a slight 

improvement, however our proposed method demonstrates a 

stable performance. This is the impact of using the fold detection 

codes which encodes information about the protein structural 

hierarchy for multi-class detection and the repetition of cross 

validation process in the first layer method. Meanwhile, in mean 

RFP result, our proposed method contributes 0.0072% better 

when compared to results produced by SVM Struct. When it is 

tested on dataset SCOP 1.73, it produces a lower error rate, as 

shown in good result in median rate of false positive in Table 

3(b).  

From stability of the curve of mean ROC and mean RFP in Figure 

2 and Figure 3, we can conclude that our proposed method 

produced a stable result for all datasets. Even though for some 

point the curves show a low result, however it produces a positive 

effect to the result. Other than that, our method is consistent for all 

datasets.  In summary, overall result from our method shows more 

than 0.9 in the term of mean ROC for all three different 

experimental datasets. We achieved 0.03% improvements in 

dataset SCOP 1.53, 1.17% in dataset SCOP 1.67 and 0.33% in 

dataset SCOP 1.73 when compared to the result produced by 

state-of-the-art methods. 

4. Conclusion 
This paper demonstrate that the performance of remote protein 

homology detection and fold recognition has been further 

improved through the use of methods that explicitly model the 

differences between the various protein families (classes) and 

build discriminative models. We also presented a comprehensive 

method for detection of remote protein and fold recognition based 

on two layers multiclass classifiers. Our first layer is only capable 

to detect family and superfamily in SCOP hierarchy by using 

optimizes binary SVM classification rules directly to ROC-Area. 

The second layer of multiclass classifier that is capable to detect 

up to fold in SCOP hierarchy uses discriminative SVM algorithm 
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with a state-of-the-art string kernel based on PSI-BLAST profiles 

to leverage unlabeled data. A number of different methods have 

been developed that build these discriminative models based on 

SVM and have shown, provided there are sufficient data for 

training, to produce results that are in general superior to those 

produced by pairwise sequence comparisons or methods based on 

generative models. The result produced by our method also shows 

good improvements in all three different datasets. In the future, 

we intend to enhance our method by using the realignment 

approach that will correct misalignments between a sequence and 

the rest of profile. Other than that, implementation of other kernel 

functions in SVM classifiers is hypothesized to improve the 

performance of remote protein homology detection and fold 

recognition, since different kernel function corresponds to 

different input.  
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ABSTRACT 

Protein local structure prediction can be described as prediction of 

protein secondary structure from protein subsequence. This 

protein subsequence or also known as protein local structure 

covers fragments of the protein sequence. In fact, it is easier to 

identify the sequence-to-secondary structure relationship using 

protein subsequence rather than use the whole protein sequence. 

Further, this relationship can be used to infer new protein fold, 

protein function and detect protein remote homolog. Due to its 

significance, a predictive algorithm named R-HCSVM is 

developed to predict protein local structure that works with 

following steps. Firstly, pre-process the input information for R-

HCSVM. There are two types of input information needed namely 

protein residue score and protein secondary structure class. 

ResiduePatchScore information has been introduced as new 

method to pre-process protein residue score by combining protein 

conservation score that conserved rich functional information and 

protein propensity score that conserved rich secondary structural 

information. Hence, the protein residue score possess strength 

information that able to avoid bias scoring. Secondly, segment 

protein sequences into nine continuous length of protein 

subsequence. Next step which is highlighted another novel part in 

this study whereas a hybrid clustering SVM is introduced to 

reduce the training complexity. SOM and K-Means are integrated 

as a clustering algorithm to produce a granular input, while SVM 

is then used as a classifier. Based on the protein sequence datasets 

obtained from PISCES database, it is found that the R-HCSVM 

performs outstanding result in predicting protein local structure 

from a given protein subsequence compared to other methods.   

Keywords 

Protein local structure prediction, protein secondary structure, 

protein residue score, SOM K-Means, Support Vector Machines. 

1. INTRODUCTION 
Prediction of protein secondary structure using protein local 

structure has shown promising improvements [3], [41], [42]. 

Protein local structure primarily made up from segments of amino 

acid. In another words, protein local structures are also called as 

protein subsequence, protein fragments by Chen et al. [4], protein 

segments by Zhong et al. [41] and Zhong et al. [42] or protein 

local structural motifs by Karchin et al. [15] and Karchin et al. 

[16]. This protein local structure coded all information of native 

structure of a protein such as hydrophobicity, hydrophilicity, 

electrostatic and hydrogen bonds interaction. Furthermore, 

information or called knowledge of this protein local structure can 

be used to infer how the protein interacts with other molecules, 

predict its structure as well as function. In fact, this knowledge 

facilitates to drug design. For example, Hu and Hu [12] aimed at 

designing small-molecule compounds that restore the normal 

function of p53-MDM2 (two protein targets in cancer research) 

and consequently reduce or eliminated certain forms of specific 

cancer. 

Indeed, supervised machine learning based method for protein 

local structure prediction have shown strong generalization 

capability in handling nonlinear classification such as works done 

using Support Vector Machine (SVM) [18], Neural Network (NN) 

[21] and Hidden Markov Model (HMM) [23]. Nevertheless, it is 

not favorable for large-scale datasets due to the convex quadratic 

programming property which is NP-complete in the worst case.  

As a consequence, the training process will become decelerate. 

Several techniques have been proposed in order to solve this 

training complexity problem, for instance including chunking 

method [34], osuna decomposition method [26] and sequential 

minimal optimization method [29]. However, these techniques do 

not scale well of the training datasets. In related work, several 

techniques including random selection [2], bagging [37] and 

clustering analysis [35] are used as dataset selection to reduce the 

number of training datasets in order to accelerate the training 

process. Yet, the performance of training process is greatly 

depends on training datasets selection that may cause significance 

datasets are being overlooked. As a result, by decomposing a 

large-scale datasets into series of smaller datasets using clustering 

algorithm [19], [23], the training complexity can be reduced 

without overlook the significance dataset. 

2. MOTIVATION 
Determination of protein local structure by experimental methods 

such as X-ray crystallography, Nuclear Magnetic Resonance 

(NMR) and electron microscopy are tedious and expensive 

process such as done by Pauling et al. [27] who discovered H 

structure and Pauling and Corey [28] who discovered C structure. 

In fact, this method often involves difficulties inherent in protein 

synthesis, purification and crystallization which resulting to 

inaccurate assignment of protein residue to the corresponding 

secondary structural class. Consequently, many wet-lab methods 

have been developed by researcher and biologist to predict protein 
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local structure accurately such as works done by Levitt and Chotia 

[20] who first proposed to classify thirty one globular proteins 

into four structural classes. In 1990’s, Liu and Chou [22] 

improved the definitions of structural classes by increasing the 

size of associated protein regions. In another related works, Wu 

and Kabat [39], Shenkin et al. [36] and Karlin and Brocchieri [17] 

have came up with varies method to quantify the residue 

conservation score in order to determine protein local structure 

accurately. However, these wet-lab methods needed a long time to 

execute all experiments and cost consuming. 

Difficulties of determining protein local structures experimentally 

motivates researcher to come up with computational method. 

Machine learning algorithm is another dimension of 

computational method to predict protein local structure. On one 

hand, the superior of this method is depend on the information is 

being supplied and learned. Basically, there are two types of 

information are needed for this method to execute. One is known 

as feature vector and another one is known as feature class. 

Feature vector in a form of numerical value is represented by 

protein residue score. Meanwhile, feature class in a form of 

nominal value is represented by protein secondary structure class. 

A superior method is desired to pre-process these two features in 

order to ensure they are reliable and possess strong information. 

For instance, in order to quantify the protein residue score, it has 

to avoid from bias scoring as a result of sequence redundancy 

without losing the important evolutionary and structural 

information. Protein residue score can be quantified using 

propensity score that based on the proportion of predominant 

secondary structure such as done in Levitt and Chotia [20], Chou 

and Fasman [6] and Constantini et al. [7]. Recently, most protein 

residue score is quantified through Multiple Sequence Alignment 

(MSA) process that based on its evolutionary information which 

is more conserved functional information. This type of protein 

residue score also known as protein conservation score and 

example works such as done by Sander and Scheneider [32], 

Mirny and Shakhnovich [24] and Goldenberg et al. [9]. 

Recently, progress has been made in protein local structure 

prediction method in order to address several issues. Sander et al. 

[33] proposed two types of discriminative models for protein local 

structure prediction which are hybrid K-Means with SVM and 

hybrid K-Means with Random Forest (RF) in order to reduce the 

training complexity. Nevertheless, the proposed hybrid K-Means 

with RF may decelerate the training process as a result of 

randomly sampling the training dataset. Furthermore, the 

proposed hybrid K-Means with SVM which also has been 

proposed by Zhong et al. [42], suffered from poor initialization 

method to form a quality cluster.  

 

 

Figure 1. The proposed computational framework of R-HCSVM.
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In fact, they adopted profile score from HSSP [32] database that 

only emphasized more on functional information to represent the 

protein residue score. On the other hand, Chen et al. [4] has 

proposed HYPLOSP to predict the local structure that based on 

Neural Network algorithm. Yet, they introduced high-scoring 

segment pairs for protein residue score that conserved more 

homology information rather than secondary structure 

information. Therefore, this study proposes a new algorithm to 

predict local structure named, R-HCSVM as shown in Figure 1. 

This R-HCSVM consists of two major components to (1) increase 

the strength of protein residue score and (2) reduce the training 

complexity. The R-HCSVM begins by determining the protein 

residue score using the first component named as 

ResiduePatchScore information. This ResiduePatchScore 

information ables to increase the strength information of protein 

residue score by combining protein conservation score that 

conserved rich functional information and protein propensity 

score that highly conserved secondary structure information. 

Subsequently, each of the protein sequence will be sliced into 

window segment to become feature vectors using sliding window 

method which has been implemented in Zhong et al. [42]. Next, 

DSSP method which was proposed by Kabsch and Sander [14] is 

used to assign secondary structure class to each protein residues. 

Besides, this study proposes granular SVM classification named 

as HCSVM in order to reduce the training complexity of 

predictive algorithm. Due to the large amount of protein 

subsequences being generated, Self-Organizing Map (SOM) is 

hybridized with K-Means to produce the granular input 

intelligently for SVM. This granular input allows SVM 

classification done in a series of tractable and simpler 

computationally problems. The detail explanation of the R-

HCSVM can be found in the next section. Meanwhile, Receiver 

Operating Curve (ROC) and Segment Overlap (SOV) accuracy 

are used as metrics to evaluate the performance of the R-HCSVM 

in comparison to other similar algorithms. Experimental results 

show that R-HCSVM significantly improves the performance of 

protein local structure prediction. 

The remainder of the paper consists of the detailed explanation of 

R-HCSVM (Section 2), description of the computational 

environment and data used in this study (Section 3), the results 

and discussion of experiments (Section 4), and the conclusions 

(Section 5). 

3. METHODOLOGY 
In this study, the proposed protein local structure prediction 

algorithm works as follows: (i) pre-process protein residue score 

information, (ii) pre-process protein secondary structure 

information, (iii) segmenting protein residue, (iv) classify protein 

subsequence for each granular input using SVM and (v) evaluate 

R-HCSVM using ROC and SOV.  

3.1 Materials and Implementation 
The dataset used in this study includes 2,000 protein sequences 

obtained from the PISCES [38] database. This dataset is the 

training dataset which is used to model the R-HCSVM. This 

protein database is bigger and more advanced than PDB-select-25 

[11] that was used by Han and Baker [10]. Since PISCES uses 

PSI-BLAST [1] alignments to distinguish many underlying 

patterns below 40% identity, PISCES produces a more rigorous 

non-homologous database than PDB-select-25. In PISCES, the 

local alignment will not incorporate two proteins that share a 

common domain with sequence identity above the given 

threshold. This feature helps to overcome problems of 

PDBREPRDB [25] database which uses global alignment that 

may generate useless sequence similarities. Meanwhile, to avoid 

the bias testing dataset, the k-fold cross validation is implemented. 

In this study, kf=10 is applied. Besides, one of the vectors used in 

this study is extracted from protein residue conservation score in 

Consurf server database which is available at 

http://consurfdb.tau.ac.il. Each of protein residue conservation 

score in alignment is calculated using Rate4Site algorithm. The 

advantages of this score as a result of implementation of 

phylogenetic relations between the aligned proteins and the 

stochastic nature of the evolutionary process explicitly. In 

addition, Rate4Site algorithm [30] assigns a conservation level for 

each position in MSA using an empirical Bayesian Inference. 

Whereby, the clustering process has been executed for six times to 

obtain the stable output clusters. 

3.2 Pre-process Protein Residue Score 

Information 
As mentioned earlier, there are two types of protein residue score. 

One is determined by the propensity score based on the frequency 

occurrence of protein secondary structure. This score is 

outstanding in predicting protein secondary structure as a result of 

high structural conserved secondary structure information. To 

date, protein residue score is mostly determined based on its 

evolutionary history which is more functional conserved and 

known as protein conservation score. Besides, the advantage of 

this score is based on the superior Rate4Site algorithm that 

implements explicitly the phylogenetic relations between the 

aligned proteins and the stochastic nature of the evolutionary 

process through multiple sequence alignment in order to inherit 

highly conserved functional information and able to cater 

sequence redundancy. Therefore, this study is inspired to couple 

both protein residue score information named as 

ResiduePatchScore information in order to increase the strength of 

structural and functional conserved information. Further, the 

inaccurate prediction as consequence of bias protein residue score 

can be avoided. Four scores are employed to each protein residue. 

One is obtained from Consurf server database which is developed 

by Goldenberg et al. [9]. Meanwhile, the rest three scores are 

calculated based on its secondary structure propensity ratio in the 

whole dataset using Eq. 1. These secondary structure propensity 

scores clarify the degree of predominant role of H, E and C for 

each residue. Therefore, they were adopted in order to increase the 

strength of specified secondary structure information for each 

residue. 

( / )

( / )

ab a
ab

b T

n n
P

N N
= , (1) 

here, nab is the number of residues of type a in structure of type b, 

na is the total number of residues of type a, Nb is the total number 

of residues in structure of type b and NT is the total number of 

residues in the whole dataset. 

3.3 Pre-process Protein Secondary Structure 

Class 
There are several approaches of secondary structure assignment 

available such as DSSP [14], DEFINE [8] and STRIDE [31]. 

DSSP is selected in this study as it is the most widely used 

secondary structure definition program in recent studies. 

Basically, DSSP is able to recognize eight types of secondary 

structure depending on the pattern of hydrogen bonds that are H 
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(α-helix), G (310-helix), I (π-helix), E (β-strand), B (isolated β-

bridge), T (turn), S (bend) and the rest. However, in this study 

DSSP assigns each of residues using three larger classes of 

secondary structure namely H for helices, E for sheets and C for 

coils. The encoding secondary structure class is based on the 

following assignment: (i) H, G and I to H, (ii) E to E and (iii) the 

rest states to C. 

3.4 Segmenting Protein Residue 
Sliding window method is used to generate protein subsequence 

from 2,000 protein sequences. Each of protein subsequence 

composes of nine continuous residues. Therefore, it will generate 

up to 50,000 protein subsequences. In addition, many local 

structure prediction method use protein subsequence rather than 

the whole sequence itself during the prediction process. 

According to Chen et al. [5], the formation of helical structure can 

be affected by residues that are up to 9 positions away in the 

sequence, while the formation of coils and strands can be affected 

by residues that are up to 3 and 6 positions away respectively. The 

shorter formation structure in protein subsequence can yield 

noticeably improved the clustering process. Thus, this study 

generates the protein local segments with length of 9 residues to 

be known as protein local structure. 

3.5 Clustering and Discriminate Protein 

Local Structure 
It is simpler and tractable to utilize SVM in multiple granular 

input spaces. Therefore, HCSVM contains two parts and works 

by: (1) group protein subsequences into several clusters using 

SOM K-Means and (2) classify protein subsequences in each 

clusters using SVM to identify the secondary structure class. The 

SOM is implemented first as a rough phase to reveal the similarity 

amongst protein subsequences. A vector quantization method in 

SOM able to simplify and reduces the training complexity in a 

SOM component plane as well as to discover the intrinsic 

relationship amongst protein subsequences. Next, K-Means is 

implemented as a refining phase on the learnt SOM to reduce the 

problem size of SOM cluster to the optimal number of K.   

The SVM classifier is subsequently used to train the protein 

subsequences in each cluster. Assume that a training protein 

subsequence S is given as; 

{ , }, 1...i iS x y i n= = ,  (2)  

where each ix  is a feature vector and { 1, 1}iy ∈ − +
 
corresponds to 

ix
 
label or feature class. The goal of SVM is to find the optimal 

hyperplane, 

. ( ) 0iw x bφ + = ,  (3)  

in a high-dimensional space that able to separate the data from 

classes 1−  and 1+  with maximal margin. w  is a weight vector 

orthogonal to the hyperplane, b  is a scalar and φ
 
is a function 

which maps the data into a high-dimensional space also named as 

feature space. One merit of SVM is to map the input vectors into a 

high dimensional feature space and thus can solve the nonlinear 

case. The capability of SVM in handling the nonlinear 

relationship amongst protein subsequence is based on the 

nonlinear kernel function. The RBF is used as the nonlinear kernel 

function and defined as follows: 

2

2

|| ||
( , ) exp( )

2

i j

i j

r x x
K x x

σ

− −
= ,  (4)  

where ix  and 
jx  are input vectors. The input vector will be the 

centre of the RBF and σ  will determine the area of influence this 

input vector has over the data space. A larger value of σ  will 

give a smoother decision surface and more regular decision 

boundary since the RBF with large σ  will allow an input vector 

to have a strong influence over a larger area. 

3.6 Evaluate Prediction 
There are three secondary structure classes H, E or C will be 

determined or predicted for given protein subsequence. 

Meanwhile, the predictive algorithm in this study is based on 

binary classification which is presented in two classes for each 

secondary structure class. For example, to predict the protein 

subsequence as H class, positive class, +1 will be assigned to 

protein subsequence which is detected as H. Conversely, negative 

class, –1 will be assigned to protein subsequence which is 

detected as non H. Four possible outcomes will be generated from 

this classifier. The classification of these outcomes is described in 

contingency table 2x2 in Table 1.  

 

Table 1. Contingency table 2x2 for binary classifier outcomes. 

 Actual H Actual non H 

Predicted H True positives (TP) False negatives (FN) 

Predicted 

non H 

False positives (FP) True negatives (TN) 

 

Further, Table 2 explains the definition of variables that used in 

Table 1. Later, these variables derived to the used in ROCl 

formula.  

 

Table 2. The definition of variable used in contingency table 

2x2 for binary classifier outcomes. 

Variable Meaning 

TP Number of occurrence when both actual and 

predicted is positive class. 

FN Number of occurrence when actual is positive 

class and predicted is negative class. 

FP Number of occurrence when actual is 

negative class and predicted is positive class. 

TN Number of occurrence when both actual and 

predicted is negative class. 

 

Basically ROC curve is used to visualize the performance of 

binary classifier in cartesian graph. Area under curve as shown in 

the following formula is another statistical index to describe the 

ROC measurement.  

ROC   = 
1

( )( )
2

TPR FPR , (7) 

where TPR defines the proportion of correct predicted positive 

instances among all positive protein subsequence are being tested. 

FPR defines the proportion of incorrect positive results occur 

among all negative protein subsequence is being tested. To 

provide an indication of the overall performance of the predictive 

algorithm, we computed SOV. For example, the definition of the 

SOV measure for H is as follows: 
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max{ ( , )}

H
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++

= +

+
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here, si and si+1 are the observed and predicted secondary structure 

of local segments in the H state. NH is the total number of protein 

local segments in H conformation. min{OV(si, si+1)} refers to the 

minimum length of the actual overlap of si and si+1 and 

max{OV(si, si+1)} is the maximum length of the total extent for 

which either of the segments si or si+1 has a residue in H state. 

Furthermore, the definition of δ(si, si+1) is as follows quoted by 

Zemla et al. [40]: 

1 1

1

1
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 

=  
 
 
 

,  (9)  

where, len(si) is the number of amino acid residues in segment. 

The similar calculation of SOV score in Eq. 8 will be applied to E 

and C state too. 

4. RESULTS AND DISCUSSIONS 
In this study, we test R-HCSVM and compare its performance 

with other methods such as SVM-light which is done by Joachims 

[13] that involves classifier alone, KCSVM which is introduced 

by Zhong et al. [42] that hybrid K-Means clustering algorithm and 

SVM classifier, R-KCSVM is a KCSVM with incorporates 

enriched protein residue score and HCSVM is a hybrid SOM K-

Means clustering algorithm and SVM classifier without 

incorporates enriched protein residue score. Firstly, feature vector 

and feature class of R-HCSVM prediction method are pre-

processed. Feature vector is represented using protein residue 

score which has been enriched by coupling the residue 

conservation score and residue propensity score based on 

secondary structure conserved information. On the other hand, 

feature class is represented by three states of secondary structure 

class which are generated using DSSP algorithm. Subsequently, 

all these feature vectors and classes are sliced in a window 

segment in prior to be discriminate using hybrid clustering SVM. 

Finally, the results generated by hybrid clustering SVM are 

evaluated. This evaluation provides a clear understanding of 

strengths and weaknesses of an algorithm that has been designed. 

The datasets of protein sequences obtained from PISCES database 

that have been defined in the previous section are used to test and 

evaluate the R-HCSVM and other protein local structure 

prediction methods. As depicted in Table 3 and emphasizes in 

Figures 2─3, using classifier alone which is represented by SVM-

light produces the lowest accuracy per segment of 60.2% and 

average ROC of 44%. This is due to the high complexity of 

dataset inherits influence noise. In contrary, prediction method 

which implemented clustering algorithm at first hand shows better 

performance accuracy. Hybrid clustering SVM shows tremendous 

improvement of prediction method by revealing the sequence-to-

local structure relationship in a smaller and tractable dataset. This 

is proved by KCSVM that increase 10% higher in ROC and 5.3% 

higher in accuracy per segment compared to prediction using 

SVM alone. Furthermore, sequence-to-local structure relationship 

is revealed in two levels learning process in HCSVM, where the 

first level is using SOM K-Means clustering algorithm and the 

second level is continued using SVM classifier. As a result, the 

sequence-to-local structure relationship process is more focused 

and the ROC as well as SOV is much higher with 17% and 8.6% 

respectively compared to prediction using SVM alone. In 

addition, by enriching the information of protein residue score did 

improve the prediction method. This is due to the enriched protein 

residue score employed both high functionally and structurally 

conserved information which led to the increment of fraction 

score between the observed and predicted protein local segments. 

In R-KCSVM, the average ROC and SOV increased up to 16% 

and 11.38% respectively compared to prediction using KCSVM. 

Meanwhile, in R-HCSVM, the average ROC and SOV increased 

up to 17% and 10.86% respectively compared to prediction using 

HCSVM. 

 

5. CONCLUSIONS AND FURTHER 

WORKS 
This paper discussed a computational method which is developed 

one is to increase the strength of protein residue score information 

and another one is to solve the training complexity of prediction 

algorithm in order to boost up the performance accuracy of 

protein local structure prediction. In the proposed computational 

method, there are two major machine learning algorithms are 

employed. One is SOM K-Means which is used to break up the 

complex dataset of protein local structures into several granular 

inputs or subspaces. Further, SVM classifier is implemented to 

each of generated granular inputs to learn and predict the protein 

local structure. In order to increase the strength of input 

information to this prediction algorithm, the protein residue score 

has been introduced which integrates protein conservation score 

and protein propensity score based on secondary structure 

information. The results from the evaluation phase in previous 

section shown that hybrid clustering SVM did improve the 

performance accuracy significantly compared to prediction 

algorithm that using classifier alone. Meanwhile, hybrid clustering 

SVM with incorporated enriched protein residue score is much 

improved the performance accuracy rather than using hybrid 

clustering SVM only. 

 

Table 3. Performance comparison between R-HCSVM with 

other protein local structure prediction methods. 

Method ROC SOV (%) 

R-HCSVM 0.78 79.76 

R-KCSVM 0.70 76.88 

HCSVM 0.61 68.90 

KCSVM 0.54 65.50 

SVM-Light 0.44 60.20 
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Figure 2. Performance comparison between R-HCSVM with 

other protein local structure prediction methods on ROC. 

 

 
Figure 3. Performance comparison between R-HCSVM with 

other protein local structure prediction methods on SOV. 

 
However, the performance accuracy specifically for sheets has a 

room to be improved. This study found that helices are the hardest 

to be captured in protein subsequence. One attempt to solve the 

problem is to enrich the secondary structure class information in 

order to capture more sheets occurrence. Besides, as a 

consequence of using binary classifier to predict three states of 

secondary structure class, unbalanced predicted class is occurred. 

Therefore, in future work, learning based secondary structure 

assignment will be proposed in order to capture more variability 

of secondary structure class and tertiary coding scheme will be 

integrated in order to solve the unbalanced predicted class. 
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ABSTRACT 

One of the purposes of the analysis of gene expression data is to 

cater for the cancer classification and prognosis. Currently, 

clustering has been introduced as a computational method to assist 

the analysis. However, these clustering algorithms focus only on 

statistical similarity and visualization presentation, thus neglecting 

the biological similarity and the consistency of the annotation in 

the cluster. Furthermore, there are still complexity issues and 

difficulty in finding optimal cluster. In this study, we proposed a 

clustering algorithm named BTreeBicluster to overcome those 

problems. The BTreeBicluster starts with the development of GO 

tree and enriching it with expression similarity from the 

Sacchromyces genes. From the enriched GO tree, the 

BTreeBicluster algorithm is applied during the clustering process. 

The BTreeBicluster takes subset of conditions of gene expression 

dataset using discretized data. Therefore, the annotation in the GO 

tree is already determined before the clustering process starts 

which gives major reflect to the output clusters. The results of this 

study have shown that the BTreeBicluster produces better 

consistency of the annotation. 

Keywords 

Biclustering, Discretization, Expression and biological 

similarity, Gene expression analysis, Gene ontology. 

1. INTRODUCTION 
Gene expression data has been widely used in the bioinformatics 

analysis. The analysis of gene expression profile is used to predict 

cancer classification for example Sotiriou et al. [1] have done the 

research for breast cancer classification and prognosis. Antonov et 

al. [2] have also done the classification concentrating on tumor 

samples based on microarray data. This procedure detects groups 

of genes and constructs models (features) that strongly correlate 

with particular tumor types. Meanwhile, Xiong and Chen [3] used 

the optimized kernel to increase the performances of the 

classifiers in classifying gene expression data.  

Apart from classification, clustering is also a useful data-mining 

tool for discovering similar patterns in gene expression dataset, 

which may lead to the insight of significant connections in gene 

regulatory networks. Cheng and Church [4] introduced the 

concept of bicluster which captures the similarity of clustering of 

both genes and conditions. Meanwhile, Getz et al. [5] introduced 

Coupled Two-Way Clustering (CTWC) analysis on colon cancer 

and leukemia datasets. Lazzerroni and Owen [6] introduced plaid 

models which is similar as cluster analysis. These plaid models 

incorporate additive two way ANOVA models within the two-

sided clusters of yeast gene expression datasets. However, all of 

these works only focus more on mathematical similarity of genes 

and conditions. These works did not pay attention to the 

biological process of each cluster. Lately, several biclustering 

methods have been introduced. The advantage of using 

biclustering is the genes in one cluster do not have to behave 

similarly through all conditions.  Bicluster referred to subset of 

genes that behave similarly in a subset of conditions. Some of 

related works in bicluster is Samba [7]. Samba presented a graph-

theoretic approach to biclustering in combination with a statistical 

data model. Iterative Signature Algorithm (ISA) [8] considers a 

bicluster to be a transcription module, for instance a set of co-

regulated genes together with the associated set of regulating 

conditions. Meanwhile, in Order Preserving Submatrix Algorithm 

(OPSM) [9], a bicluster is defined as a submatrix that preserves 

the order of the selected columns for all of the selected rows. In 

the algorithm xMotif  by Murali and Kasif [10], biclusters are 

sought for which the included genes are nearly constantly 

expressed - across the selection of samples. All of these methods 

are too complex to be solved which their optimization problems 

are NP-hard and did not bring optimal cluster result.  

Fang et al. [11] developed biclustering method which incorporates 

Gene Ontology (GO) [12] in the expression data. GO has been 

applied in many works, for example Liu et al. [13] had  

incorporated GO information in its Smart Hierarchical Tendency 

Preserving clustering (SHTP-clustering). Hvidsten et al. [14] 

induced predictive rule models for functional classification of 

gene expressions which are also taken from the GO. Moreover, 

there are softwares based on GO for performing statistical 

determination, interpretation and visualization of function profiles 

such as GOMiner [15], GOTree Machine [16], Onto-Tools [17], 

GO::TermFinder [18] and FunSpec [19]. However, all of these 

software uses the knowledge in GO only to evaluate the clustering 

results rather than to improve the clustering itself. 

Therefore, in order to solve complexity problems and to achieve 

optimal cluster, we developed a new clustering method named 

BTreeBicluster, which applies fundamental biclustering method 

and at the same time integrating GO in the analysis of gene 

expression data. Our method differs from the conventional 

clustering techniques such as hierarchical clustering (HCL) [20], 

as it allows genes in the same cluster not to respond similarly 

across all experimental conditions. Instead, it is defined as a 

subset of genes that shows similar expression patterns over a 

subset of conditions. This is useful to find processes that are 
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active in some but not all samples. The BTreeBicluster also uses 

discretized data which will bring a comprehensive result. 

Furthermore, the BTreeBicluster eschew random interference 

caused by masked bicluster in Cheng and Church [4].   More 

importantly, the BTreeBicluster is based on similarity measures 

which expression profiles and biological functions are taken 

before clustering. This step is a major difference from other 

clustering methods which does the annotation after the clustering 

process. 

The detailed explanation of our method is in the following 

sections. In Section 2, the clustering algorithm is illustrated. In 

Sections 3, the results of the BTreeBicluster on two realworld 

datasets [20], [21] and some comparison with other published 

methods are presented. Finally, in Section 4, the BTreeBicluster is 

discussed, and thus some conclusions are drawn. The paper ends 

with perspectives for other potential applications and suggestions 

for further improvements. 

2. METHODS 
The GO is applied in the construction of hierarchical tree before 

mapping the GO tree with the gene expression data. Based on this 

GO tree, it is traversed from one node to another node, from top to 

bottom using level-by-level traversal method. In the GO tree, 

unmapped nodes are excluded. Gene is mapped to a node and its 

descendant nodes form an initial matrix cluster. Their expression 

similarity is then calculated, and the matrix cluster with high 

similarity will be the output that will be excluded in the next 

calculation.  If the high expression similarity is not obtained, no 

action will be taken. The process is repeated until the whole GO 

tree has been visited. The BTreeBicluster produces a set of 

clusters using improved biclustering method. These clusters are 

enriched with expression and functional similarities. Then, these 

clusters are evaluated to check its reliability and the consistency 

of annotation. In the following sections, we further illustrate our 

method in detail. The BTreeBicluster is shown in Figure 1. 

2.1 Develop the GO Tree 
The GO tree is constructed using GO OBO version 1.2. Currently 

in the GO website (http://www.geneontology. org), there are 

nearly 25,231 terms which refers to the controlled vocabulary 

used to describe gene and gene product attributes in any organism. 

These terms are classified as only one of the three ontologies: 

cellular component, biological process or molecular function. 

Each term in these ontologies is structured as a Directed Acyclic 

Graph (DAG). There are many types of GO data formats such as 

OBO-XML, RDF-XML, OBO version 1.2, MySQL, OWL and 

flat file. In this paper, we have chosen GO OBO version 1.2 as our 

GO data. The purpose of choosing this data is due to the neatly 

arrangement of the terms thus easy to read. 

We parsed the GO OBO version 1.2 format by reading the file 

line by line and then compare the string values to extract each GO 

term and its attributes. Then, each term and its relationship 

information such as “is-a” and “part-of” are put as a node into the 

linked list. A complete linked list is built when the process of 

reading and adding each term from the GO OBO version 1.2 file 

is finished. 

Starting from the first node in the complete linked list, a root node 

of a tree is created and removed from the linked list. Using the 

concept of binary tree, each node in our tree has two pointers 

which are left pointer and right pointer. The left pointer of a tree 

node points to its first child while the right pointer points to its 

next sibling. After the root node has been created, the process 

continues with the next available node in the linked list. By using 

pre-order traversal method, the GO tree is traversed recursively 

where each node in a tree is compared with the node from the 

linked list. A node is said to be a child of another node when it has 

“is-a” or “part-of” relationship. By using information in the node 

from the linked list, if a node in the tree is found to have a parent-

child relationship with it, the node is then added to the tree. Then, 

the node is removed from the linked list. The process of GO tree 

construction continues until there are no more nodes in the linked 

list to be processed. A complete GO tree is now constructed and 

the example is illustrated by Figure 2. 

2.2 Enriching the GO Tree 
In mapping genes with the GO tree, we used Saccharomyces 

Genome Database (SGD) [22]. The GO terms obtained from the 

SGD will be mapped to the developed GO tree structure. 

Beginning with the root node of the GO tree, each node in the GO 

tree is visited using level-order traversal method. Every time a 

new node is visited, the SGD format file is looked into for all 

matches of the GO terms. If a match is found, its matching gene 

information is then saved in the respective GO tree node. The 

example of mapped GO tree with SGD genes is shown in Figure 

3. 

2.3 Clustering the GO Tree Using 

BTreeBicluster 
The BTreeBicluster has interesting advantages compared to other 

clustering methods. The BTreeBicluster did not take the whole set 

of conditions in clustering process and did not apply the average 

trend constraint in the clustering process as been used in Fang et 

al. [11]. The clustering over the whole set of conditions may 

separate the biologically related genes from each other. Therefore, 

by applying the BTreeBicluster, the running time and memory 

complexity of the whole clustering process can be reduced. Apart 

from that, Prelic et al. [23] demonstrated that using discretization 

will improved the clustering result. Therefore, in this method, we 

apply discretization to our datasets. The discretization process will 

change the data into binary values where each cell in the matrix is 

set to value 1 whenever gene i show reaction in the condition j. 

 

Start

Eisen’s and
Tavazoie’s Gene

Expression
Datasets

Clustering the GO tree
using BTreeBiclusterEnd

GO data in OBO
version 1.2

Enriching the GO tree

Develop a GO tree

Evaluate the clusters
using CA

Saccharomyces
Genome

Database (SGD)

 Figure 1. Framework of the BTreeBicluster 
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Figure 2. (i) The example of GO tree, (ii) The process of construction of the GO tree using linked list, 

and (iii) The constructed GO tree using linked list. 
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The process of BTreeBicluster starts as follows. Beginning with 

GO tree most top (root) node down to the bottom node(s), we use 

level-by-level tree traversal method to visit each node in the GO 

tree. For every level we traverse, we start from the most left node 

of the level. During a visit to a node, we check for nodes mapped 

with genes. Nodes which are not mapped with genes will not be 

considered in our further process. We proceed to the next node if 

a particular node is already marked with ‘clustered’. Otherwise, 

all its descendant nodes will be selected. 

 

Given the set of genes which are mapped to the node and its 

descendant nodes is P, we define the gene expression profiles of P 

as a matrix, S(P,Q). Thereafter, subsequent process is all based on 

the input matrix S. In the clustering process we used a fast divide 

and conquer. The algorithm of BTreeBicluster rearranges the data 

taken from previous step into two subsets. This is in order to 

divide the input matrix into two smaller, possibly overlapping 

sub-matrices A and B. First, the set of columns is divided into two 

subset columns Ta and Tb, by taking the first row as a guide 

template. Then, the rows of S are rearranged. All genes that 

respond to conditions in Ta are arranged first. Then, it arranges 

 
Figure 3. The example of enriched GO tree with 

Sacchromyces genes. 

Figure 4. Steps involved in the BTreeBicluster. 
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Algorithm : BTreeBicluster 

Input :    GT : GO tree 

                EP : Expression profiles 

                IM : Input matrix 

                YD: Yeast data 

Output: R=( R1,R2,R3,…,Rn): gene biclusters 

begin 

   for i=1 to max level of GT do 

      for j=1 to max node index of level i do 

         if the node j in GT is clustered, then continue. 

         else 

            Find all genes in YD corresponding to node j 

on GT. 

            Find all descendant nodes of j on GT with 

their mapped gene set P. 

            Select the expression profile of genes in P 

from EP and build an input matrix  

            S(P,Q). 

 if all cells in IM contains only 1’s, then  

                bicluster of genes is output 

 else   

    Divide S to Ta, Tb 

    while a bicluster is not yet found do 

       Divide S to Ta, Tb 

       if all cells in S contains only 1’s, then  

                      bicluster of genes is output. 

       end-if 

    end-while   

 end-if 

         end-if 

      end-for       

   end-for 

end  

 Figure 5. Algorithm of the BTreeBicluster. 
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those genes that respond to conditions in Ta and Tb. Finally the 

arrangement of genes that respond to conditions Tb  is taken place. 

The corresponding sets of genes Ra and Rb are then defined in 

combination with Ta and Tb resulting sub-matrices A and B which 

are decomposed recursively. Ra will take place if there is 

overlapping between A and B. The recursion ends if a bicluster 

matrix is found that is contains only 1s. The two matrices, A and B 

can be processed independently from each other if they do not 

share any rows and columns of input matrix S. Otherwise, a very 

specific process is necessary to get those biclusters in B that has at 

least share one common column with those in Tb. The steps 

involved in the algorithm are shown in Figure 4 and the algorithm 

is shown in Figure 5. 

3. RESULTS AND DISCUSSION 
The experiments were implemented using Java on Intel Core Duo 

CPU T2450 computer with 1GB RAM and 2GHz processor. The 

GO data format used in this experiment is OBO version 1.2: 

revision 5.483. The SGD revision 1.1381 used in the experiment 

was downloaded from http://www.yeastgenome.org. The gene 

expression profiles are taken from two popular datasets [21], [22]. 

The purpose of this study is to get the optimum cluster result 

using BTreeBicluster. Therefore, to check the consistency of the 

annotation in the output cluster, we evaluate it by the definition 

given below: 

1
m

CA
n

= −  ,                     (1) 

where CA is the consistency for the cluster. For every cluster R, m 

refers to number of genes annotated by certain term while n refers 

to total number of genes in R. By using this evaluation, the 

smaller of CA produces better consistency. The value of zero CA 

is where all the genes in any each of the clusters holding the same 

annotation. Therefore, the higher number of zero CA is resulted to 

high consistency. For the average of CA, the total of every 

calculated CA for each cluster is divided by total number of 

clusters. Thus, the smaller value of average CA confirmed the 

cluster results to the high consistency. 

As shown in Table 1, we compared the consistency values 

between BTreeBicluster method with Eisen’s and Fang’s methods 

using Eisen’s dataset. For this comparison, there are 2467 genes 

and 79 conditions in the dataset. We tested this data by setting the 

threshold = 2.0. The BTreeBicluster has shown 3367 clusters 

which gave the best result of CA where it has 2424 of the zero CA 

and 0.0071 of the average CA. Fang’s method showed that there 

are 423 clusters with 258 of zero CA and 0.1839 of the average 

CA. Meanwhile, Eisen’s method showed there are 9 clusters with 

1 of zero CA and 0.3508 of the average CA. Based on this 

comparison, BTreeBicluster proved that the consistency value of 

annotation in our clusters is better than Fang’s and Eisen’s 

methods. This is due to the fast divide and conquer approach in 

BTreeBicluster which has been done to the mapped GO tree. 

We also evaluated our BTreeBicluster with Tavazoie’s dataset by 

setting the threshold = 2.0 as shown in Table 2. By using this 

dataset, there are 6601 genes and 17 conditions. The 

BTreeBicluster has shown 564 clusters which gave the best result 

of CA where it has 424 of the zero CA and 0.0420 of the average 

CA. Fang’s method showed that there are 513 clusters with 394 of 

zero CA and 0.0905 of the average CA. Meanwhile, Tavazoie’s 

showed there are 30 clusters with 0 of zero CA and 0.2799 of the 

average CA. Based on this comparison, BTreeBicluster proved 

that the consistency value of annotation in our clusters is better 

than Fang’s and Eisen’s methods, due to the divide and conquer 

approach in BTreeBicluster that the mapped GO tree confirmed 

the similarity in clusters for both expression and biological. 

Table 1. Comparison of CA values using Eisen’s dataset 

Clusters No. of 

cluster 

No. of zero 

CA 

Average 

CA 
Eisen’s 9 1 0.3508 

Fang’s 423 258 0.1839 

BTreeBicluster 3367 2424 0.0071 

 

Table 2.  Comparison of CA values using Tavazoie’s dataset 

Clusters No. of 

cluster 

No. of zero 

CA 

Average CA 

Tavazoie’s 30 0 0.2799 

Fang’s 513 394 0.0905 

BTreeBicluster 564 424 0.0420 

 

Based on the result as shown in Table 3, the bigger the number of 

threshold is, the smaller number of clusters can be obtained. On 

the other hand, through this experiment, by using a smaller 

threshold, the more number of clusters is obtained. The best 

threshold value is 2.0 where the number of clusters produced is 

126 for Eisen’s dataset and 9 for Tavazoie’s dataset. The stability 

and CPU performance of the BTreeBicluster can be seen in Table 

4 where results of 5 separate runs are compared by taking 

threshold = 2.0 for each run. The results show that in Eisen’s 

dataset,the number of clusters is 126 and the average of CPU 

performance is 11,532 seconds. Meanwhile, in Tavazoie’s dataset, 

the number of clusters is 9 and the average of CPU performance is 

5,700 seconds. 

Table 3. Comparison of clusters produced with different 

setting of thresholds for Eisen’s and Tavazoie’s datasets 

Threshold No. of cluster 

(Eisen’s dataset) 

No. of cluster  

(Tavazoie’s dataset) 

2.0 126 9 

2.2 87 2 

2.4 67 0 

2.5 56 0 

2.6 50 0 

2.8 49 0 

3.0 38 0 

 

Table 4. Comparison of CPU running time and number of 

cluster produced for Eisen’s and Tavazoie’s datasets. 

Run 

Eisen’s dataset Tavazoie’s dataset 

CPU time 

(seconds) 

No. of 

cluster 

CPU time 

(seconds) 

No. of 

cluster 

Run1 11,460 126 5,400 9 

Run 2 11,700 126 6,060 9 

Run 3 11,400 126 5,460 9 

Run 4 11,520 126 5,700 9 

Run 5 11,580 126 5,880 9 
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4. CONCLUSIONS 
The aim of this work is to get optimal cluster for better 

consistency of annotation in the GO tree. This study has shown 

that clustering the gene expression can be done by developing the 

GO tree. Then, the process is continued by enriching the GO tree 

with the SGD genes. Furthermore, the BTreeBicluster is used to 

cluster the GO nodes from the GO tree that has relationship with 

the genes. The experiments showed that BTreeBicluster 

outperformed the existing methods by producing clusters with 

expression and biological similarity. 

Unlike any other methods, the BTreeBicluster can prove the 

annotation before the clustering starts. This process can determine 

the expression and biological similarity in the first phase before 

the clustering process starts. This process also can avoid genes 

being clustered with dissimilar functions. Furthermore, the 

BtreeBicluster used discretization data. The main advantage of 

using discretized data is that human beings naturally are more 

easy dealing with discrete  data rather than in continuous 

quantities and also the discrete data is generally better received by 

classifiers in the classification process [24]. In addition, the 

BTreeBicluster only take subsets of the dataset where the areas 

that contain 0s are excluded.  

Although the experiments have shown that BTreeBicluster 

produces good results, future research in the quality of the GO 

itself should be done. It is assumed that a more updated GO 

version will improve the GO tree thus improve the clustering 

results. The processing time can be also be reduced by using high 

performance computing and parallel algorithms for future 

research.  
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ABSTRACT 

Protein-protein interactions (PPI) play a significant role in many 

crucial cellular operations such as metabolism, signaling and 

regulations. The computational prediction methods for PPI have 

shown tremendous growth in recent years, but problem such as 

huge false positive rates has contributed to the lack of solid PPI 

information. We aimed to enhance the overlap between 

computational predictions and experimental results with the effort 

to partially remove the false positive pairs from the computational 

predicted PPI datasets. The usage of protein function prediction 

based on shared interacting domain patterns named PFP() for the 

purpose of aiding the Gene Ontology Annotation (GOA) is 

introduced in this study. We used GOA and PFP() as agents in the 

filtration process to reduce the false positive in computationally 

predicted PPI pairs. The functions predicted by PFP() which are in 

Gene Ontology (GO) IDs that were extracted from cross-species 

PPI data were used to assign novel functional annotations for the 

uncharacterized proteins and also as additional functions for those 

that are already characterized by GO. As we know, GOA is an 

ongoing process and protein normally executes a variety of 

functions in different processes, so with the implementation of 

PFP(), we have increased the chances of finding matching 

function annotation for the first rule in the filtration process as 

much as 20%. The results after the filtration process showed that 

huge sums of false positive pairs were removed from the predicted 

datasets. We used signal-to-noise ratio as a measure of 

improvement made by applying the proposed filtration process. 

While strength values were used to evaluate the applicability of 

the whole proposed computational framework to all the different 

computational PPI prediction methods. 

Keywords 

False Positive Filtration, Gene Ontology, Interaction Rules, 

Protein-Protein Interaction Predictions, Shared Interacting 

Domain Patterns. 

 

1. INTRODUCTION 
PPI play critical roles in the control of most cellular processes and 

act as a key role in biology since they mediate the assembly of 

macromolecular complexes, or the sequential transfer of 

information along signaling pathways. Many proteins involved in 

signal transduction, gene regulation, cell-cell contact and cell 

cycle control require interaction with other proteins or cofactors to 

activate those processes [1–4]. In recent years, high throughput 

technologies have provided experimental methods to identify PPI 

in large scale, generating tremendous amount of PPI data such as 

yeast two hybrid (Y2H) and mass spectrometry of 

coimmunoprecipitated complexes (Co-IP) [5]. Several methods 

have been previously used to identify true interactions in high-

throughput experimental data like paralogous verification methods 

[6] structurally known interactions [7] and by using an interaction 

generality measure [8]. Advances in experimental methods are 

paralleled by rapid development of computational methods 

designed to detect vast number of protein pairs on wide genome 

scale. The major limitation in both the computational and 

experimental approaches is their lack of confidence in the 

identification of PPI, with high false positive and false negative 

rates [5], [9]. Most efforts in computational approaches focused 

on predicting more PPI by the means of various approaches that 

identify true positives. The results from these approaches are 

higher or of huge volume of predicted PPI datasets that contains 

not only more true positive predictions but also numerous false 

positive predictions. 

 

Experimental PPI detection methods attempt to discover direct 

physical interactions between proteins while computational PPI 

prediction often refer to functional interactions [10]. Efforts and 

researches in enhancing true positive fraction of computationally 

predicted PPI datasets has not been adequately investigated. A lot 

of other researchers have focused on improving computational 

method in producing better result of predicted datasets in terms of  

its accuracy which means low false positive by means of 

refinement of a particular computational method [11–13] or an 

integration of several types of computational methods such as 

joint observation method (JOM) [14], [15] that calculates the 

accuracy and coverage for the PPI that were predicted by at least 

one, two, three or four methods using three positive datasets 

(KEGG, EcoCyc and DIP). Those methods are Phylogenetic 

Profiles (PP), Gene Cluster (GC), Gene Fusion (GF) and Gene 

Neighbourhood (GN). STRING [16] that integrate combined 

scores for each pair of proteins and InPrePPI [17] that integrates 
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the scores of each protein pair obtained by the four methods. 

While other researchers focused on improvement in 

computational methods area, Mahdavi and Lin [18] have proposed 

a filtering algorithm solely using GOA [19]. The removal of false 

positive depends on whether the predicted pairs satisfy the 

heuristic rules that were developed based on the concept of PPI in 

cellular systems observation. The result after the filtration process 

differs among different types of computational methods that were 

implemented. GOAs that were used as a common ground for the 

filtration process has been a popular and reliable source for 

several research which concern validation or evaluation of a 

certain results such as in Patil and Nakamura [20]. GOAs were 

used as one of the means to assign reliability to the PPI in yeast 

determined by high-throughput experiments. GO has appeared to 

be utilized in several studies concerning PPI. GO [21] terms had 

been used by Rhodes et al. [22] to assess associations between 

proteins in a pair while Wu et al. [23] constructed a PPI network 

for yeast by measuring the similarity between two GO terms with 

a relative specificity semantic relation. In the meantime, Hsing et 

al. [24] used GO term for predicting highly-connected 'hub' nodes 

in PPI networks. While Dyer et al. [25] used GO to provide 

functional data to protein interactome sets that also revealed 

interactions of human proteins with viral pathogens. From the GO 

analysis, it indicated that many different pathogens target the 

same processes in the human cell, such as regulation of apoptosis, 

even if they interact with different proteins. On the other hand, 

GO structural hierarchy was used to evaluate functional 

associations by Lord et al. [26]. 

 

Although GO shows tremendous usage in recent studies, GO 

suffers from inconsistency within and between genomes. This is 

because ontology annotation is an ongoing process, thus it is 

considered incomplete and does not contain full or complete 

annotations. Problems that could arise from this limitation are, 

one protein is assigned a term that represents a broad type of 

activity, and its interacting partner is assigned a more specific 

term. There are some cases where some proteins have not even 

been assigned all three ontologies which make the interaction 

assessments more difficult. There is also a possibility that a 

substantial portion of most genomes are still unannotated such as 

D. melanogaster and H. sapiens and some proteins are still 

uncharacterized. Chen et al. [27] has stated that only about 54% 

among the current list of D. melanogaster genes that were 

downloaded from FlyBase [28] as on November 2006 are 

annotated with molecular function terms in GO.  

 

In this paper, we aimed to enhance the overlap between 

computational predictions and experimental results through a 

confidence level which reflects the agreement of a link between 

both the experimental results and computational predictions. 

Therefore, we proposed a computational framework to filter false 

positive of the predicted PPI pairs so that it will increase true 

positive fraction of the computationally predicted PPI dataset. 

Using GO as a common ground in the filtering process, we also 

implemented protein function assignment based on the shared 

interacting domain patterns extracted from cross-species PPI data 

to assign novel functional annotations for the uncharacterized 

proteins and predict extra functions for proteins that are already 

annotated in the GO. The involved species in PPI data that were 

used to infer the uncharacterized or incomplete functions are S. 

cerevisiae, C. elegans, D. melanogaster and H. sapiens. In order 

to evaluate the improvement made by the proposed filtration 

process, the Signal-to-Noise Ratio [29] was employed while value 

strength [18] was calculated to show the effect of the rules 

applied. 

 

A series of steps was conducted in a framework to refine the 

computationally predicted datasets. First, a set of S. cerevisiae PPI 

datasets with high confidence were prepared for the experimental 

dataset and one set of each newly updated PPI dataset consist of 

four species (C. elegans, D. melanogaster, H. sapiens and S. 

cerevisiae). Second, GOAs with the aid of GO functions predicted 

by the shared interacting domain patterns extracted from cross-

species PPI data were utilized to identify keywords which 

represent general functions of the proteins. Third step was to 

establish interaction rules. It is established to be satisfied by the 

predicted interacting proteins. Next, four computational PPI 

prediction methods were selected to use in this study. Those 

methods are the conventional Phylogenetic Profiles (PP) [30], 

Gene co-Expression (GE) [31], Mutual Information (MI) [32] and 

Maximum Likelihood Estimation (MLE) [33]. For each of these 

computational methods, predicted PPI datasets were obtained. 

Then, the false positive pairs that exist in the predicted datasets 

were removed by applying the interaction rules. If the predicted 

interacting pair satisfies the rules, then it is considered as a true 

positive pair, otherwise the pair is assume as a false positive pair 

and removed from the dataset. The result of the filtered datasets 

were statistically evaluated and compared. 

 

2. METHODS 
In this study, a computational framework for the refinement of 

computationally predicted datasets is proposed. Basically the 

predicted protein pairs are filtered according to the matching 

keywords that represent general molecular functions and the 

matching cellular component of both proteins. The ‘keywords’ are 

the top ranking keywords resulting from the keywords 

identification process based on GO molecular function of the 

interacting proteins in experimental datasets. The assignment of 

GO molecular functions to the associated interacting proteins 

directly from cross-reference assignment of GO and InterPro [34] 

are being aid with protein function prediction based on cross-

species (C. elegans, D. melanogaster, H. sapiens and S. 

cerevisiae) interacting domain patterns. The justification for both 

of this rules and the concept of the protein function prediction 

based on the interacting domain patterns will be explain further in 

their respective sub-sections. The results of the filtered datasets 

and raw datasets (unfiltered datasets) are compared in order to 

evaluate the significant effect of the proposed algorithm. The 

proposed computational framework is as shown in Figure 1. 

 

2.1 Protein Function Prediction 
We applied a procedure named PFP() that predicts the interacting 

proteins based on the concept that interaction between protein 

pairs in diverse species having the shared domain patterns. It 

produced assignments of appropriate GO functional annotations to 

proteins by finding modular domains that are likely to possess 

similar functions. The underlying hypothesis for this procedure is 

that similarity in functions for the proteins exists when proteins in 

the two PPI pairs share similar modular domains in which the PPI 
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pairs contain a common interacting domain pattern. Figure 2 

demonstrates the function annotation scheme based on this 

hypothesis. The figure shows two PPI pairs, the first one is protein 

A that interacts with protein B and the second pair is protein C 

that interacts with protein D. Proteins A and C contain the same 

modular domain X that interact with the modular domain Y in 

proteins B and D. Therefore, it is concluded that the two PPI pairs 

share a common interaction domain pattern in which proteins A 

and C share similar functions whereas proteins B and D. 

 

 

 

 

 

 

This procedure has to be trained in order to produce a lookup table 

of significant interacting modular domain patterns from the 

interaction pairs that contain domain patterns and associated 

functional assignments. It finds groups of protein interaction pairs 

across different organisms with similar functions. During the 

training phase, groups of protein pairs with similar functions were 

formed. Each PPI pair in the training dataset serves as a centroid 

to the formation of these groups. The remaining pairs are 

compared against the centroid interaction pair. Then χ² statistics 

has been applied to derive interacting domain patterns from the 

PPI group. A list of function terms that stem from the PPI pairs 

involved with the creation of the domain patterns are then enlisted 

to the lookup table along with the corresponding domain patterns. 

The equation for χ² is as follows: 

 

. (1) 

  

N as indicated in equation above represents the total number of 

PPI pairs in the reference dataset. Variable A refers to the number 

of PPI pairs in the group that contain the particular ‘pattern’, 

while B is the number of remaining PPI pairs outside the group 

that contain the ‘pattern’. Variable C indicates the number of PPI 

pairs that do not contain the ‘pattern’ in the group. While variable 

D is the number of PPI pairs that do not contain the ‘pattern’ in 

the remaining samples outside the group. The domain patterns that 

will be adopted in the lookup table for function annotation are the 

deduced interacting domain patterns with the highest χ² value. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.2 Keywords Identification 
This step is where we define or identify associated keywords that 

represent the entire interacting proteins in our experimental 

dataset. First, protein pairs in the experimentally verified dataset 

were submitted to UniProt [35]. Then we retrieved GO and 

InterPro cross-reference assignments of the proteins. All InterPro 

entries were mapped to GO terms using “interpro2go” dated 2 

July 2008, that were retrieved from GO website. The GO terms of 

each protein were then searched using AMIGO term search 

engine [36]. After collecting the searched GO term information of 

each protein, the redundant information was removed. The GO 

terms information on molecular function annotation were 

compiled and used as a training dataset. The GO molecular 

function for the interacting proteins in the experimental dataset 

was acquired based on function prediction resulted from cross-

species shared interacting domain patterns. The results retrieved 

are in the form of GO IDs and later the GO terms were extracted 

from the flatfile of “interpro2go”. After collecting all of the GO 

term information, it was then added to the training dataset. 

Redundant information in the training dataset was removed. We 

produced the final dataset into several groups that were clustered 

according to their general molecular activities.  

 

The number of occurrences (n) of a word in a cluster was counted 

in order to determine representative keyword in a cluster. The 

calculation using Poisson distribution was conducted to find the 

probability of finding that word in the training dataset. The 

formula for Poisson distribution is as follows,  
2

2 ( )

( )( )( )( )
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,  (2)                               

λ in the equation above is the result of N.ƒ, in which N refer to the 

total number of words in a cluster, while ƒ refer to the relative 

frequency of that word in the whole training dataset. In order to 

avoid floating point errors, we implemented n! based on Stirling’s 

approximation, resulting in 

 . (3) 

In order for this calculation to be valid, the total number of words 

in the training dataset has to be much greater than N or when ƒ is 

small. All enzyme activities were considered as “ase activity” 

since biochemistry literature introduced enzymes with “ase” 

suffix. The representative keyword in each cluster is the word 

with the most negative ln p (n) value. 

 

2.3 Interaction Rules 
Interaction rules that were established here are based on PPI in 

cellular systems, based on the observation that two proteins are 

more likely to interact to perform the same function and that 

proteins are required to exist in close proximity to interact 

physically [37]. These rules were applied in the filtration process 

where the predicted interacting protein pairs have to satisfy both 

rules, 

 

Rule 1: Both of predicted proteins in the pair should match one of 

the trained ‘top ranking keywords’ that represent a function or 

functions that the pair carries. 

Rule 2: Both of predicted proteins in the pair should be in the 

same GO cellular components. 

 

2.4 PPI Predictions 
Four PPI prediction methods from different categories that were 

used in this study as shown in Table 1 will be briefly explained. In 

the PP method, PP of all proteins in the experimental dataset was 

gathered from PLEX database [38]. Once all PP were constructed, 

we grouped the proteins that shared similar profile, then we paired 

them with each other within the group and considered the pairs 

interacting. The next method is MI which utilizes MI function as a 

measure of similarity between two PP. After profile for each 

protein is constructed, we used MI value to assess the confidence 

level of the link between the two proteins of each protein pair. 

The candidate interactions are identified by setting the value of 

threshold of mutual information (TMI). When the MI value 

between two proteins is higher than the TMI, we regarded it as 

interacting. 

 

In the implementation of GE method, SMD [39] was used to 

obtained normalized expression levels of S. cerevisae that 

corresponds to a different microarray experiment (100 

experiments). CLICK algorithm in EXPANDER program [40] 

was used for clustering the matrix supplied. Genes that are in the 

same cluster are the co-expressed genes and thus considered 

interacting with each other. Meanwhile, for the MLE method we 

followed the underlying hypothesis which is two proteins are 

considered interacting if and only if at least one pair of domains 

from the two proteins interact based on the understanding that in 

order to perform the necessary functions, protein domains 

physically interact with one another. All datasets resulted from 

these prediction methods will be used as the testing datasets.  

 

Table 1. Computational PPI prediction methods that were 

selected and their respective categories. 

Method Category 

Conventional 

Phylogenetic Profiles (PP) 

Utilization of genomics 

information to predict protein 

interactions. 

Mutual Information (MI) Rely on statistical scoring 

functions with the purpose to 

enrich conventional genomics 

methods. 

Maximum Likelihood 

Estimation (MLE) 

Domain-based approach. 

Gene co-Expression (GE) Prediction through integration of 

microarray data in different 

biological conditions. 

 

2.5 Filtration of False Positive 
After obtaining the predicted PPI datasets for each computational 

method, we executed the filtration process for the purpose of 

reducing the rates of false positive as many computational PPI 

prediction methods suffer from mass false positive predictions. By 

satisfying the interaction rules, the predicted false positive pairs 

are discarded or removed from the predicted datasets resulted to a 

dataset that contain higher true positive fraction compared to 

before it was filtered. Based on the filtration phase illustrated in 

Figure 1, predicted PPI pairs from each of the four predicted PPI 

datasets were examined sequentially by the algorithm to 

determine if the proteins in the particular pair possess the 

molecular function annotations from GO or from the shared 

interacting domain patterns or both. It also examined the GO 

cellular component annotations. If both annotations are present, 

such pair is checked with the proposed rules. This protein pair is 

required to satisfy Rule 1 and Rule 2 to be considered as an 

interacting pair. The final output that contains predicted 

interacting protein pairs, are called filtered predicted PPI dataset. 

Then, we assess the level of agreement of the predicted PPI with 

the experimentally obtained dataset by comparing them both.  

 

2.6 Statistical Evaluation 
The purpose for this statistical evaluation is to measure the 

significant effect or improvement made by applying the filtering 

process to the predicted PPI datasets. We employed SNR that 

measure signal strength relative to background noise. SNR in 

bioinformatics is translated to the ratio of capability of a 

computational method in creating protein pairs to pairing proteins 

on a random basis. For this statistical evaluation, we define SNR 

as follows, 

. (4) 
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The random dataset has to be randomly selected with the same 

sample size. Matched pairs in the equation above means the 

matched protein pairs with the experimental dataset and the total 

pairs is the total number of pairs in the same dataset. It is also 

defined as the true positive fraction of the dataset. SNR was 

calculated according to two circumstances, the raw dataset and the 

filtered dataset. Raw dataset means the predicted PPI pairs before 

applying the rules. While the filtered dataset means the predicted 

PPI pairs after applying the rules. After calculating SNR of raw 

and filtered datasets for all four PPI predicted datasets, we find 

strength, ratio of SNR filtered dataset to SNR raw dataset in order 

to measure the effect of the application of the false positive 

filtration rules. The equation for strength is as follows, 

.    (5)  

 

3. MATERIALS 

3.1 Experimental Dataset 
We used the experimentally obtained protein pairs from CYGD 

[41] database to extract the functional keywords from the GO 

annotations. The CYGD is a frequently used public resource for 

yeast related information that was generated by the European 

consortium and serves as a reference for the exploration of fungi 

and higher eukaryotes. 15453 experimentally verified S. 

cerevisiae protein pairs consisting of 4748 interacting proteins 

were used in this study. 

 

3.2 PPI Datasets for Function Prediction 
For the protein function prediction based on cross-species shared 

interacting domain patterns, two datasets were involved. The first 

dataset is called training PPI dataset. This dataset was collected 

from the DIP [42], BioGRID [43] and MINT [44] databases for 

the organisms  S. cerevisiae, C. elegans and D. melanogaster, 

while for organism H. sapiens, the interaction data were obtained 

from HPRD [45] database. The final training PPI dataset which 

does not contain any uncharacterized proteins consist of 11151, 

231, 7709 and 13596 interaction pairs from S. cerevisiae, C. 

elegans, D. melanogaster and H. sapiens respectively. Protein 

domain information were extracted from PFAM [46] database. 

Pfam-A and Pfam-B domains were considered for each protein. 

Total of 493 unique Pfam domains were found to be in common 

between the four species. There are a total of 2972 unique GO 

annotated molecular function terms obtained from GO database 

within the dataset. 

 

The second dataset is called interaction information dataset. This 

collection of PPI is used to enhance the probability of finding a 

pattern in the lookup table generated from the process of the 

training PPI dataset. We used a newly updated PPI dataset 

retrieved in March 2008 that consist interaction pairs of four well-

studied eukaryotic species. The dataset consist of 77006 of S. 

cerevisiae, 6853 of C. elegans and 25300 of D. melanogaster that 

were acquired from the BioGRID and the DIP databases, while 

43527 of H. sapiens interaction data was acquired from the HPRD 

database. 

 

3.3 GO and Annotations 
GOA provides high-quality electronic and manual annotations to 

the UniProt Knowledgebase that consist of UniProtKB/Swiss-Prot 

and UniProtKB/TrEMBL using the GO standardized vocabulary. 

Annotations in both GO and UniProt databases are updated on a 

regular basis. We used UniProt Knowledgebase release 14.0 (July 

2008) and the GO database August 2008 release. 

 

4. RESULTS AND DISCUSSIONS  

4.1 Predicted Protein Function 
Using the interaction information dataset for the purpose of 

enhancing the probability of finding a pattern in the lookup table 

of PFP(), we managed to identify functional predictions for 1393 

proteins. After analyzing the result of the PFP(), we discovered 

that PFP() compliments the function annotations for our 

interacting proteins in which it increases the number of function 

annotations received. Table 2 shows some of the additional 

functional terms predicted by PFP() that have enriched the 

function annotations of the existing GO annotated proteins. 

Meanwhile, Table 3 shows new function annotations produced by 

the PFP() to the proteins that currently do not have GO molecular 

function annotation. Figure 4 shows the effect of PFP() to GOA 

from the overall view which means all of the proteins involved in 

the experimental dataset whereas Figure 5 uses a sample of 20 S. 

cerevisiae proteins to give a closer view. Both of the new and 

additional annotations produced by PFP() are showed in these 

figures to provide a better look at the significant effect of PFP() to 

the amount of GO function annotations for the experimental 

dataset used in this study. If we were to use only the current GO 

functional annotations, it will restrict the function information 

extraction for the proteins involved thus weakens the result in 

functional keyword matching process which is in the first 

filtration phase. As high quality PPI data becomes more available, 

so does the performance of PFP() in the quest to assign specific 

and accurate function annotations. 

 

 

Figure 3. Effect of PFP() to GOA based on the experimental 

dataset (overall view). 
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Figure 4. Effect of PFP() to GOA using a sample of 20 S. 

cerevisiae proteins from the experimental dataset. 

 

Table 2. Examples of proteins and their additional function 

annotations. 

Proteins 
Predicted GO molecular 

functions 

Cytochrome c oxidase 

subunit 1 [Swiss-Prot: 

P00401] 

GO:0005515 Protein binding 

Syntaxin-8 [Swiss-

Prot: P31377]  

GO:0032266 

Phosphatidylinositol 3-phosphate 

binding 

 

Protein phosphatase 

PP2A regulatory 

subunit A [Swiss-Prot: 

P31383] 

GO:0003823 Antigen binding 

GO:0008601 Protein 

phosphatase type 2A regulator 

activity 

GO:0046982 Protein 

heterodimerization activity 

Dolichyl-phosphate-

mannose--protein 

mannosyltransferase 2 

[Swiss-Prot: P31382] 

GO:0000287 Magnesium ion 

binding 

 

Table 3. Examples of proteins that have no GO molecular 

function annotation but were assigned newly predicted 

function annotations. 

Proteins Predicted GO molecular functions 

G1/S-specific 

cyclin CLN3 

[Swiss-Prot: 

P13365]  

 

GO:0016538 Cyclin-dependent protein 

kinase regulator activity 

GO:0016251 Cyclin-dependent protein 

kinase regulator activity 

GO:0005515 general RNA polymerase 

II transcription factor activity 

GO:0004672 Protein kinase activity   

GO:0019209 Kinase activator activity 

GO:0003711 Transcription elongation 

regulator activity 

GO:0008353 RNA polymerase subunit 

kinase activity 

GO:0019901 Protein kinase binding 

GO:0000043 4-hydroxybenzoate octa 

prenyltransferase activity 

Uncharacterized 

protein 

YGL081W 

[Prot: P53156] 

GO:0004864 Protein phosphatase 

inhibitor activity 

GO:0003729 mRNA binding 

GO:0004865 Type 1 serine/threonine 

specific protein phosphatase inhibitor 

activity  

 

Protein TEX1 

[Swiss-Prot: 

P53851] 

GO:0051018 Protein kinase A binding 

 

4.2 Identified Keywords 
The keywords identification process serves to be highly beneficial 

as it groups proteins through their general functions criteria rather 

than using the exact GO functional terms. It increased the 

possibility of finding proteins that conduct the same processes or 

functions. We gathered 1100 non-redundant GO term information 

based on the 4748 S. cerevisiae proteins in the experimental 

dataset. The GO term information was further clustered into 

several clusters resulting to 31 keywords. The frequency of 

appearance of the keywords in the training dataset was identified 

and 10 keywords that showed high frequency were chosen out of 

31 keywords. The top ranking keywords represent functions that 

the proteins in the experimental dataset mostly commit to. In 

Table 4, we listed the 10 top ranking keywords and the rest 

remaining 21 keywords that were classified under remaining 

keywords called ‘RK’. We believe that these 10 top ranking 

keywords that have been picked are the keywords that best reflect 

the overall general functions of the S. cerevisiae proteins in the 

experimental dataset. To support this, we performed the 

sensitivity and specificity analysis. First, we calculated the 

percentage of strength of a certain keyword on the protein pairs in 

training dataset which is the sensitivity analysis. Then, we 

performed the specificity analysis which is conducted on the 

predicted datasets to find the percentage of strength of a certain 

keyword on the protein pairs in testing datasets. Sensitivity is 

calculated as follows: 

.  (6) 

The total number of pairs in the training dataset (experimental 

dataset) is represented by x. When a keyword represent two 

proteins in pair i, then ni=1 and ni=0 if it is otherwise. Specificity 

is similarly calculated as equation 7 in which y indicate the total 

number of pairs in the testing dataset (predicted dataset), 

.  (7) 

 

Table 4. Frequency of keywords that were identified from the 

experimentally obtained dataset. 

Keywords Frequency 

ase activity 3731 

Binding 3613 

Porter activity 355 

Transcription activity 167 
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Ribosome 126 

Carrier activity 78 

Receptor activity 59 

Exchange activity 39 

Dimerization activity 38 

Translation activity 34 

Remaining keywords (21 keywords) 114 

 

Sensitivity variations among identified keywords are illustrated in 

Figure 5, with abbreviations for keywords as follows: AS (ase 

activity), BI (binding), PO (porter activity), TC (transcription 

activity), RI (ribosome), CA (carrier activity), RE (receptor 

activity), EX (exchange activity), DI (dimerization activity), TL 

(translation activity) and RK (remaining keywords). We 

concluded that the percentage for each identified keywords for the 

sensitivity analysis as satisfying considering that the average 

percentage received is 60.78%. ‘RK’ which refer to the 21 

remaining keywords, seems to impose relatively insignificant 

contribution to the experimental dataset (training dataset) because 

of its low sensitivity result that is with 50.25%. We further 

examined the significance of the identified keywords by 

conducting similar analysis on the four predicted datasets (testing 

datasets) which we refer as specificity analysis. The predicted PPI 

datasets that were used in this analysis will be explained in section 

4.3. Figure 6 illustrates specificity of the top ranking keywords 

and also all the 21 keywords that were classified as ‘RK’. 

Specificity varies from 22.74% in PP dataset to 88.43% in MLE 

dataset. Meanwhile, ‘RK’ in all four predicted datasets display the 

lowest specificity compared to the other keywords from 16.01% 

in PP dataset to 55.78% in MLE dataset. The average percentage 

(all four datasets) of specificity received is 52.18% which 

represents the recovery power of the keywords towards all four 

predicted datasets. Although it seems as both average of 

sensitivity and specificity did not give a highly confident result, it 

is still acceptable given the deficiencies suffered by current 

annotations and also experimental techniques. 

 

 
Figure 5. Sensitivity of identified keywords is being presented 

by each column. 

 

4.3 Predicted PPI 
We received 177427 predicted pairs for PP method. Meanwhile, 

for MI method we managed to gather 343922 non-duplicated 

predicted PPI pairs. The results of the non-duplicated PPI as well 

as the amount of DDI for MLE method are 414768 and 15404, 

respectively. Lastly, for GE method we obtained 7 clusters 

altogether with 0.538 for the overall average homogeneity. Genes 

within the same cluster are paired with each other based on the 

reason that they shared similar co-expressed pattern. We listed the 

number of proteins in each cluster and the total predicted PPI 

pairs in Table 5. Results after predictions showed that depending 

on method applied, the amount of the predicted PPI pairs varied. 

 

 
Figure 6. Specificity of the trained identified keywords for all 

four computational predicted PPI datasets are represented by 

data points. 

 
Table 5. Result of predictions for each cluster and the total 

PPI prediction obtained for GE method. 

Cluster 

Number of 

proteins in 

cluster 

Predicted PPI 

pairs 

1 1807 1631721 

2 1526 1163575 

3 613 187578 

4 356 63190 

5 294 43071 

6 91 4095 

7 86 3655 

Total  3096885 

 

4.4 Filtered Datasets 
After executing the filtration process where we match the proteins 

in the PPI predicted pairs according to the interaction rules, the 

results had showed a huge sum of reduction in every 

computational prediction methods indicating that the false 

positive pairs have been partially removed. The results of 

computational PPI predictions that we received are high especially 

for the GE method since the proteins were paired to each other 

within their cluster, followed by MLE, MI and PP methods. 

Figure 7 presents both raw and filtered datasets. The effect of the 

filtration process will be statistically evaluated and analysed in the 

next section. 
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4.5 Statistical Evaluation Analysis 
After conducting the statistical analysis of SNR and strength to all 

four computational prediction methods, we received results as 

seen in Table 6 and Figure 8. The results varied among different 

methods indicating that this proposed computational framework 

does not exerts the same strength towards different categories of 

computational predicting methods. From the results, we witnessed 

the robustness of the prediction from MLE method when the 

strength showed the lowest among the other methods used in this 

study. However, it does contribute to the purpose of reducing the 

false positive that contain in the predicted dataset. PP method 

showed the strongest strength with 10.0257 and this means that 

the proposed computational framework gave a strong influence on 

improving PPI pairs predicted by this method and most likely by 

methods from this category that is the category that utilized 

genomics information.  

 

In the efforts to produce better PPI prediction results, we analysed 

the true positive fraction (TPF) and the false positive fraction 

(FPF) of the raw and filtered prediction datasets such as in Figure 

9. The figure illustrates trendlines for both raw and filtered 

datasets where we display the TPF and FPF that were resulted 

from comparisons with the PPI data in experimental dataset. Here, 

we witnessed that all four computational prediction methods that 

were conducted based on the proposed computational framework 

resulted to a much lower FPF value and a much higher TPF value 

compared to the prediction results that did not apply the proposed 

computational framework.  

 

 

Figure 7. Results of raw datasets (unfiltered datasets) and the 

filtered datasets of all the computational prediction methods. 

 

Table 6. Results from the statistical evaluation phase, SNR 

and strength of all the computational prediction methods. 

Methods 
SNR 

Strength 
Raw/Unfiltered Filtered 

PP 2.3813 23.8741 10.0257 

GE 1.8941 8.9035 4.7007 

MI 3.2045 12.7193 3.9691 

MLE 13.5841 32.7963 2.4143 

 

Figure 8. Results of SNR for all four PPI prediction methods. 

 

 

Figure 9. True positive fraction (TPF) and false positive 

fraction (FPF) in all the computational methods for unfiltered 

(raw) and after filtered (filtered). 

 

5. CONCLUSIONS  
Protein function assignment based on shared interacting domain 

patterns have been utilized with the purpose of aiding the 

inconsistencies of GO in order to filter false positive that stem 

from PPI predictions based on PP, GE, MI and MLE methods. By 

manipulating similar domain patterns from S. cerevisiae, C. 

elegans, D. melanogaster and H. sapiens species, the method 

managed to enrich GO molecular function annotations and even 

assign new annotations for the proteins (S. cerevisiae) in the 

experimental dataset. The information has contributed to the 

probability of finding matching functional keywords in a pair thus 

resulted to a higher chance of finding true positive pair in the 

predicted datasets. The points that represent the TPF and FPF for 

each computational method appeared to be situated at better 

positions after filtering. This means that the quality and the 

reliability of the predicted PPI datasets have increased where huge 

sums of false positive pairs were successfully discarded. 

Ultimately, we managed to enhance the confidence level of the 

datasets by the reduction of false positives which then improves 

the robustness of the PPI data. The effect of the proposed 

computational framework will continue to improve as more genes 

are assigned to GOA and PPI data increase in terms of its quantity 
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and quality. This computational framework which produced an 

improved PPI prediction results, will serves as an effective post-

prediction process with the goal to reduce false positive in 

computational PPI predictions. 

 

6. ACKNOWLEDGMENTS 
This project is funded by Malaysian Ministry of Higher Education 

(MOHE) under Fundamental Research Grant Scheme (project no. 

78186). 

 

7. REFERENCES 
[1] Papin J., and Subramaniam S. 2004. Bioinformatics 

and cellular signaling. Current Opinion in 

Biotechnology. 15, 78-81. 
[2] Tucker, C.L, Gera, J.F., and Uetz, P.  2001. Towards an 

understanding of complex protein networks. Trends Cell 

Biology. 11, 102-26. 

[3] Wang, J. 2002. Protein recognition by cell surface 

receptors: physiological receptors versus virus 

interactions. Trends in Biochemical Sciences. 27, 122-6. 

[4] Reš I., Mihalek, I., and Lichtarge, O. 2005. An evaluation 

based classifier for prediction of protein interface without 

using protein structures. Bioinformatics. 21, 2496-501. 

[5] von Mering, C., Krause, R., Snel, B., Cornell, M., Oliver, 

G.S., Fields, S., et al. 2002. Comparative assessment of 

large scale data sets of protein-protein interactions. Nature. 

417, 399-403. 

[6] Deane, C.M., Salwinski, L., Xenarios, I., and Eisenberg, 

D. 2002. Protein interactions: two methods for assessment 

of the realibility of high-throughput observation. 

Molecular and Cellular Proteomics. 1, 349-56. 

[7] Edwards, A.M., Kus, B., Jansen, R., Greebaum, D., 

Greenblatt, J., and Derstein, M. 2002. Bridging structural 

biology and genomics: assessing protein interaction data 

with known complexes. Trends in Genetics. 18, 529-36. 

[8] Saito, R., Suzuki, H., and Hayashizaki, Y. 2003. 

Construction of reliable protein-protein interaction 

networks with a new interaction generality measure. 

Bioinformatics. 19, 756-63. 

[9] Qi, Y., Joseph, Z.B., and Seetharaman, J.K. 2006. 

Evaluation of different biological data and computational 

classification methods for use in protein interaction 

prediction. PROTEINS: Structure, Function, and 

Bioinformatics. 63, 490-500. 

[10] Valencia, A., and Pazos, F. 2002. Computational methods 

for the prediction of protein interaction. Current Opinion 

in Structural Biology. 12, 368-73.  

[11] Wu, J., Kasif, S., and DeLisi, C. 2003. Identification of 

functional links between genes using phylogenetic 

profiles. Bioinformatics. 19, 1524-30. 

[12] Sun, J., Xu, J., Liu, Z., Liu, Q., Zhao, A., Shi, T., et al. 

2005. Refined phylogenetic profiles method for predicting 

protein-protein interactions. Bioinformatics. 21, 3409-15. 

[13] Huang, C., Morcos, F., Kanaan, S.P., Wuchty, S., Chen, 

D.Z., and Izaguirre, J.A. 2007. Predicting protein-protein 

interactions from protein domains using a set cover 

approach. IEEE/ACM Transactions on Computational 

Biology and Bioinformatics. 4, 1-10.  

[14] Marcotte, E.M., Pellegrini, M., Thompson, M.J., Yeats, 

T.O., and Eisenberg, D. 1999. A combined algorithm for 

genome wide prediction of protein function. Nature. 402, 

83-6. 

[15] Chen, Y., and Xu, D. 2003. Computational analyses of 

high-throughput protein-protein interaction data. Current 

Protein and Peptide Science. 4, 159-81. 

[16] von Mering, C., Huynen, M., Jaeggi, D., Schmidt, S., 

Bork, P., and Snel, B. 2003. STRING: a database of 

predicted functional associations between proteins. 

Nucleic Acids Research. 31, 258-61. 

[17] Sun, J., Sun, Y., Ding, G., Liu, Q., Wang, C., He, Y., et al. 

2007. InPrePPI: an integrated evaluation method based on 

genomic context for predicting protein-protein interactions 

in prokaryotic genomes. BMC Bioinformatics. 8, 414. 

[18] Mahdavi, M.A., and Lin, Y. 2007. False positive reduction 

in protein-protein interaction predictions using Gene 

Ontology Annotation. BMC Bioinformatics. 8, 262. 

[19] Camon, E., Magrane, M., Barrell, D., Lee, V., Dimmer, E., 

Maslen, J., et al. 2005. The Gene Ontology Annotation 

(GOA) database: sharing knowledge in UniProt with Gene 

Ontology. Nucleic Acids Research. 32, D262-6. 

[20] Patil, A., and Nakamura, H. 2005. Filtering high-

throughput protein-protein interaction data using a 

combination of genomic features. BMC Bioinformatics. 6, 

100. 

[21] The Gene Ontology Consortium. 2000. Gene Ontology: 

tool for the unification of biology. Nature Genetics. 25, 

25-9. 

[22] Rhodes, D.R., Tomlins, S.A., Varambally, S., Mahavisno, 

V., Barrette, T., Kalyana-Sundaram, S., et al. 2005. 

Probabilistic model of the human protein-protein 

interaction network. Nature Biotechnology. 23, 951-9. 

[23] Wu, J., Kasif, S., and DeLisi, C. 2006. Prediction of yeast 

protein-protein interaction network: insights from the 

Gene Ontology and annotations. Nucleic Acids Research. 

19, 2137-50. 

[24] Hsing, M., Byler, K.G., and Cherkasov, A. 2008. The use 

of Gene Ontology terms for predicting highly-connected 

‘hub’ nodes in protein-protein interaction networks. BMC 

Systems Biology. 2, 80. 

[25] Dyer, M.D., Murali, T.M., and Sobral, B.W 2008. The 

landscapes of human proteins interacting with viruses and 

other pathogens. PLOS Pathogens. 4(2), e32. 

[26] Lord, P.W., Stevens, R.D., Brass, A., and Goble, C.A. 

2003. Investigating semantic similarity measures across 

the Gene Ontology: the relationship between sequence and 

annotation. Bioinformatics. 19, 1275-83. 

[27] Chen, X., Liu, M., and Ward, R. 2008. Protein function 

assignment through mining cross-species protein-protein 

interactions. PLOS ONE. 3(2), e1562.  

[28] Crosby, M.A., Goodman, J.L., Strelets, V.B., Zhang, P., 

and Gelbart, W.M. 2007. FlyBase: genomes by dozen. 

Nucleic Acids Research. 35, D486-91. 

[29] Fujimori, T., Miyazu, T., and Ishikawa, K. 1974. 

Evaluation of analytical methods using signal-noise ratio 

as a statistical criterion. Microchemical Journal. 19, 74-85. 

[30] Pellegrini, M., Marcotte, E.M., Thompson, M.J., 

Eisenberg, D., and Yeates, T.O. 1999. Assigning protein 

functions by comparative genome analysis: protein 

phylogenetic profiles. PNAS. 96(8), 4285-88. 

[31] van Noort, V., Snel, B., Huynen, M.A. 2003. Predicting 



31 

 

gene function by conserved co-expression. TRENDS in 

Genetics. 19, 238-42. 

[32] Date, S.V., Marcotte, E.M. 2003 Discovery of 

uncharacterized cellular systems by genome-wide analysis 

of functional linkages. Nature Biotechnology. 21, 1055-62. 

[33] Deng, M., Mehta, S., Sun, F., and Chen, T. 2002. Inferring 

domain-domain interactions from protein-protein 

interactions. Genome Research. 12, 1540-8. 

[34] Mulder, N.J., Apweiler, R., Attwood, T.K., Bairoch, A., 

Bateman, A., Binns, D., et al. 2002. InterPro: an integrated 

documentation resource for protein families, domains and 

functional sites. Briefing in Bioinformatics. 3, 225-35. 

[35] Apweiler, R., Bairoch, A., Wu, C.H., Barker, W.C., 

Boeckmann, B., Ferro, S., et al. 2004. UniProt: the 

universal protein knowledgebase. Nucleic Acids Research. 

32, D262-6. 

[36] The Gene Ontology Consortium. AMIGO GO database 

release 21-10; 2008. DOI=  http://amigo.geneontology.org. 

[37] Nooren, I.M.A., and Thornton, J.N. 2003. Structural 

characterization and functional significance of transient 

protein-protein interactions. Journal of Molecular Biolog. 

325, 991-1018. 

[38] Date, S.V, and Marcotte, E.M. 2005. Protein function 

prediction using the Protein Link Explorer (PLEX). 

Bioinformatics. 21, 2558-9. 

[39] Sherlock, G., Boussard, T.H., Kasarski, A., Binkley, G., 

Matese, J.C., Dwight, S.S., et al. 2001. The Standford 

Microarray Database. Nucleic Acids Research. 29, 152-5. 

[40] Sharan, R., Katz, A.M., and Shamir, R. 2003. CLICK and 

EXPANDER: a system for clustering anzzzyd visualizing 

gene expression data. Bioinformatics. 19, 1787-99. 

[41] Güldener, U., Münsterkötter, M., Kastenmüller, G., Strack, 

N,. van Helden, J., Lemer, C., Richelles, J. 2005. CYGD: 

the comprehensive yeast genome database. Nucleic Acids 

Research. 33, D364-8. 

[42] Salwinski, L., Miller, C.S., Smith, A.J., Pettit, F.K., 

Bowie, J.U., and Eisenberg, D. 2004. The database of 

interacting proteins: 2004 update. Nucleic Acids Research. 

32, D449-51. 

[43] Stark, C., Breitkreutz, B.J., Reguly, T., Boucher, L., 

Breitkreutz, A., and Tyers, M. 2006. BioGRID: a general 

repository for interaction datasets. Nucleic Acids 

Research. 34, D535-9. 

[44] Chatr-aryamontri, A., Ceol, A., Palazzi, L.M., Nardelli, G., 

Schneider, M.V., Castagnoli, L., et al. 2007. MINT: the 

molecular interaction database. Nucleic Acids Research. 

35, D572-4. 

[45] Peri, S., Navarro, J.D., Amanchy, R., Kristiansen, T.Z., 

Jonnalagadda, C.K., Surendranath, V., et al. 2003. 

Development of human protein reference database as an 

initial platform for approaching systems biology in human. 

Genome Research. 13, 2363-71. 

[46] Bateman, A., Birney, E., Cerruti, L., Durbin, R., Etwiller, 

L., Eddy, S.R., et al. 2004. The Pfam protein families 

database. Nucleic Acids Research. 32, D138-41. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


