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ABSTRACT 

 
Indica  is an intelligent decision support system for rice yield prediction based on eleven 
(11) input parameters such as; weeds, rusiga, daun lebar, padi angin, bena perang, 
worms, rats,bacteria, jalur daun merah, hawar and lodging (kerebahan). The system is 
ported on a web server and is available freely on the internet. The outstanding feature of 
this system is the IDSS architecture that incorporates a neural network model as an 
intelligent component. The outstanding attributes of Indica are that; it is able to predict 
rice yield faster, easy to use and users can change input parameters easily.  This system is 
useful for; Ministry of Agriculture & Agro-Based Industry, Malaysian Agriculture 
Development Association (MADA), Malaysian Agricultural Research and Development 
Institute (MARDI), Lembaga Pertubuhan Peladang (LPP) and private sectors. Ministry 
of Agriculture & Agro-Based Industry will use it in setting agricultural policy in national 
planning. MADA will use it to manage the efficiency of water usage in the rice field. 
MARDI will use it to support Research & Development activities especially in the area of 
precision farming. LPP will use it to offer advice to paddy farmers to produce improved 
quality rice with less damage to the environment and better utilization of water.  In terms 
of sosio-economic impact, it will help farmers to produce high quantity of rice yield 
without jeopardizing the quality. It is anticipated that with the adoption of this system in 
the farmer’s farming practice will assure that the production of high quality rice will then 
be sufficient for local consumption as well as to be exported. Thus, per capita income of 
farmers will be increased.  
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ABSTRAK 

 
 
Indica merupakan sistem bantuan keputusan untuk meramal hasil padi berdasarkan 
sebelas (11) parameter input yang terdiri daripada; rumput rampai, rusiga, daun lebar, 
padi angin, bena perang, cacing, tikus,bakteria, jalur daun merah, hawar dan padi rebah. 
Sistem ini diletakkan di server sesawang yang boleh dicapai secara percuma melalui 
internet.  Ciri yang menarik pada sistem ini ialah terdapatnya rangkaian neural selaku 
suatu komponen pintar yang disepadukan kedalam senibinanya. Sistem ini mampu 
meramal hasil padi dengan pantas, ianya mudah digunakan serta pengguna boleh 
menukar parameter input secara mudah.  Sistem ini boleh digunakan oleh  Kementerian 
Pertanian dan Asas Tani, MADA, MARDI, LPP dan sektor swasta. Kementerian 
Pertanian dan Asas Tani boleh menggunakannya untuk merangka polisi pertanian dalam 
perancangan nasional.  Manakala pihak MADA boleh menggunakan sistem ini untuk 
mengurus penggunaan air secara efisien dikawasan penanaman padi. Pihak MARDI 
menggunakannya untuk menyokong aktiviti penyelidikan dan pembangunan dalam 
bidang ’precision farming’. Pihak LPP menggunakan sistem ini untuk membantu 
penanam padi menghasilkan beras yang bermutu tinggi tanpa merosakan persekitaran 
serta menggunakan air secara optimum.  Adalah dijangkakan hasil pengeluaran padi akan 
meningkat dan ianya mencukupi untuk kegunaan negara dan juga boleh diekspot jika 
sistem ini digunakan dengan sepenuhnya.  Oleh yang demikian pendapatan per capita 
penanam padi akan bertambah. 
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CHAPTER 1 

 

 

 

INTRODUCTION 

 

 

 

1.1 Background of the Problem 

 

 

Precision farming is a new method of crop management by which areas of land or 

crop within a field may be managed by different levels of input depending upon the 

yield potential of the crop in that particular area of land. Precision farming is an 

integrated agricultural management system incorporating several technologies such 

as global positioning system, geographical information system, yield monitor and 

variable rate technology [1]. Precision farming has the potential to reduce costs 

through more efficient and effective applications of crop inputs and it can also reduce 

environmental impacts by allowing farmers to apply inputs only where they are 

needed at the appropriate rate [2].  

 
Meanwhile, prediction can be considered as one of the oldest crop management 

activities [3]. Prediction of crops yield like wheat, corn and rice has always been an 

interesting research area to agro meteorologist and it has become an important 

economic concern [4]. Rice is the world’s most important food crop and a primary 

source of food for more than half of the world’s population [5]. Almost 90% of rice 

is produced and consumed in Asia, and 96% in developing countries [6]. In 

Malaysia, The Third Agriculture Policy (1998-2010) was established to meet at least 

70% of Malaysia’s demand a 5% increase over the targeted 65%. The remaining 

30% comes from imported rice mainly from Thailand, Vietnam and China [7]. 
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Raising level of national rice self-sufficiency has become a strategic issue in the 

agricultural ministry of Malaysia. The numerous problem associated with rise 

farming include monitoring the status of nutrient soil, maintaining irrigation 

infrastructures, obtaining quality seedlings, controlling pests, weeds and diseases, 

and many other problems that need to be addressed in order to increase productivity 

[8]. All these problems can be overcome with a good prediction system which can 

foresee rice yield in the near future. 

 
The ability to predict the future enables the farm managers to take the most 

appropriate decision in anticipation of that future. Neural network offers exciting 

possibilities to perform machine learning and prediction, and abundantly utilized in 

performing agriculture prediction task [4][9][10][11]. Safa et. al, 2002 used 

Backpropagation Network to predict wheat yield using climatic observation data and 

predicted with a maximum of 45-60kg/ha. Sudduth et. al, 1996 used neural network 

to predict soy bean yield based on soil parameters and achieve a testing error of 

17.3%. Liu et. al, 2001 used NN to predict maize yield based on rainfall, soil and 

other parameters and obtained a testing error of 14.8%, whereas O’Neal et. al, 2002 

used Backpropagation Network to predict rice yield based on weather data 

[4][9][11]. Neural network has the ability to learn and identify complex patterns of 

information and to associate input data and output. 

 

 

 

 

1.2 Statement of the Problem 

 

 

In this study we intend to come up with an approach of developing IDSS for rice 

yield prediction in precision farming. The research question is: 

 

How to produce an approach that is able to predict rice yield based on real input 

parameters collected from MUDA Irrigation areas? 
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In order to answer the main issue raised above, the following issues need to be 

addressed as a pre-requisite: 

 

a. What is the suitable technique to perform the data conversion processes? 

b. What is the suitable Neural Network Model to be used as the intelligent 

component in the IDSS?  

c. What is the suitable architecture for the IDSS? 

d. How to develop the IDSS prototype? 

e. What is the suitable platform to place the IDSS prototype so that the 

interested parties/organization able to access it globally? 

 

 

 

 

1.3 Aim 

 

 

The goal of this project is to develop an intelligent decision support system that can 

predict rice yield based on specified input parameters. 

 

 

 

 

1.4 Objective 

 

 

 The objectives of this project are: 

 

(a) To identify the format and values for input parameters affecting 

the rice yield 

(b) To investigate, design and develop data conversion and reduction 

algorithm for input parameters affecting rice yield. 
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(c) To study relevant Artificial Neural Network (ANN) Models and 

propose a suitable ANN Model as an intelligent component in the 

IDSS. 

(d) To propose the architecture to predict crop yield given the input 

parameters. 

(e) To design and develop an intelligent decision support system for rice 

yield prediction. 

 

 

 

1.5 Scope  

 

 

 The scope of this study is as follows: 

 

(a) There are eleven (11) input parameters being considered namely; 

weeds, rusiga, daun lebar, padi angin, bena perang, worms, 

rats,bacteria, jalur daun merah, hawar and lodging 

(b) Data were obtained from the Muda Irrigation Area, Alor Star, Kedah 

Muda Agricultural Development Authority (MADA) ranges from 

1995 to 2001, a total of seven (7) years.  

 

 

 

 

1.6 Thesis Organization 

 

 

The report consists of six (6) chapters.  Each chapter is briefly described as 

follows: 

(a) Chapter 1 describes the background of the problem, statement of the 

problem, aim, objective, scope and ended with report organization. 
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(b) Chapter 2 contains a definition of precision farming, a review on the 

existing crop modeling system, a description of an intelligent decision 

support system and the ANN Model.  

(c) Chapter 3 presents the yield data obtained from MADA and 

illustrations of various data conversion algorithms. 

(d) Chapter 4 describes the evaluated ANN Models and a proposed 

model. 

(e) Chapter 5 describes the Intelligent Decision Support System (IDSS) 

architecture and the IDSS prototype. 

(f) Chapter 6 presents the Conclusion and Recommendations. 
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CHAPTER 2 

 

 

 

 

LITERATURE REVIEW 

 

 

2.1 Introduction 

 

Before the 1980’s, the agriculture sector was considered an important income earner for 

most Malaysians. Nevertheless, Malaysia is currently competing among other global 

players in other new emerging businesses, technologies and industries such as the 

automobile sector, telecommunication and biotechnology industry. However, this 

country has never undermine the importance of the nation’s first and foremost bread 

winner for the country; agriculture.  Even after the 2004 General Election, the 

importance and well being of the agriculture industry has been reinforced. Previously, 

all pertaining issues and activities regarding agriculture, livestock, farming, fishery and 

commodities were totally under the Ministry of Agriculture. A new milestone in the 

agriculture sector has been proven due to the establishment of a new ministry solely for 

the interest of this sector, the Ministry of Agriculture and Agro-Based Industry. 

Currently, this ministry is responsible for improving the income of farmers, livestock 

breeders and fisherman by efficient utilization of the nation’s resources. Additional it 

also helps to manage food production for the domestic consumption and export [20].  

 

Since the mid-60s, raising the level of national rice self-sufficiency and the income of 

paddy farming households has been a strategic political issue in Malaysia. One of the 
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approaches in obtaining the maximum quantity of rice yield is by using precision 

farming. It is a comprehensive system designed to optimize agriculture production by 

carefully tailoring soil and crop management to fit the different conditions found in each 

field while maintaining environmental quality. The advantages of precision farming is 

that it offers opportunities to improve agriculture productivity and product quality, 

reduces agro-chemical wastage through efficient application and resulting in minimizing 

environmental pollution and in energy conservation[1][2]. 

 

Thus this chapter starts with a definition of precision farming concept, then a review on 

the existing crop modeling system, a description of an intelligent decision support 

system and the ANN Model. 

 

 

2.2 Precision Farming 

 

Precision farming is a new agricultural system concept with the goals of optimizing 

returns in agricultural production and environment. Today’s technological advancement 

has reached a level where a farmer can have access to information and tools to manage 

mechanized in-field operations. They can now measure, evaluate and deal with in-field 

variability, (e.g. soil fertility, water availability and yield) that was known to exist 

previously but was not manageable, to his advantage. The ability to handle variations in 

productivity within a field and maximize financial return, reduce waste and minimize 

impact on the environment has always been the objective of an enterprising farmer, 

especially those with limited land resources and those who advocate sound agriculture 

practice. 

 

This concept is not new. What is new is the ability to automate data collection and 

documentation and the utilization of this information for strategic farm management 

decision in the field operations through mechanization, sensing and communication 

technology. To some, precision farming means using satellite, sensors and field or 

thematic maps. Precision farming is in fact a comprehensive system designed to 
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optimize agriculture production by carefully tailoring soil and crop management to fit 

the different conditions found in each field while maintaining environmental quality 

[1][2]. Current whole-field management approaches ignore variability in soil-related 

characteristics and seek to apply crop production inputs in a uniform manner. With such 

approach there was obviously the likelihood of over-application and under-application 

of inputs in a single field. The advantages of precision farming is it offers opportunities 

to improve agriculture productivity and product quality, reduces agro-chemical wastage 

through efficient application and resulting in minimizing environmental pollution and in 

energy conservation. In precision farming timeliness of in-field operations (cultivation, 

seed sowing, application of fertilizers and pesticides and harvest) is crucial. Precision 

farming has, therefore, not only the ability to apply  treatments that are varied at local 

level, but also to precisely monitor and assess the agricultural enterprise at a local and 

farm level. It also provides sufficient understanding of the processes involved to apply 

inputs in such a way as to be able to achieve a particular goal. The goal, however, might 

not necessarily mean maximum yield but may be to optimize financial advantage while 

operating within environmental constraints. 

 

In-field variability, spatially or temporally, in soil-related properties, crop 

characteristics, weed and insect population and harvest data are important database that 

need to be developed to realize the potential of precision farming. Of these, entire crop 

yield monitoring, is the most mature component of precision farming technology and is 

the logical starting point for precision farming. It gives the farmer something to look at 

and start raising question about his management. Several years of yield data may be 

required to make good decision. Highly varying yield within a field indicate that the 

current management practices may not be providing the best possible growing 

conditions everywhere in the field. In this case, further adoption of precision farming for 

the other operations may be beneficial.  

 

Establishment of soil-related characteristics within a field, through regular soil sampling, 

is another database that is extremely important. Some of the characteristics such as soil 

texture vary very little with time, others such as moisture content, nitrate level, fluctuate 
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rapidly. Decision therefore has to be made on what property to sample, how to sample 

and how often to sample so that interpretation from database can be made with greater 

confidence. These soil variables can be very large and complex and is difficult to 

manage and interpret. Therefore, it is critical to define the minimum data sets that 

influence crop growth and production. More do not necessarily mean higher yield or 

income but will surely increase cost through cost of analysis of the parameters 

considered. 

 

 

 

 

2.3 ORYZA2000 

 

 

ORYZA2000 is an upgraded system for a SERE model of rice growth that was 

developed in 1990 under simulation and system analysis for rice production. It is an 

upgrading and integration between ORYZA1 (for potential production) and ORYZA-N 

(for nitrogen-defender product). ORYZA 2000 simulates the growth and the 

development of lowland rice at potential production situation, water limitation and 

nitrogen limitation. To simulate situations of production, several module need to be 

integrated in ORYZA2000. The aforementioned modules are; cropping module, evapo-

transpiration model, dynamic nitrogen module and water-soil balancing module. The 

modules are coded in FORTRAN programming language to simulate agro ecological 

growth process. Daily weather is used as the input data to the module. 

  

ORYZA2000 simulate water-balance and cropping growth and also the growth of 

lowland rice under potential and situation of water decrease and also the decreasing of 

nitrogen. Under this condition, the model has been tested in field experiments using 

variety of high modern result at tropical (such as IR20, IR58, IR64 and IR72 at IRRI in 

Philippine) and sub-tropical (such as YRL39 at Yanco, Australia). Validity result had 

been reported that is a potential production by Kropff et al (1994a,b) and Matthew et al 
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(1995), for production and water decrease by Wopereis (1993), Wopereis et al (1996a,b) 

and Boling et al (2000), for production that the nitrogen decrease by Drenth et al (1994) 

and Aggarwal et al [21]. For crop parameters, ORYZA2000 controlled the parameters 

like pests and weeds and also the element of water and nitrogen. In all the experiments, 

the crop is supplied with enough phosphorus and sodium. The rice field had been 

protected from pests and weeds. In that situation, ORYZA2000 is expected to be 

performed successfully for others type of paddy and also in other situation. 

ORYZA2000 has not been tested on hybrid rice or other type of highland rice since 

these types of rice requires more parameters. 

 

 

 

 

2.4 Other crop yield modelling  

 

 

Besides ORYZA2000, there are several crops system such as wheat, corn and grains.  In 

the wheat yield prediction, the researchers also apply artificial neural network by using 

climatic data to predict dry farming wheat yield. In this study, the result of climatology 

for period (1990-99) for each of eleven phenological stages as parameters of wheat 

including germination, emergence, third leaves, tillerng, stem formation, heading, 

flowering, milk maturity, wax maturity, full maturity and also meteorological factors. 

Because of the purpose of this study is to predict wheat yield, the input vector elements 

must be selected by factors affecting it. The most important of these elements are 

meteorological factors such as: air temperature, wind speed, rainfall quantity, interval 

rainfall, sun hours, air relative humidity and evapotranspiration. The effect of radiation 

factors (SSR, TSR, RSR) are considered as important parameters too. But, due to lack of 

correct and complete statistic, it was not included in the input matrix.  The wheat yield 

was predicted with maximum error (45-60 kg/ha) at least two month before crop 

ripening.  
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Another contribution is to corn and soybean yield are the development of four 

backpropagation model using topographic features, vegetation indices and textural 

indices. A feed-forward, completely connected, backpropagation artificial neural 

network was designed to approximate the nonlinear yield function relating corn yield to 

factors influencing yield. By stratified sampling based on rainfall, some of the data were 

excluded from the training set and used to verify the yield prediction accuracy of the 

artificial neural network. The RMS error for 60 verification patterns was about 20%. 

After the artificial neural network was developed and trained, three aspects of the input 

factors were investigated: (1) yield trends with 4 input factors, (2) interaction between 

nitrogen application rate and late July rainfall, and (3) optimization of the 15 input 

factors with a genetic algorithm to determine maximum yield. Drummond et al. [22] 

compared several methods for predicting crop yield based on soil properties. They noted 

that the process of understanding yield variability is made extremely difficult by the 

number of factors that affect yield. They used several multiple linear regression methods 

such as multiple linear regression (MLR), R 2 = 0.42; stepwise MLR (SMLR), R 2 = 

0.43; partial least squares regression (PLSR), R 2 = 0.43; projection pursuit regression 

(PPR), R 2 = 0.73; and back-propagation neural network (BPN), R 2 = 0.67  for 

modeling the relationship between corn yield or soybean yield and soil properties. They 

concluded that less-complex statistical methods, such as standard correlation, did not 

seem to be particularly useful in understanding yield variability. The correlation 

matrices described each factor's linear relationship to yield. However, when complex 

nonlinear relationships between factors exist, correlation may provide inaccurate and 

even misleading information about these relationships. 

 

Prediction capabilities were highest for the nonlinear, non-parametric methods. One 

method Drummond et al. [22] tried to use was a feed-forward, back-propagation 

Artificial Neural Network for corn and soybean yield prediction. The input parameters 

are; soil properties, such as phosphorus (P), potassium (K), pH, organic matter, topsoil 

depth, and magnesium saturation.  compared the results with other statistical models. 

The Artificial Neural Network showed promise as aid in understanding yield variability, 

although their network model needed further improvements for increasing accuracy. 
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They did not include weather information and other factors in their artificial neural 

network. 

 

An Artificial Neural Network trained to relate crop yield to the factors that affect yield 

could be very useful in setting more realistic target yields within fields for precision 

agriculture. Crop yields are highly dependent upon weather, which cannot be predicted. 

However, all inputs except weather could be specified for a trained artificial neural 

network. Many years of past weather records could then be input to calculate yield 

variation with weather. From such calculations, it would be possible to calculate 

probabilities of achieving crop yields at various levels. In selecting target yields, a 

producer would then be able to estimate the probabilities of achieving those yields.  

 

An artificial neural network trained to predict yield accurately in one field might not be 

accurate in another field. If some unmeasured factors influenced yields, the training 

process might set weights that compensated for the omissions in the field used for 

training. If the level of those unmeasured factors differed in another field, the neural 

network trained in the first field would be inaccurate in the second field. However, an 

advantage of the Artificial Neural Network is that it may be practical to do initial 

training on a field with a large database, and then retrain the network for other fields 

with much smaller databases. The network topology could be the same for all fields, but 

through retraining, the weights could be specific to each field. Moreover, the weights for 

each field could be updated through retraining each time a new crop was harvested. 

 

 

 

 

2.5 Intelligent Decision Support System 

 

 

The first concepts involved in DSS were first articulated in the early 1970s by Scott-

Morton under the term management decision systems. He defined such system as  
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“Interactive compute-based systems, which can help decision makers, utilize data 

and models to solve unstructured problems” [1971]. Another classical definition 

of DSS, provided by Keen and Scott-Morton [1978] follows: 

 

When the organization has complex decision to make or problem to solve, it often turns 

to experts for advice. These experts have specific knowledge and experience in the 

problem area. In other to make the system can solve the complex problem and get the 

better decision  the decision support system had to add with intelligent component so 

that this component can handle the problem.  

 

Adding the intelligence to the process of modeling (building models or using existing 

models) and to their management makes lots of sense because some of the tasks 

involved (e.g., modeling and selecting models) require considerable expertise. The 

topics of intelligent modeling and intelligent model management have attracted 

significant academic attention in recent years [12] because the potential benefits could 

be substantial. It seems, however, that implement of such integration is fairly difficult 

and slow. 

 

To better understand in modeling the decision-making process, it is advisable to follow 

step according to Simon [1977], involve three major phases: intelligence, design and 

choice. A fourth phase, implementation, was added later. A conceptual picture of the 

decision-making process is shown in Figure 2.0. There is a continuous flow activities 

from intelligent to design to choice, but at any phase there may be a return to a previous 

phase. 

 

The decision-making process starts with intelligent phase, where reality is examined and 

the problem is identified and defined. In the design phase a model that represents the 

system is constructed. This is done by making assumptions that simplify reality and by 

writing the relationships among all variables. The courses actions are identified. The 

choice phase includes a proposed solution of the model. 
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Figure 2.0 The Decision-Making/ Modeling Process {Source:  Efraim Turban, 

“Decision Support System and Expert Systems”, Prentice Hall: pg 46, 1998} 
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Before modeling process, we should know the component in intelligent decision support 

system (IDSS). IDSS is composed of the following subsystems: 

 

1. Data Management. The data management includes the databases(s), which 

contains relevant data for the situation and is managed by software called 

database management systems (DBMS). 

2. Model Management. A software package that includes financial, statistical, 

management science or other quantitative models that provides the system’s 

analytical capabilities, and an appropriate software management. 

3. Communication (dialog subsystem). The user can communicate with and 

command the DSS through this subsystem. It provides the user interface. 

4. Knowledge Management. This optional subsystem can support any of other 

subsystems or act as an independent component (intelligent component).   
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Figure 2.1 Unified Architecture for an Intelligent Decision Support System. 

{Source: J.T.C Cheng et.al., “A Unified Architecture for Intelligent DSS,” in 

Proceedings, 21st HICSS, Hawaii, January 1998©1998 IEEE} 
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2.6 Neural Network 

 

Neural network or more precisely, Artificial Neural Network (ANN) is also referred in 

the literature as connectionist network or parallel-distributed processor [23]. It consists 

of a large number of processing elements called neurons or nodes or units. These 

processing elements are interconnected to each other and the power of neural network 

lies in the tremendous number of interconnections and its learning capability. Neural 

network can be defined as a massively parallel distributed processor that has a natural 

propensity for storing experiential knowledge and making it available for used. The 

motivation for the development of neural network technology stemmed from the desire 

to develop an artificial system that could perform “intelligent” tasks similar to those 

performed by human brain.  
 
Neural Networks have grown rapidly over the last few years, show good capability to 

deal with non-linear multivariate systems. Moreover, they can process input patterns 

never presented before, in much the same way as the human brain does. Recently, 

connections have emerged between neural network techniques and its applications in 

engineering, agricultural, and environmental sciences. 

 

An artificial neural network is a computational mechanism that is able to acquire, 

represent, and compute a weighting or mapping from one multivariate space of 

information to another, given a set of data represent on that mapping. It can identify 

subtle patterns in input training data which may be missed by conventional statistical 

analysis. In contrast to regression models, neural networks do not require knowledge of 

the functional relationships between the input and the output variables. Moreover, these 

techniques are non-linear, and therefore may handle very complex data patterns which 

make simulation modeling unattainable. As well as the ability to model multi-output 

phenomena, another advantage of neural networks is that all kinds of data - continuous, 

near-continuous, and categorical or binary - can be input without violating model 

assumptions. Once the training and testing phases of the neural network analysis are 

found to be successful, the generated algorithm can be easily put to use in practical 

applications [24].  
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2.6.1 Backpropagation Algorithm 

 

 

Backpropagation is most widely used learning algorithm. It is a popular technique 

because it is easy to implement. It does require training data for conditioning the 

network before using it for predicting the output. A backpropagation network includes 

one or more hidden layers. The network is considered a feedforward approach, since 

there are no interconnections between the output of a processing element and the input 

of node on the same layer or on the preceding layer. Externally provided correct patterns 

are compared with the neural network output during training (i.e., it is a supervised 

training), and feedback is used to adjust the weights until all training patterns are 

correctly categorized by the network. 

 

Starting with the output layer, error between the actual and desired outputs is used to 

correct the weights for the connections the previous layer. It has been shown that for any 

output neuron, j, the error (delta) = (Zj – Yj) x (df/dx), where Z and Y are the actual 

outputs. It is useful to choose the sigmoid function, f = [1 + exp (-x)]-1, to represent the 

output of that neuron. In this way, df/dx = f (1 - f) and the error is a simple function of 

the desired and actual outputs.  The factor f (1 - f) is the logistic function, which serve to 

keep the error correction well bounded. The weights of each input to the jth neuron are 

then changed in proportion to this calculated error. A more complicated expression can 

be derived to work backwards a similar way from the output neurons through the inner 

layers to calculate the correction to the associated weights of the inner neurons. 

 

Backpropagation algorithm has successfully used in predicted corn yield based on soil 

texture, topography, Ph and some nutrient element [11]. Another application of 

backpropagation algorithm is to predict wheat yield using climatic observation data [12].  
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2.6.2 Enhanced Backpropagation Algorithm 
 
 
Quick propagation computes the average gradient of the error surface across all cases 

before updating the weights once at the end of the epoch. 

 

In the standard BP, the error function decreases most rapidly along the negative of the 

gradient however fastest convergence is not guaranteed.  Conjugate gradient descent 

overcomes the discrepancy by constructing a series of line searches across the error 

surface. It first works out the direction of steepest descent, just as back propagation 

would do [10][11].  

 
00 gp −=  

 

A line search is then performed to determine the optimal distance to move along the 

current search direction 

 

kkkk pxx α+=+1  

where  

 xk is the vector of current weight and bias 

 αk is the learning rate 

 pk is the gradient 

 

The next search direction is determined so that it is conjugate to previous search 

directions.  The general procedure for determining the new search direction is to 

combine the new steepest descent direction with the previous search direction: 

 
1−+−= kkkk pgp β  

 
The constant βk is computed based on the Fletcher-Reeves update: 
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The Levenberg-Marquardt algorithm was designed to approach second-order training 

speed without having to compute the Hessian matrix.  When the performance function 

has the form of a sum of squares, then the Hessian matrix can be approximated as:[6][3]. 
 
  H = JT J 

and the gradient can be computed as 

  g = JT e 

where 

J : Jacobian matrix contains first derivatives of the network errors with respect 

to the weights and biases. 

E : a vector of network errors 

 

The weights and biases are computed based on the following formula: 
 
  [ ] eJIJJxx TT

kk
1

1
−

+ +−= µ  
 
where µ is a scalar value. 
 
µ is decreased after each successful step and is increased only when a tentative step 

would increase the performance function.  Hence, the performance function will always 

be reduced at each iteration of the algorithm. 

 

 

 

2.6.3 Radial Basis Function Network 

 

 

Radial Basis Function (RBF) neural networks is an alternative to the popular Multi 

Layer Perceptron (MLP) based neural networks that is used in conjunction with back 

propogation training method for the generation neural network model. RBF neural 

networks are function approximation models that can be trained by examples to 

implement a desired input-output mapping [14]. Under most circumstances, the 

performance of RBF neural networks can match those of back-propogation MLP. 
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RBF networks differs from MLP networks from a number of characteristics [15] MLP 

based networks depends on the number of units per layer, RBF based networks requires 

that the number of radial basis functions use centres and widths of those functions be 

calculated earlier. RBF networks employs only one hidden layer and MLP networks may 

have more than one hidden layer.  

 

Nodes in MLP networks typically share a common neural model whereas hidden and 

output nodes in RBF networks are functionally distinct. Another significant difference is 

that MLP networks construct “global” approximations to non-linear output 

approximations whereas RBF networks construct “local” input-output approximations 

(Gaussian functions)[15].RBF network is created by adding a neuron to the hidden layer 

one at a time until the (SSE) in formula reach below the value objective target. 

 

 

 

2.7 Summary 

 

 

This chapter contains a definition of precision farming, an evaluation of rice growth and 

production simulation model, ORYZA2000.  Besides ORYZA2000, other crop yield 

models are also reviewed.  The chapter then continues to describe an intelligent decision 

support system (IDSS) methodology and architecture that will be adopted to predict the 

rice yield.  Artificial Neural Network (ANN) model will be used as the intelligent 

component in the IDSS.  Thus this chapter finally describes various ANN models that 

are potentially to be chosen to predict rice yield, starting with Backpropagation Neural 

Network Model, Enhanced Backpropagation Neural Network Model and Radial Basis 

Function Network. 

 

Next chapter contains examples of rice yield data and various data conversion 

algorithms explored. 



 

 

 

 

 

 

CHAPTER 3 

 

 

 

 

RICE YIELD DATA AND CONVERSION ALGORITHMS 

 

 

 

3.1 Introduction 

 

In this chapter, processes to perform the first and second objectives of the project are 

reported. To recap, the first objective is to identify the format and values for input 

parameters affecting the rice yield. The second objective is to investigate, design and 

develop data conversion and reduction algorithm for input parameters affecting rice 

yield.  Section 3.2 presents the rice yield data and Section 3.3 describes the data 

conversion algorithms examined in this project. 

 

3.2 Rice Yield Data 

 

The data were collected from Muda Agricultural Development Authority (MADA), 

Kedah, Malaysia ranging from 1995 to 2001. There are 4 areas with 27 locations. 

With two planting season for each year, total of 14 seasons is generated. There are 35 

parameters that affect the rice yield. The parameters were classified to 5 groups. 

There are 3 types of weed; rumpai, rusiga and daun lebar, 3 types of pests; rats, type 

of worms and bena perang, 3 types of diseases; bacteria (blb & bls), jalur daun 

merah (jdm) and hawar seludang, one type of lodging and one type of wind paddy, 

making a total 11 input parameters as shown in Table 3.1.  Out of 35 parameters, 

only 11 parameters are chosen since these are the most significant ones that were 

recommended by the domain expert from MADA. 



 

 

 
Table 3.1: List of Input Parameters. 

 
 
 

 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

The yield data obtained from MADA is in a hard copy form. The data are keyed into 

an excel file format to be preprocessed and utilized for prediction.  Table 3.2 shows a 

sample of collected data. As we can see from the dataset that this is not the time 

series prediction because the weather in Malaysia is not consistent. There are two 

types of season symptom that influenced the crop yield in Malaysia. There are 

drought season and raining season. But these symptoms are undetermined whether it 

is occurred in season 1 or season 2.  As an example if the lodging parameters 

affected the rice yield, so most probably it is caused by the raining season and if the 

wind paddy affected the rice yield, it is caused by the drought season.  

 
 
 

3.3 Data Conversion Algorithms 
 
 
The data conversion algorithms are needed to transform the above data into a format 

that is acceptable by the ANN model.  There are two approaches in the exploration of 

data conversion algorithms. In the first approach three (3) are studied  namely; using 

minimum and maximum data values, by using the mean and standard deviation of 

the data and finally by using principal component analysis analysis. 
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Parameters Numbers Name 

1. Weed 3 
i. Rumpai 

ii. Rusiga 
iii. Daun Lebar 

2. Pests 3 
i. Rats 

ii. Type of worms 
iii. Bena Perang 

3. Diseases 3 

i. Bacteria (blb&bls - 
Hawar Daun 
Bakteria & Jalur 
Daun Bakteria) 

ii. Jalur Daun Merah 
(jdm) 

iii. Hawar Seludang 

4. 
Wind Paddy 
(Padi 
Angin) 

1 - 

5. Lodging 
(Kerebahan) 1 - 



 

Table 3.2: A Sample of Raw Data for Musim 1/1995 obtained from MADA 
 

  01 02 03 04 05 06 07 08 09 10 11 12 
A1 64.0 13.3 8.1 0.1 2.18 24.02 10.69 170.8 12.44 2.24 3.62 97142 
B1 184.5 31.5 15.5 0.1 167.1 166.46 105.9 257.2 15.18 5.1 5 81259 
C1 143.0 61.0 61.9 0.1 1 78.1 9.51 111.0 8.19 3.1 100.5 87651 
D1 128.7 98.3 62.3 0.1 10.5 87.81 34.83 253.6 13.81 4.7 200.75 98407 
E1 88.0 70.0 110.0 8.5 2 17.66 5 314.3 19.81 0.1 0.1 78960 
A2 183.0 153.8 168.0 0.7 102.7 434.7 149.7 410.6 23.96 1.4 3 97123 
B2 188.6 120.7 313.1 0.1 44.29 533.54 228.2 522.9 30.25 0.1 0.4 80103 
C2 869.8 393.0 729.6 0.1 168.86 368 42.2 564.7 33.96 2 0.1 84672 
D2 240.0 78.5 0.1 5.8 226.5 217.05 77 448.5 27.74 0.1 0.1 112220 
E2 550.1 833.1 536.0 16.4 184.26 477.21 49.3 427.2 26.57 5.6 79.04 95293 
F2 548.4 199.0 549.0 0.1 290 438.5 11 487.3 23.81 3.5 28.28 113197 
G2 98.9 14.0 106.0 0.6 24.5 34.5 9.76 272.1 16.61 10.2 0.1 67962 
H2 213.3 75.0 55.7 2.0 103.85 107.4 19.8 421.6 25.29 6.1 0.1 96163 
I2 387.8 157.0 155.0 24.5 47.6 213.5 9.9 473.1 29.31 2.8 0.1 72096 
A3 32.7 35.1 19.5 0.1 0.56 8.81 0.1 574.4 93.5 0.8 0.1 66102 
B3 396.5 337.0 40.5 13.6 8.1 277.32 2.48 424.7 68.64 1 0.1 93525 
C3 32.4 16.7 28.7 10.0 46.53 74.76 18.29 497.1 79.62 2.4 0.1 94073 
D3 233.8 231.5 1.4 0.4 21.58 244.34 0.1 564.5 91.88 4.1 0.1 79315 
E3 35.8 29.5 0.1 11.2 35.5 139 59 430.6 64.95 7.1 5.5 76172 
F3 214.3 123.0 0.1 0.1 106.6 362.55 18.7 317.2 51.63 8.3 0.1 105830 
A4 110.6 5.7 0.6 1.5 36.9 121.25 8.33 430.6 43.07 3.3 47.64 91472 
B4 123.1 29.4 10.8 17.9 91.6 50 38.1 601.4 36.77 1.5 26 92420 
C4 354.8 28.0 40.0 1.3 82 181.9 51 420.9 46.27 0.1 73 93492 
D4 409.2 67.0 42.0 4.8 130 149 91.5 424.9 44.96 2.8 267 110276 
E4 294.2 101.0 0.1 26.8 190 178.61 24 528.5 55.44 5 110.6 84673 
F4 209.5 73.0 36.0 4.4 193.25 122.35 33.6 439.3 43.48 14 249 102552 
G4 340.1 66.5 33.0 173.8 97.02 52.3 14 364.7 40.63 26 39 80435 
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where 
 

01 jenis rumput 07 tikus 
02 jenis rusiga 08 blb&bls (hawar daun 

bakteria&jalur daun bakteria) 
03 jenis daun lebar 09 jdm (jalur daun merah) 
04 padi angin 10 hawar 
05 bena perang 11 rebah 
06 jenis ulat 12 hasil (output) 

 
An to Gn represent locations 

 
Based on raw data in Table 3.2, the above 3 methods are used to convert the data. 

Table 3.3 shows the data that had been preprocessed using principal component 

analysis technique. 

 
Table 3.3 : Results Using Principal Component Analysis 
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In the second approach six (6) data normalization techniques shown Table 3.4 are 
studied. 

 
Table 3.4: Normalization Techniques 

Technique 
Normalization 

Technique 
Equation 

A 
Simple 

Normalization 
 

B 

Improved 

Simple 

Normalization 

max

*9.0'
x

xx =  

C Unit Range 

minmax

min'
xx

xxx
−

−
=  

where x’ = normalized features 

x = raw features 

xmax = a maximum features value 

xmin = a minimum features value 

D 
Improved Unit 

Range 
( ) 1.0*8.0'

minmax

min +
−

−
=

xx
xxx  

E 
Improved 

Linear Scaling 
 

 
Based on the equations given in Table 4, the yield data are converted into a form that 

are suitable to become input to the ANN Model. Results obtained are depicted in 

Table 3.5 to Table 3.9. 
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max

'
x

xx =

2

1
3'

+
−

= σ
µx

x



 

Table 3.5: Results of Using Technique A (Simple Normalization) 
 01 02 03 04 05 06 07 08 09 10 11 12 

A1 0.030203 0.004246 0.004369 0.000236 0.004793 0.012777 0.038179 0.248849 0.126809 0.006967 0.005934 0.062597 
B1 0.087069 0.010057 0.008341 0.000236 0.367414 0.088547 0.378214 0.374679 0.15474 0.015863 0.008197 0.052362 
C1 0.067485 0.019476 0.033308 0.000236 0.002199 0.041545 0.033964 0.161772 0.083486 0.009642 0.164754 0.056481 
D1 0.060736 0.031386 0.033523 0.000236 0.023087 0.046710 0.124393 0.369464 0.140775 0.014619 0.329098 0.063412 
E1 0.041529 0.022350 0.059191 0.020099 0.004398 0.009394 0.017857 0.457853 0.201937 0.000311 0.000164 0.050880 
A2 0.086361 0.049106 0.090400 0.001655 0.225814 0.231236 0.534643 0.598193 0.244241 0.004355 0.004918 0.062584 
B2 0.089004 0.038538 0.168478 0.000236 0.097383 0.283813 0.815000 0.761859 0.308359 0.000311 0.000656 0.051617 
C2 0.410477 0.125479 0.392596 0.000236 0.371284 0.195755 0.150714 0.822654 0.346177 0.006221 0.000164 0.054561 
D2 0.113261 0.025064 0.000054 0.013715 0.498021 0.115458 0.275000 0.653351 0.282773 0.000311 0.000164 0.072313 
E2 0.259604 0.265996 0.288420 0.038851 0.405145 0.253849 0.176071 0.622305 0.270846 0.017418 0.129574 0.061405 
F2 0.258801 0.063538 0.295415 0.000236 0.637643 0.233257 0.039286 0.709980 0.242712 0.010886 0.046361 0.072942 
G2 0.046673 0.004470 0.057038 0.001371 0.05387 0.018352 0.034857 0.396372 0.169317 0.031726 0.000164 0.043794 
H2 0.100661 0.023946 0.029972 0.004729 0.228342 0.057131 0.070714 0.614161 0.257798 0.018974 0.000164 0.061966 
I2 0.183011 0.050128 0.083405 0.057839 0.104661 0.113570 0.035357 0.689277 0.298777 0.008709 0.000164 0.046457 
A3 0.015432 0.011207 0.010493 0.000236 0.001231 0.004686 0.000357 0.836844 0.953109 0.002488 0.000164 0.042595 
B3 0.187117 0.107599 0.021793 0.032159 0.01781 0.147518 0.008857 0.618692 0.699694 0.003110 0.000164 0.060266 
C3 0.015290 0.005332 0.015443 0.023646 0.102309 0.039768 0.065321 0.724272 0.811621 0.007465 0.000164 0.060619 
D3 0.110335 0.073914 0.000753 0.000993 0.047449 0.129975 0.000357 0.822378 0.936595 0.012753 0.000164 0.051109 
E3 0.016895 0.009419 0.000054 0.026484 0.078056 0.073940 0.210714 0.627375 0.66208 0.022084 0.009016 0.049084 
F3 0.101133 0.039272 0.000054 0.000236 0.234389 0.192856 0.066786 0.462107 0.5263 0.025816 0.000164 0.068195 
A4 0.052194 0.001820 0.000323 0.003476 0.081135 0.064498 0.029750 0.627375 0.439042 0.010264 0.078098 0.058943 
B4 0.058093 0.009387 0.005811 0.042232 0.201407 0.026597 0.136071 0.876093 0.374822 0.004666 0.042623 0.059554 
C4 0.167437 0.008940 0.021524 0.003074 0.180299 0.096760 0.182143 0.613126 0.471662 0.000311 0.119672 0.060245 
D4 0.193110 0.021392 0.022600 0.011421 0.28584 0.079260 0.326786 0.619027 0.458308 0.008709 0.437705 0.071060 
E4 0.138839 0.032248 0.000054 0.063372 0.417766 0.095010 0.085714 0.769959 0.565138 0.015552 0.181311 0.054562 
F4 0.098867 0.023308 0.019372 0.010499 0.424912 0.065083 0.120000 0.640020 0.443221 0.043546 0.408197 0.066083 
G4 0.160500 0.021232 0.017757 0.410972 0.213325 0.027821 0.050000 0.531265 0.414169 0.080871 0.063934 0.051831 
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Table 3.6: Results of Using Technique B (Improved Simple Normalization) 
 01 02 03 04 05 06 07 08 09 10 11 12 

A1 0.027183 0.009123 0.003932 0.000213 0.004314 0.011500 0.034361 0.223964 0.114128 0.006271 0.005341 0.056337 
B1 0.078362 0.021608 0.007506 0.000213 0.330673 0.079693 0.340393 0.337212 0.139266 0.014277 0.007377 0.047126 
C1 0.060736 0.041845 0.029977 0.000213 0.001979 0.037390 0.030568 0.145594 0.075138 0.008678 0.148279 0.050833 
D1 0.054663 0.067431 0.030171 0.000213 0.020778 0.042039 0.111954 0.332517 0.126697 0.013157 0.296189 0.057071 
E1 0.037376 0.048018 0.053272 0.018089 0.003958 0.008455 0.016071 0.412067 0.181743 0.000280 0.000148 0.045792 
A2 0.077725 0.105503 0.081360 0.001490 0.203232 0.208112 0.481179 0.538374 0.219817 0.003919 0.004426 0.056326 
B2 0.080104 0.082797 0.151630 0.000213 0.087645 0.255432 0.733500 0.685673 0.277523 0.000280 0.000590 0.046455 
C2 0.369429 0.269588 0.353336 0.000213 0.334156 0.176180 0.135643 0.740389 0.311560 0.005599 0.000148 0.049105 
D2 0.101935 0.053849 0.000048 0.012343 0.448219 0.103912 0.247500 0.588016 0.254495 0.000280 0.000148 0.065081 
E2 0.233643 0.571486 0.259578 0.034966 0.364631 0.228464 0.158464 0.560074 0.243761 0.015677 0.116616 0.055265 
F2 0.232921 0.136509 0.265874 0.000213 0.573879 0.209931 0.035357 0.638982 0.218440 0.009798 0.041725 0.065648 
G2 0.042006 0.009604 0.051334 0.001234 0.048483 0.016517 0.031371 0.356735 0.152385 0.028554 0.000148 0.039414 
H2 0.090595 0.051448 0.026975 0.004256 0.205508 0.051418 0.063643 0.552745 0.232018 0.017076 0.000148 0.055769 
I2 0.164710 0.107698 0.075065 0.052055 0.094195 0.102213 0.031821 0.620350 0.268899 0.007838 0.000148 0.041812 
A3 0.013889 0.024078 0.009444 0.000213 0.001108 0.004218 0.000321 0.753160 0.857798 0.002240 0.000148 0.038335 
B3 0.168405 0.231174 0.019614 0.028943 0.016029 0.132767 0.007971 0.556823 0.629725 0.002799 0.000148 0.054239 
C3 0.013761 0.011456 0.013899 0.021282 0.092078 0.035791 0.058789 0.651844 0.730459 0.006719 0.000148 0.054557 
D3 0.099302 0.158803 0.000678 0.000894 0.042704 0.116977 0.000321 0.740140 0.842936 0.011477 0.000148 0.045998 
E3 0.015205 0.020236 0.000048 0.023835 0.070251 0.066546 0.189643 0.564637 0.595872 0.019876 0.008115 0.044175 
F3 0.091019 0.084375 0.000048 0.000213 0.210950 0.173570 0.060107 0.415896 0.473670 0.023235 0.000148 0.061375 
A4 0.046975 0.003910 0.000291 0.003128 0.073021 0.058048 0.026775 0.564637 0.395138 0.009238 0.070289 0.053049 
B4 0.052284 0.020168 0.005230 0.038009 0.181266 0.023937 0.122464 0.788483 0.337339 0.004199 0.038361 0.053598 
C4 0.150694 0.019207 0.019372 0.002767 0.162269 0.087084 0.163929 0.551814 0.424495 0.000280 0.107705 0.054220 
D4 0.173799 0.045960 0.020340 0.010279 0.257256 0.071334 0.294107 0.557124 0.412477 0.007838 0.393934 0.063954 
E4 0.124955 0.069284 0.000048 0.057035 0.375989 0.085509 0.077143 0.692963 0.508624 0.013997 0.163180 0.049106 
F4 0.088981 0.050076 0.017434 0.009449 0.382421 0.058575 0.108000 0.576018 0.398899 0.039191 0.367377 0.059474 
G4 0.144450 0.045617 0.015981 0.369875 0.191992 0.025039 0.045000 0.478138 0.372752 0.072784 0.057541 0.046648 
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 Table 3.7: Results of Using Technique C (Unit Range) 

 01 02 03 04 05 06 07 08 09 10 11 12 
A1 0.030157 0.010062 0.004316 0.000000 0.004576 0.012725 0.037835 0.248740 0.125918 0.006658 0.005771 0.064747 
B1 0.087026 0.023935 0.008287 0.000000 0.367396 0.088499 0.377992 0.374588 0.153878 0.015557 0.008034 0.054160 
C1 0.067441 0.046421 0.033256 0.000000 0.001980 0.041494 0.033619 0.161649 0.082551 0.009334 0.164617 0.058421 
D1 0.060692 0.074853 0.033471 0.000000 0.022880 0.046659 0.124080 0.369372 0.139898 0.014312 0.328988 0.065590 
E1 0.041484 0.053282 0.059140 0.019868 0.004180 0.009341 0.017506 0.457774 0.201122 0.000000 0.000000 0.052628 
A2 0.086318 0.117158 0.090351 0.001419 0.225718 0.231195 0.534477 0.598135 0.243469 0.004045 0.004755 0.064734 
B2 0.088961 0.091928 0.168434 0.000000 0.097217 0.283775 0.814934 0.761824 0.307653 0.000000 0.000492 0.053390 
C2 0.410449 0.299489 0.392563 0.000000 0.371268 0.195712 0.150411 0.822629 0.345510 0.005912 0.000000 0.056435 
D2 0.113219 0.059761 0.000000 0.013482 0.498075 0.115411 0.274741 0.653300 0.282041 0.000000 0.000000 0.074797 
E2 0.259569 0.634957 0.288382 0.038623 0.405148 0.253809 0.175777 0.622250 0.270102 0.017113 0.129431 0.063514 
F2 0.258766 0.151612 0.295377 0.000000 0.637774 0.233216 0.038942 0.709937 0.241939 0.010579 0.046204 0.075448 
G2 0.046628 0.010595 0.056988 0.001135 0.053679 0.018300 0.034512 0.396284 0.168469 0.031425 0.000000 0.045298 
H2 0.100618 0.057093 0.029920 0.004494 0.228248 0.057081 0.070382 0.614105 0.257041 0.018668 0.000000 0.064094 
I2 0.182972 0.119598 0.083356 0.057616 0.104499 0.113523 0.035013 0.689232 0.298061 0.008401 0.000000 0.048053 
A3 0.015385 0.026679 0.010440 0.000000 0.001012 0.004633 0.000000 0.836821 0.953061 0.002178 0.000000 0.044058 
B3 0.187078 0.256803 0.021740 0.031930 0.017600 0.147473 0.008503 0.618636 0.699388 0.002800 0.000000 0.062336 
C3 0.015244 0.012653 0.015390 0.023415 0.102145 0.039717 0.064987 0.724231 0.811429 0.007156 0.000000 0.062701 
D3 0.110293 0.176385 0.000700 0.000757 0.047256 0.129929 0.000000 0.822352 0.936531 0.012446 0.000000 0.052865 
E3 0.016848 0.022410 0.000000 0.026254 0.077879 0.073891 0.210432 0.627320 0.661735 0.021780 0.008854 0.050770 
F3 0.101090 0.093681 0.000000 0.000000 0.234298 0.192813 0.066452 0.462028 0.525816 0.025513 0.000000 0.070537 
A4 0.052150 0.004269 0.000269 0.003240 0.080959 0.064448 0.029403 0.627320 0.438469 0.009956 0.077947 0.060968 
B4 0.058049 0.022334 0.005758 0.042006 0.201298 0.026545 0.135763 0.876075 0.374184 0.004356 0.042466 0.061599 
C4 0.167398 0.021267 0.021471 0.002838 0.180178 0.096712 0.181851 0.613070 0.471122 0.000000 0.119528 0.062314 
D4 0.193072 0.050995 0.022547 0.011187 0.285777 0.079211 0.326545 0.618971 0.457755 0.008401 0.437613 0.073501 
E4 0.138798 0.076911 0.000000 0.063150 0.417776 0.094962 0.085388 0.769926 0.564694 0.015246 0.181177 0.056436 
F4 0.098825 0.055568 0.019319 0.010265 0.424926 0.065034 0.119686 0.639968 0.442653 0.043248 0.408100 0.068353 
G4 0.160461 0.050614 0.017704 0.410833 0.213222 0.027769 0.049661 0.531196 0.413571 0.080585 0.063781 0.053611 
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Table 3.8: Results of Using Technique D (Improved Unit Range) 
 01 02 03 04 05 06 07 08 09 10 11 12 

A1 0.124126 0.108049 0.103453 0.100000 0.103308 0.110180 0.130268 0.298992 0.200735 0.105327 0.104617 0.124317 
B1 0.169621 0.119148 0.106630 0.100000 0.393533 0.170799 0.402394 0.399671 0.223102 0.112446 0.106427 0.115848 
C1 0.153953 0.137137 0.126605 0.100000 0.101232 0.133195 0.126895 0.229320 0.166041 0.107467 0.231694 0.119256 
D1 0.148553 0.159883 0.126777 0.100000 0.117950 0.137327 0.199264 0.395498 0.211918 0.111450 0.363191 0.124991 
E1 0.133187 0.142625 0.147312 0.115894 0.102992 0.107473 0.114005 0.466219 0.260898 0.100000 0.100000 0.114622 
A2 0.169055 0.193727 0.172281 0.101135 0.280202 0.284956 0.527581 0.578508 0.294776 0.103236 0.103804 0.124307 
B2 0.171169 0.173542 0.234747 0.100000 0.177413 0.327020 0.751947 0.709459 0.346122 0.100000 0.100394 0.115231 
C2 0.428359 0.339591 0.414050 0.100000 0.396630 0.256570 0.220329 0.758103 0.376408 0.104729 0.100000 0.117668 
D2 0.190575 0.147809 0.100000 0.110785 0.498064 0.192329 0.319793 0.622640 0.325633 0.100000 0.100000 0.132356 
E2 0.307655 0.607966 0.330705 0.130899 0.423731 0.303047 0.240622 0.597800 0.316082 0.113690 0.203545 0.123331 
F2 0.307013 0.221290 0.336302 0.100000 0.609811 0.286573 0.131154 0.667950 0.293551 0.108463 0.136963 0.132877 
G2 0.137302 0.108476 0.145590 0.100908 0.142587 0.114640 0.127610 0.417028 0.234776 0.125140 0.100000 0.108758 
H2 0.180495 0.145674 0.123936 0.103595 0.282226 0.145664 0.156306 0.591284 0.305633 0.114935 0.100000 0.123795 
I2 0.246378 0.195678 0.166685 0.146093 0.183238 0.190818 0.128010 0.651386 0.338449 0.106721 0.100000 0.110962 
A3 0.112308 0.121343 0.108352 0.100000 0.100458 0.103707 0.100000 0.769457 0.862449 0.101742 0.100000 0.107766 
B3 0.249663 0.305442 0.117392 0.125544 0.113726 0.217979 0.106802 0.594909 0.659510 0.102240 0.100000 0.122388 
C3 0.112195 0.110123 0.112312 0.118732 0.181355 0.131774 0.151990 0.679385 0.749143 0.105725 0.100000 0.122680 
D3 0.188234 0.241108 0.100560 0.100605 0.137448 0.203943 0.100000 0.757881 0.849224 0.109956 0.100000 0.114811 
E3 0.113479 0.117928 0.100000 0.121003 0.161945 0.159113 0.268346 0.601856 0.629388 0.117424 0.107083 0.113135 
F3 0.180872 0.174945 0.100000 0.100000 0.287066 0.254250 0.153162 0.469623 0.520653 0.120411 0.100000 0.128949 
A4 0.141720 0.103415 0.100215 0.102592 0.164408 0.151559 0.123523 0.601856 0.450776 0.107965 0.162358 0.121293 
B4 0.146439 0.117867 0.104606 0.133605 0.260669 0.121236 0.208610 0.800860 0.399347 0.103485 0.133973 0.121799 
C4 0.233919 0.117013 0.117177 0.102271 0.243775 0.177370 0.245481 0.590456 0.476898 0.100000 0.195622 0.122370 
D4 0.254458 0.140796 0.118038 0.108950 0.328245 0.163368 0.361236 0.595177 0.466204 0.106721 0.450090 0.131320 
E4 0.211039 0.161529 0.100000 0.150520 0.433832 0.175970 0.168310 0.715941 0.551755 0.112197 0.244942 0.117668 
F4 0.179060 0.144455 0.115455 0.108212 0.439551 0.152027 0.195748 0.611974 0.454122 0.134599 0.426480 0.127201 
G4 0.228368 0.140491 0.114163 0.428666 0.270207 0.122215 0.139728 0.524957 0.430857 0.164468 0.151025 0.115408 
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Table 3.9: Results of Using Technique E (Improved Linear Scaling) 
 01 02 03 04 05 06 07 08 09 10 11 12 

A1 -0.86008 -0.55115 -0.53404 -0.33343 -0.88788 -0.67564 -0.93579 0.39219 0.07766 -0.49601 -0.23026 -0.10367 
B1 -0.45977 -0.48098 -0.49056 -0.33343 1.41679 0.25232 0.83811 0.97186 0.20067 -0.42215 -0.20554 -0.30984 
C1 -0.59763 -0.36723 -0.21718 -0.33343 -0.90437 -0.32333 -0.95777 -0.00896 -0.11314 -0.47380 1.50483 -0.22687 
D1 -0.64514 -0.22341 -0.21483 -0.33343 -0.77161 -0.26007 -0.48603 0.94783 0.13917 -0.43248 3.30027 -0.08725 
E1 -0.78035 -0.33253 0.06621 -0.12019 -0.89040 -0.71708 -1.04180 1.35502 0.40854 -0.55129 -0.29330 -0.33968 
A2 -0.46475 -0.00942 0.40793 -0.31820 0.51683 1.99985 1.65416 2.00154 0.59485 -0.51771 -0.24136 -0.10392 
B2 -0.44615 -0.13704 1.26283 -0.33343 -0.29942 2.64377 3.11673 2.75551 0.87724 -0.55129 -0.28793 -0.32485 
C2 1.81688 0.91287 3.71675 -0.33343 1.44138 1.56531 -0.34871 3.03558 1.04380 -0.50221 -0.29330 -0.26554 
D2 -0.27539 -0.29976 -0.58129 -0.18873 2.24687 0.58191 0.29966 2.25564 0.76455 -0.55129 -0.29330 0.09204 
E2 0.75480 2.60979 2.57610 0.08111 1.65659 2.27679 -0.21643 2.11262 0.71203 -0.40923 1.12049 -0.12768 
F2 0.74915 0.16486 2.65269 -0.33343 3.13425 2.02461 -0.93001 2.51652 0.58812 -0.46347 0.21139 0.10473 
G2 -0.74414 -0.54845 0.04264 -0.32124 -0.57597 -0.60737 -0.95312 1.07179 0.26487 -0.29043 -0.29330 -0.48244 
H2 -0.36409 -0.31325 -0.25371 -0.28520 0.53290 -0.13244 -0.76606 2.07510 0.65456 -0.39632 -0.29330 -0.11638 
I2 0.21562 0.00292 0.33134 0.28495 -0.25316 0.55878 -0.95051 2.42114 0.83504 -0.48155 -0.29330 -0.42878 
A3 -0.96406 -0.46710 -0.46699 -0.33343 -0.91052 -0.77473 -1.13310 3.10095 3.71684 -0.53321 -0.29330 -0.50659 
B3 0.24452 0.69695 -0.34327 0.00927 -0.80515 0.97455 -1.08875 2.09597 2.60075 -0.52804 -0.29330 -0.15062 
C3 -0.96506 -0.53804 -0.41279 -0.08212 -0.26811 -0.34508 -0.79419 2.58236 3.09370 -0.49188 -0.29330 -0.14351 
D3 -0.29599 0.29017 -0.57364 -0.32531 -0.61678 0.75969 -1.13310 3.03431 3.64411 -0.44797 -0.29330 -0.33508 
E3 -0.95377 -0.48869 -0.58129 -0.05165 -0.42225 0.07343 -0.03571 2.13597 2.43509 -0.37049 -0.19659 -0.37587 
F3 -0.36077 -0.12818 -0.58129 -0.33343 0.57133 1.52981 -0.78655 1.37462 1.83709 -0.33950 -0.29330 0.00910 
A4 -0.70527 -0.58046 -0.57835 -0.29865 -0.40269 -0.04221 -0.97976 2.13597 1.45279 -0.46864 0.55812 -0.17727 
B4 -0.66374 -0.48907 -0.51825 0.11741 0.36172 -0.50639 -0.42510 3.28176 1.16995 -0.51513 0.17056 -0.16497 
C4 0.10599 -0.49447 -0.34621 -0.30297 0.22756 0.35291 -0.18476 2.07033 1.59646 -0.55129 1.01231 -0.15105 
D4 0.28671 -0.34410 -0.33443 -0.21336 0.89833 0.13857 0.56981 2.09752 1.53764 -0.48155 4.48678 0.06681 
E4 -0.09533 -0.21300 -0.58129 0.34435 1.73680 0.33148 -0.68781 2.79283 2.00814 -0.42473 1.68571 -0.26553 
F4 -0.37671 -0.32096 -0.36978 -0.22326 1.78222 -0.03505 -0.50894 2.19423 1.47120 -0.19228 4.16440 -0.03345 
G4 0.05715 -0.34603 -0.38746 4.07595 0.43746 -0.49141 -0.87412 1.69321 1.34325 0.11765 0.40339 -0.32054 
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In order to evaluate which is the best data conversion techniques, the results/output 

obtained are used as input to the ANN model for prediction purposes, described in 

the following chapter.  

 

3.4  Summary 

 

This chapter describes the first and second objectives of this project; that is to 

identify the format and values for input parameters affecting the rice yield and 

to investigate, design and develop data conversion and reduction algorithm for 

input parameters affecting rice yield.  As for the input parameters, there 

altogether thirty-five (35) parameters, however the most significant ones are 

only eleven (11) parameters.  The values are all numeric.   

Data conversion is necessary to prepare the input data so that it is suitable to be 

accepted by the ANN Model. Two (2) approaches are evaluated. The first 

approach consists of three (3) methods namely; maximum and minimum 

values, mean and standard deviation and pricipal component analysis 

technique.  The second approach consists of six (6) techniques namely; simple 

normalization, improved simple normalization, unit range technique, improved 

unit range and improved linear scaling.  Evaluation of these techniques are 

performed in the next chapter using ANN model to perform the rice yield 

prediction.  
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CHAPTER 5 
 
 
 
 
 

IDSS ARCHITECTURE AND PROTOTYPE 
 
 
 
 
 
5.1 Introduction  
 

 
This chapter will finally describe the architecture and the prototype of the IDSS.  The 

IDSS architecture comprises of the previous modules explained before.  The IDSS 

prototype is the final output desired in this research project.  The prototype consists of 3 

main modules/sub-system namely; IndiCA1, IndiCA2 and Pest Management.  IndiCA1 

helps farmers to plan paddy planting activities.  IndiCA2 help farmers to predict rice 

yield by entering values of the relevant parameters.  Pest Management sub-system helps 

farmers to control pests in their paddy fields. 

 

This chapter starts with Section 5.2 on IDSS Architecture, followed by Section 5.3 on 

IDSS Prototype and the chapter ends with a summary in Section 5.4. 

 
 
 
5.2 IDSS Architecture 
 
 

The architecture of the IDSS for rice yield prediction is shown in Figure 5.1. Five (5) 

major components are integrated to form the architecture:  The components are;(1) the 

predictive model (2) the decision support system (3) the web development (4) the 
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farming database to store rice parameters and (5) the user. Each of the components is 

described below.  

 
 
 

5.2.1  Predictive model  
 
 

This is the model that was used to perform the rice yield prediction task. The factors that 

affect rice yield act as the model input. The model was described in detail in Chapter 4.  

The output was presented to the user after going through the user application 

component.   

 
 
 

5.2.2 Decision support system 
 
 
This component is used to control the management of decision-making information. 

Information about paddy, crop characteristics, and affected factors of rice yield is 

managed by this sub-system. The sub-system also contain the interfaces that helps 

farmers or farm managers to input data, view the output that is generated by the 

intelligent component and to perform what if analysis. Hence the user can culminate 

decisions to maximize rice production.  
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Figure 5.1: Architecture of the IDSS for Rice Yield Prediction 

 
 
 
5.2.3 Web development 
 
 
The IDSS can also be implemented on the Internet through a WWW server, so the users 

can apply the models directly via a Web browser. These open-access WWW 

applications offer several advantages, such as easier access from almost anywhere, 

hence number of the users that are able to access the system will be increased. Upgrades 

are immediately made available on the WWW server. The website is the centre of 
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activity in developing operative decision support systems.  The detailed framework for 

web development is shown in Figure 5.2. 

  

  
  

 Internet framework 
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Figure 5.2: Web-based development of IDSS for Rice Yield 
Prediction 

 
 

 
5.2.4  Farming database 
 
 
The farming database is a knowledge-base to store, process and transfer agricultural crop 

and management information obtained from farmers or farm managers.  The structured 

collection of information is stored as a database file.  A menu system guides the user 

through a sequence of options to capture the management practices followed on a site-

specific farm.  Input parameters are farm and plot descriptions, crop characteristics, 

factors that affect rice yield and sequence of operations.  The factors that affect rice 

yield can be represented as a total of eleven (11) default variables for a start. The 

variables can then be modified or extended as appropriate based on the requirement. 
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5.2.5  User  
 
 
The user communicates with and commands the IDSS through this component.  The 

user is considered as a component of the system.  Researchers claim that some of the 

unique contributions of IDSS originates from the rigorous interaction between the 

computer and the decision maker [14].  Through this component the user can control the 

management of their farm and also obtain information on the predicted yield of their 

farm. 

 
 
 
5.3 IndiCA – the IDSS Prototype 
 
 
The IDSS Prototype-IndiCA consists of the following subsystems; IndiCA1, IndiCA2 

and Pest Management as depicted in Figure 5.3. 

 
IndiCA1 help farmers to plan paddy planting activities.  Here user/farmers only need to 

enter the seedling planting date. The system will then create a complete task schedule.  

For instance, what is the suitable date to drain out water from the paddy fields.  

Examples of associated interfaces regarding IndiCA1 are depicted in Figure 5.4 and 

Figure 5.5. 

 

IndiCA2 help farmers to predict rice yield by entering values for the following 

parameters such as weed (rumpai, rusiga, daun lebar), pest (rats, worms, bena perang), 

diseases (bacteria, jalur daun merah, hawar seludang), wind paddy and lodging 

(kerebahan).  Based on the values entered, IndiCA2 able to predict the rice yield to be 

obtained. 

 

 
Pest Management sub-system helps farmers to control pests in their paddy fields. The 

interfaces for this sub-system are shown in Figure 5.6 and Figure 5.7 
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Figure 5.3: Main Page of IndiCA – the IDSS Prototype 
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Figure 5.4 : IndiCA1 Interface A 



 53

 
 

Figure 5.5 : IndiCA1 Interface B 
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Figure 5.6: Pest Management Interface A 
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Figure 5.7: Pest Management Interface B 
 
 
5.4 Summary 
 
This chapter first describe the IDSS Architecture that consists of five (5) major 

components namely; the predictive model, the decision support system, the web 

development, the farming database to store rice parameters and the user. It then 

illustrates the IDSS prototype that has been developed using PHP and was ported on the 

web.  Farmers or users can access freely the prototype to either plan their seedling 

planting or predict the rice yield or monitor the pest at a single site. 
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CHAPTER 4 

 

 

 

 

ARTIFICIAL NEURAL NETWORK MODEL 

 

 

4.1 Introduction 

 

 

The artificial neural network (ANN) is chosen as the intelligent component in the IDSS. 

Hence this chapter describes the processes involved in using the ANN for the purposes 

of prediction.  There are a variety of ANN models available, however two (2) types are 

found to be suitable for prediction purposes that is Back-propagation (BP) and Radial 

Basis Function (RBF) ANN models.   

 
This chapter starts with Section 4.2 on Modeling the Rice Yield Data, Section 4.3 is on 

ANN parameters and Architecture.  Section 4.4 discusses Performance of Conversion 

Algorithms using BP ANN Model, Section 4.5 is on Performance of Enhanced BP ANN 

Model.  Section 4.6 discusses the Performance of RBF ANN.  Section 4.7 iterate 

Gradient Descent with Momentum and Adaptive Learning Backpropagation and this 

chapter ended with a summary in Section 4.8. 
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4.2 Modeling the Rice Yield Data 
 
 
The development of ANN model consists of 6 steps as referred in [12] depicted in 

Figure 1. In Step 1 the data to be used for training are collected from Muda Agricultural 

Development Authority (MADA) as described in Chapter 3.  

 

In Step 2 the training data need to be identified, and plan must be made for testing the 

performance of the network. The collected data are separated into training and test sets. 

80% of the data are utilized for training the ANN Model and 20% of the data are 

reserved for testing. Out of 378 total set data, 302 sets are chosen for training and 76 set 

are used for prediction.  

 
In Step 3 and 4 a network architecture and a learning method are selected.  

 

Step 5 is the initialization of the network weights and parameters, followed by 

modification of the parameters such as momentum, learning rate and number of neuron 

in the hidden layer as performance feedback is received. Since these are 11 factors that 

affect yield, hence the number of node in the input layer is 11. The number of node in 

the output layer is 1 represent the rice yield. Several training is done to obtain the 

suitable number of nodes in the hidden layer,momentum values and learning rate. 

 

The activities in Step 6, is to convert/transform the input data into the type and format 

required by the ANN Model. Several conversion algorithms are explored as explained in 

the previous chapter, Chapter 3. 

 

In Step 7 and Step 8, training and prediction are done. Two artificial neural network 

models are utilized namely; Back Propagation Neural Network Model and its 

enhancement and Radial Basis Function Neural Network Model (RBF). 
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Figure 4.1: Modeling Steps using the ANN Model 
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4.3 ANN Parameters and Architecture 
 
 
The parameters used to train and test the neural network for predicting the rice yield is 

shown in Table 1. The architecture of nodes in the layers used is 11-5-1 [7] as shown in 

Figure 2 . The values for neural network parameters such as the learning rate (α ) and 

momentum rate ( β ) are problem dependent [8], thus the values are determined 

empirically. 

 
Table 4.1: Neural Network Parameters 

 
Parameters Values 

Learning Rate (α ) 0.9 
Momentum Rate (β ) 0.7 
Number Nodes in Input Layer 11 
Number Nodes in Hidden Layer 5 
Number Nodes in Output Layer 1 

 
 
 

Figure 4.2 : Backpropagation ANN Model 
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4.4 Performance of Conversion Algorithms using BP ANN Model 
 
 
The results obtained after the data convertion process is implemented on the input data 

as shown in Figure 3.5 to Figure 3.9 in Chapter 3 is feed into the BP ANN model for 

both training and testing.  Outputs from the training process will be used to identify the 

deviation between network outputs and actual outputs for each technique using the 

following equations. 

Deviation = 
dataofno

outout
dataofno

i
tn

__

__

1
∑
=

−
 , outn > outt (1)  

  

 

Deviation = 
dataofno

outout
dataofno

i
nt

__

__

1
∑
=

−
 , outt > outn (2)  

  
 
where,  

outn - the network output 
outt - the target output 

 
In order to obtain the mean deviation for each technique, all the deviations computed 

using equation (1) and equation (2) between every network outputs and actual outputs 

are summed up and divided by the total number of the data.  

 

Mean Deviation = 
taNumberofDa

utActualOutpputNetworkOut∑ − )(
   (3) 

 
Table 4.2 shows the mean deviation obtained when the algorithm has converged during 

training session. Graphs of normalization techniques are plotted against mean deviation 

as depicted in Figure 4.3. 
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Table 4.2 : Mean Deviation During Training 
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Figure 4.3: Normalization Techniques vs. Mean Deviation during Training 
 

 
 

Based on Table 4.2 and Figure 4.3, it is found that the Improved Unit Range technique 

has the lowest mean deviation while the highest mean deviation represented by the 

Improved Linear Scaling. The weights stored during training are used to predict the 

yield and the results obtained are illustrated in Figure 4.4.  From Figure 4.4, Improved 

Unit Range technique again outperforms the rest by having the lowest mean deviation.  

Thus the introduction of a constant parameter of 0.8 and 0.1 to the original Unit Range 

equation not only improved the trademark image recognition performance as reported in 

[25], it also improved the rice yield prediction performance.  The parameters help to 

widen the intraclass variation hence improved both recognition and prediction 

performance.  

Techniques Mean deviation 
A Simple Normalization 0.007453 

B Improved Simple 
Normalization 0.007088 

C Unit Range 0.007649 
D Improved Unit Range 0.006348 
E Improved Linear Scaling 0.027466 
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Figure 4.4: Mean Deviation vs. Normalization Techniques during Prediction 

 
 

The results of this study highlight the superiority of the Improved Unit Range technique 

in normalizing yield data.  It is found that the introduction of constant parameters of 0.8 

and 0.1 to the original Unit Range formula does have a tremendous effect on trademark 

image recognition and as well as on rice yield prediction.  This pair of parameters has 

the ability to widen the intraclass variation between the various parameters affecting 

yield. 

 
 
4.5 Performance of Enhanced BP ANN Model 
 
 
In this project, we also explore enhanced BP ANN model to perform the prediction 

when compared to the BP.  Here we choose to study Quick Propagation, Conjugate 

Gradient Descent and Levenberg-Marquardt learning algorithms.  Table 4.3 depicts the 

number of nodes in the hidden layer for each algorithm.  Conjugate Gradient Descent 

and Levenberg-Marquardt use only two nodes in the hidden layer as compared to Back 

Propagation that uses double the value.  Quick Propagation being a heuristic technique 

uses 3 nodes in the hidden layer. 
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Table 4.3: Number of Nodes in the Hidden Layer for the Learning Algorithms  
 

Algorithms 
Number of nodes 

in the hidden 
layer 

Quick 
Propagation 

3 

Conjugate 
Gradient 
Descent 

2 

Levenberg- 
Marquardt 

2 

Back 
Propagation 

4 

 
 

Fewer nodes are required by the Conjugate Gradient algorithm is due to it’s nature that 

perform a search for minimum value of error function in a straight line fashion as 

compared to Back Propagation algorithm that perform a search for a minimum value of 

error function proportional to the learning rate. 

 
Levenberg-Marquardt algorithm compromises between the linear model and a gradient-

descent approach, thus fewer nodes are used in the hidden layer.  A move to a next step 

is allowed if the error value is less than that of the current value.  The allowable 

downhill movement consists of a sufficiently small step. 

 

As for the Quick Propagation, it enhances the Back Propagation algorithm by merely 

computing the average gradient before updating the weights.  Thus, it still model the 

non-linear relationship between data, hence there is a slight improvement in the number 

of nodes in the hidden layer as compared to Back-propagation algorithm. 

 

The Neural Network Model fitted with the above learning algorithm is then used to 

predict the rice yield.  A graph of average absolute error versus each of the above 

algorithms is plotted as depicted in Figure 4.5.  The results obtained tally with the 
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number nodes used in the hidden layer.  With the highest number of nodes in the hidden 

layer, Back Propagation algorithm shows the highest absolute error.   

 

The absolute error for Quick Propagation is slightly better that Back-Propagation, 

absolute error for Lavenberg-Marquart is better than Quick Propagation.  Conjugate 

Gradient Descent displayed the lowest absolute error.  The lowest error depicted by the 

Conjugate Gradient Descent algorithm is due to the search direction to obtain the 

minimum error value, assuring that the algorithm is not stuck at local minima. 
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Figure 4.5: Average Absolute Error versus Different Enhanced Back Propagation 
Algorithms 

 
 

In order to illustrate the performance of each learning algorithm, a graph of actual and 

predicted yield is plotted against locality.  Figure 4.6 depicts the performance of Quick 

Propagation algorithm. Figure 4.7 depicts the performance of Conjugate Gradient 

Descent algorithm.  Figure 4.8 depicts the performance of Levenberg-Marquardt 

algorithm and Figure 4.9 highlights the performance of Back Propagation algorithm.   
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Figure 4.6: Yield versus Locality of Quick Propagation  
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Figure 4.7: Yield versus Locality of Conjugate Gradient Descent 
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Figure 4.8: Yield versus Locality of Levenberg-Marquardt 
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Figure 4.9: Yield versus Locality of Back Propagation 
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Based on Figure 4.6 to Figure 4.9, Conjugate Gradient Descent algorithm portrays the 

best performance as compared to the other.  The next to it is Lavenberg-Marquart and 

then Quick Propagation.  Back Propagation algorithm failed to produce the desired 

output due the major problem of being stuck at local minima. The outstanding 

performance of the Conjugate Gradient Descent algorithm is due to the strategy that 

successive weight correction steps are orthogonal to the gradient.  Thus attributing it to 

exhibit a quadratic convergence property that avoid the local minima phenomena.  

Lavenberg-Marquart is another alternative to choose in training the Neural Network for 

rice yield prediction.  Its superiority as compared to Back Propagation algorithm is that 

the training is based on second-order derivative approach that avoid local minima 

problem and exhibit a faster convergence.  However Lavenberg-Marquart algorithm has 

a major drawback that it requires the storage of some matrices that can be quite large for 

this kind of problems.  Thus, when comparison is performed between Lavenberg-

Marquart and Conjugate Gradient Descent, Conjugate Gradient Descent wins.   

 
 
 
4.6 Gradient Descent with Momentum and Adaptive Learning 

Backpropagation 
 
 

Another test run with the same data, using gradient descent and the result of the training 

process is shown in Figure 4.11. From the results acquired, it can be seen that the 

training process on the network using backpropagation technique failed to reach 0.001 

targets after 5000 epochs. 

 

 Mean square errors represent network’s performance of the MLP network and have 

been set to 0.001. The smaller mean square error generate, the better network will 

produce. As shown in Table 4.5, after 5000 iterations, mean square error just reaches 

0.041227. 
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Figure 4.11: Mean squared error of the MLP network plotted against its epochs 
 
 
From the results obtained through training process using both RBF and MLP, it can be 

clearly seen that MLP networks have a significant disadvantage when paired against 

RBF results. In training the MLP network, it is often too slow especially in the case of 

large size problems. Since RBF network can establishes its parameters for hidden 

neurons directly from the input data and train the network parameters, it is generally 

much faster compared to MLP network, to complete the training. From the results of the 

test, RBF based neural network looks more convincing because of the redundancy 

appeared when using the Multi Layer Perceptron based neural network with back 

propagation training algorithm on the test samples. 

 
 
 
 
4.7 Performance of RBF ANN Model 
 
 
 
In this case yield data are preprocessed using Principal Component Analysis.  

Performance of the RBF ANN Model is indicated by the Sum Squared Error (SSE). The 

smaller the value of the SSE the better is the model performance.  From the results 

obtained it is found that the network requires 365 hundred neurons to be used in the 

hidden layer before the sum squared error falls below 0.001 
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Table 4.4: Sum Squared Error and Number of Neurons  
 

Number of Neurons      Sum Squared error (SSE) 
0 377 

50 56.807 
100 18.809 
150 8.6215 
200 4.2283 
250 1.3289 
300 0.29663 
350 0.019218 
365 0.000994 

 
 
 

 
                        Table 4.5 : Mean square error and epochs  
 

Number of Neurons      Mean Squared error (SSE) 
0 1.8004 

500 0.85111 
1000 0.40819 
1500 0.11771 
2000 0.066668 
2500 0.053956 
3000 0.047976 
3500 0.045251 
4000 0.043316 
4500 0.042059 
5000 0.041227 
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Figure 4.10: Sum squared error of the RBF network plotted against number of neurons 

 
 

The function generates a Resource Allocation Network (RAN) that creates the network 

by gradually allocating an RBF neuron to the network in the hidden layer until the sum 

squared error falls below the minimum targeted goal of 0.01 which can lead to a large 

number of hidden neurons and a very large hidden layer[17],[18]. RBF networks are 

known to use very large numbers of hidden neurons if used to generate networks that 

have a multi-dimensional input or output [17].  

 
Because the input samples used for training have eleven (11) input features and one (1) 

output features, which can be considered a large multi-dimensional space, the RBF 

network tend to use more neurons and takes a considerable amount of training before the 

final network is generated [17] [18]. This can lead to a low performance and a taxing 

generation process which is undesirable. From the study, it is found that RBF is 

unsuitable for multidimensional problems 
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4.8 Summary 

 

This chapter describes the processes involved in utilizing  ANN to predict the rice yield 

data. It then present the parameters and the architecture of the ANN. It is then followed 

by the behavior of data conversion algorithm using back propagation as the evaluation 

method. This chapter also determine the performance of other enhance back propagation 

algorithm like Quick Propagation, Conjugate Gradient, Lavenberg-Marquart and   

Gradient Descent with Momentum and Adaptive Learning. It finally evaluate the 

performance of RBF ANN.  

 

Next chapter contain a description of IDSS Architecture and Prototype. 
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CHAPTER 6 

 

 

 

CONCLUSION AND RECOMMENDATION 

 

 

 

6.1 Conclusion 

 

 

Rice is the world’s most important food crop and a primary source of food for more 

than half of the world’s population [5]. Almost 90% of rice is produced and 

consumed in Asia, and 96% in developing countries [6]. In Malaysia, the Third 

Agriculture Policy (1998-2010) was established to meet at least 70% of Malaysia’s 

demand a 5% increase over the targeted 65%. The remaining 30% comes from 

imported rice mainly from Thailand, Vietnam and China [7]. Raising level of 

national rice self-sufficiency has become a strategic issue in the agricultural ministry 

of Malaysia. The numerous problem associated with rice farming include monitoring 

the status of nutrient soil, maintaining irrigation infrastructures, obtaining quality 

seedlings, controlling pests, weeds and diseases, and many other problems that need 

to be addressed in order to increase productivity [8]. These problems can be 

overcome with a good prediction system that can predict rice yield given the input 

parameters. 

 
This study has successfully investigated the above-mentioned problem and has 

produced an intelligent decision support system (IDSS) that can predict rice yield.  In 

view of the objective outlined in Chapter 1, the study has produced valuable findings 

as follows; 
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(a) Identification of the format and values for input parameters 

affecting the rice yield 

(b) Development of data conversion algorithm for input parameters 

affecting rice yield. 

(c) Development of a suitable ANN Model as an intelligent component in 

the IDSS. 

(d) Construction of the IDSS architecture to predict rice yield. 

(e) Development of a web-based IDSS prototype. 

 

The IDSS known as IndiCA can be viewed at wwwis.fsksm.utm.my/indica 

 

 

6.2 Recommendation 

 

As follows are the recommendations proposed in order to enhance the prototype; 

 

• The IDSS that has been successfully developed is only a part of precision 

farming technologies for rice.  In order to make it complete other 

technologies must be included such as global positioning system and 

geographical information system. 

• The IDSS architecture is generic hence it can be utilized to develop the IDSS 

prototype for other types of crop/plants like oil palm, grape, ‘harum manis’ 

mango, maize, sugar cane and alike. 

• Efforts should be made to transform the prototype into a fully used decision 

support system through the commercialization of research findings. 
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3. To design and develop an intelligent decision support system for rice yield prediction. 

Significant Results Achieved: 
Publications: 

1. Puteh Saad, Siti Sakira Kamarudin, Aryati Bakri, Nor Khairah Jamaludin, Nursalasawati Rusli Rice 
Yield Classification using Back Propagation Algorithm, Journal of ICT 3(1). pp 67-81, Jun 2004. 

2. Puteh Saad, M Rizon M Juhari, Nor Khairah Jamaludin, Siti Sakira Kamarudin, Aryati Bakri and 
Nursalasawati Rusli, Backpropagation Algorithm for Rice Yield Prediction, Proc. of the Ninth Int. 
Symp. on Artificial Life and Robotics (AROB 9th ’04) Beppu, Oita, Japan, 28-30 January 2004. 

3. Siti Sakira Kamarudin, Puteh Saad, Noraslina Abdul Rahaman and Aryati Bakri, The Architecture of 
an Intelligent Decision Support System for Rice Yield Prediction, Proceedings of the 1st International 
Conference on Informatics 29-30th July 2004, pp 153-163. 

4. Shahrul Nizam Yaakob, Puteh Saad and Abu Hassan Abdullah, Insect Recognition Using 
FuzzyARTMAP, Proc. of Int. Conf. on Robotic Vision, Information and Signal Processing 
(ROVISP2005), USM, 20-22th July 2005, pp 679-683. 

5. Siti Sakira Kamarudin, Rajini Devi Muniandy, Puteh Saad and Aryati Bakri, Alatan Bantuan Perosak 
Padi untuk Petani, Proceeding of the Seminar Kebangsaan Sosio-Ekonomi & IT Ke-2 on 11-12th  
August 2004. 

6. Puteh Saad, Shahrul Nizam Yaakob, Nurulisma Ismail, S Niza Mohammad Bajuri, Noraslina Abd 
Rahaman, Shuhaizar Daud, Aryati Bakri and Siti Sakira Kamarudin, Effect of Normalization on Rice 
Yield Prediction, 1st National Postgraduate Colloquium (NAPCOL 2004), School of Chemical 
Engineering, USM on 8-9 Dec 2004. 

7. Puteh Saad, Nor Khairah Jamaludin, Nursalasawati Rusli, Aryati Bakri and Siti Sakira Kamarudin, 
Rice Yield Prediction – A Comparison between Enhanced Back Propagation Learning Algorithms, 
Jurnal Teknologi Maklumat, FSKSM, Jld 16. Bil 1. pp. 27-34. 

8. Puteh Saad, Shahrul Nizam Yaakob, Noraslina Abdul Rahaman and Shuhaizar Daud, Aryati Bakri, 
Siti Sakira Kamarudin and Nurul Isma Ismail, Artificial Neural Network Modelling of Rice Yield 
Prediction in Precision Farming, Proceeding of the 2nd National Conf. on Computer Graphics and 
Multimedia, CoGRAMM04, 8-9th December 2004. 

9. Puteh Saad, Shahrul Nizam Yaakob, Aryati Bakri, Siti Sakira Kamarudin, Mahmad Nor Jaafar, 
Noraslina Abd Rahaman and Shuhaizar Daud,  Dimensionality Reduction Using Principal Component 
Analysis for Rice Yield Prediction,  Proc. of Int. Conf. on Robotic, Vision, Information and Signal 
Processing (ROVISP2005), USM, 20-22 th July 2005, pp 790-794. 

 
Prototype: 
The IDSS prototype has been developed and upload on a web at:  
http://www.is.fsksm.utm.my/indica 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Research Approach 
We have come up with an intelligent decision support system (INdica) for rice yield prediction in  the 
area precision farming. The components of IDSS consist of Neural Network Model, Transformation Module 
and Web Development Module. In order to create the Neural Network Model there are nine (9) steps 
involved. In Step 1 the data to be used for training and testing of the network are collected. In Step 2 training 
data must identified, and plan must be made for testing the performance of the network.  In Step 3 and 4 a 
network architecture and a learning method are selected. In Step 5 is initialization of the network to the 
work weights and parameters, follow by modification and of the parameters as performance feedback is 
received. The next procedure, Step 6, is transformed the application data input into the type and format 
required by neural network. In Step 7 and Step 8, training and testing are conducted as an interactive process 
of presenting input and desired output data to the network.  At Step 9 in the process, a stable set of weights 
is obtained. Now the network can reproduce the desired output given inputs like those in the training set. 
When both of them have been developed, the network will be integrated with the decision support system as 
an intelligent component that will be used by farmers or farm managers to predict the rice yield. 
The transformation model consists of decision support system and farming database. Farming database is a 
knowledge base to store process and transfer agricultural crops and management information obtained from 
farmers. The structured collection of information is stored as a database. The parameters that affect rice 
yield are eleven (11) default variables. The system also contain the interfaces that help farmers or farm 
managers to input data, view the output that generated by intelligent component and the what if scenarios. 
So, from this the user can have the decision in getting the maximum rice and increase the rice yield in terms 
quality and quantity with minimum effects to the environment. 
    
The IDSS can also be implemented on the internet through a WWW server so the user will be able to utilize 
the model directly via a web browser.  Upgrades are immediately made available on the WWW server. The 
website is the centre of activity in developing operative decision support system.  The web component of 
the IDSS of rice yield prediction is developed using PHP.  The database is developed using MySQL. 

 
Team Structure 
 
Project Leader:  
       Assoc. Prof. Dr. Puteh binti Saad (UTM) 
 
Researchers: 
       Aryati Bakri (UTM) 
       Siti Sakira Kamarudin (UUM) 
       Dr. Mahmad Nor Jaafar (MARDI) 
 
MSc Students: 
       Shahrul Nizam Yaakob 

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

C. Objectives achievement 
 

• Original project objectives (Please state the specific project objectives as described in Section ll of 
the Application Form) 

1. To investigate, design and develop data conversion and reduction algorithm for 
input parameters affecting rice yield. 

2. To design and develop the architecture to predict crop yield given the input 
parameters. 

3. To design and develop an intelligent decision support system for rice yield 
prediction 

 
• Objectives Achieved (Please state the extent to which the project objectives were achieved) 
           All the objectives are achieved 
 
 
 
 
• Objectives not achieved (Please identify the objectives that were not achieved and give reasons) 

-NONE- 
 
 
 
 
 
 

D. Technology Transfer/Commercialisation Approach (Please describe the approach planned to 
transfer/commercialise the results of the project) 

 
 
This system later on will be made available as an open source application and open access through 
MYREN as a component of cyber farming in Malaysia.  The market will be a long term benefit to 
the farmers and related government sectors. 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

E. Benefits of the Project (Please identify the actual benefits arising from the project as defined in Section lll of 
the Application Form. For examples of outputs, organisational outcomes and sectoral/national impacts, please refer 
to Section lll of the Guidelines for the Application of R&D Funding under IRPA) 

 
• Outputs of the project and potential beneficiaries (Please describe as specifically as possible 

the outputs achieved and provide an assessment of their significance to users) 
 

The output from this project is the IDSS prototype that can be used by the following 
agencies: 
1. Kementerian Pertanian– setting agricultural policy in national planning 
2. MADA – natural resources use management especially in the water use efficiency since rice 

is the major consumers of our national water 
3. MARDI – support R&D activities especially in the area of precision farming. 
4. LPP – offer advise to padi farmers to produce better quality cereals/rice with less damages to 

the environment and better utilization of water 
private sectors  ( can help them to wisely utilize the available resources with minimization risk to the 
environment) 
 

• Organisational Outcomes (Please describe as specifically as possible the organisational benefits 
arising from the project and provide an assessment of their significance) 

 
1. Publications in terms of Journal papers and Conference Proceedings 
2. Engage in high level R & D activities that meet the national objectives  
3. Development of Expertise on Decision Support System Component in Precision Farming 
4.   1 M.Sc. Student 

 
 
 
 
• National Impacts (If known at this point in time, please describes specifically as possible the potential 

sectoral/national benefits arising from the project and provide an assessment of their significance) 
 
 

1. Increase quantity and quality of national rice production 
2. Increase the income for rice farmers 
3. Eradicate poverty 
4. Export rice outside Malaysia 

 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

F. Assessment of project structure 
 

• Project Team (Please provide an assessment of how the project team performed and highlight any 
significant departures from plan in either structure or actual man-days utilised) 

 
Each of the project member perform their tasks accordingly, although they are 
geographically separated 

 
 
 
 
• Collaborations (Please describe the nature of collaborations with other research organisations and/or 

industry) 
 
 
 
 
 
 
 

G. Assessment of Research Approach (Please highlight the main steps actually performed and indicate 
any major departure from the planned approach or any major difficulty encountered) 
 
The steps are according to the planned milestones written in the IRPA application form. 
 
 
 
 
 
 
 
 
 

 
H. Assessment of the Project Schedule (Please make any relevant comment regarding the actual duration 

of the project and highlight any significant variation from plan) 
 
 
 The implementation is according the schedule proposed earlier in the IRPA application form



 
 
 
 

I. Assessment of Project Costs (Please comment on the appropriateness of the original budget and 
highlight any major departure from the planned budget) 

 
 
 
 
 
NONE 
 
 
 
 
 
 
 
 
 

J. Additional Project Funding Obtained (In case of involvement of other funding sources, please 
indicate the source and total funding provided) 
 
 
 
NONE 
 
 
 
 
 
 
 
 

 
K. Other Remarks (Please include any other comment which you feel is relevant for the evaluation of this 

project) 
 
 

This project is a part of a whole precision farming system. In order to complete the whole 
system other modules must be included such as data acquisition module, rice plant 
monitoring module, weather forecast module, automatic monitoring of water level in the rice 
field. 
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     (HURUF BESAR)  
 
Mengaku membenarkan Laporan Akhir Penyelidikan ini disimpan di Perpustakaan Universiti Teknologi Malaysia dengan 
syarat-syarat kegunaan seperti berikut : 
 

1. Laporan Akhir Penyelidikan ini adalah hakmilik Universiti Teknologi Malaysia 
2. Perpustakaan Universiti Teknologi Malaysia dibenarkan membuat salinan untuk tujuan rujukan sahaja. 
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4. * Sila tandakan ( / )  
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