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ABSTRACT

This thesis investigated issues on the development of efficient fault detection 

scheme for detection of single and multiple faults due to sensor failure and leakage in 

the process stream. The proposed scheme consisted of two stage mechanism constructed 

using artificial neural network (ANN). The first stage was a process estimator that was 

designed to estimate the normal and unfaulty behaviour of the plant. In order to produce 

reasonably accurate estimation without including the history data of the output, two 

types of model have been studied. A group of multi input single output (MISO) Elman 

network and a multi input multi output (MIMO) Feedforward network have been used, 

and results revealed that MISO model had better generalisation ability compared to 

MIMO model. The difference between the actual plant signal and this estimated 

‘normal’ plant behaviour, termed as residual was fed to the second stage for fault 

classification. In the development of fault classifiers, the MISO models had been proven 

to be better than MIMO model. The effect of adding input with time delayed signals to 

the network had also been studied. In both cases, successful implementations were 

obtained. Finally, the proposed fault detection scheme was applied for detection of 

sensor faults and stream leakage in the Precut column of a fatty acid fractionation plant. 

The proposed scheme was successful in detecting both single and multiple faults cases 

imposed to the process. The strategy was also successful in detecting leakage in the 

process stream even when the percentage of the leakage was as little as 0.1%. The 

results obtained in this work proved the potential of neural network in detecting multiple 

faults and leakage in chemical process plant.  
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ABSTRAK 

Tesis ini telah mengkaji isu-isu berkaitan dengan pembangunan skema pengesan 

kesilapan yang cekap untuk mengesan kesilapan tunggal dan berbilang ekoran dari

kegagalan penderia and kebocoran dalam aliran proses. Skema yang dicadangkan ini 

terdiri daripada dua peringkat mekanisme yang dibina menggunakan rangkaian saraf 

buatan (ANN). Peringkat pertama ialah peramal proses yang direkabentuk untuk 

meramal keadaan loji yang normal dan tidak mempunyai kesilapan. Untuk 

menghasilkan ramalan yang betul-betul tepat tanpa menggunakan data keluaran masa 

lalu, dua jenis model telah dikaji. Rangkaian berbagai masukan keluaran tunggal 

(MISO) Elman dan rangkaian berbagai masukan berbagai keluaran (MIMO) telah 

digunakan, dan keputusan-keputusan yang diperolehi menunjukkan yang model MISO 

mempunyai keupayaan meramal yang baik berbanding dengan model MIMO. Perbezaan 

di antara isyarat loji yang sebenar dengan ramalan keadaan normal ini, disebut baki 

dimasukkan ke dalam peringkat yang kedua untuk pengkelasan kesilapan. Dalam 

pembangunan pengesan kesilapan, model-model MISO telah terbukti lebih baik 

keupayaannya berbanding model MIMO. Kesan penambahan masukan yang terdiri dari 

isyarat masa lampau terhadap kebolehan rangkaian juga telah diselidik. Dalam kedua-

dua kes ini, pelaksanaannya telah mencapai kejayaan. Akhir sekali, skema cadangan 

pengesan kesilapan ini telah dilaksanakan dalam mengesan kesilapan sensor dan 

kebocoran dalam loji penyulingan minyak asid lelemak. Untuk mengesan kesilapan 

penderia, skema yang dicadangkan ini telah berjaya mengesan kesilapan tunggal dan 

berganda yang berlaku dalam proses. Strategi yang dicadangkan ini juga telah berjaya 

mengesan kebocoran di dalam saluran proses walaupun peratusan kebocoran itu terlalu 

kecil sehingga 0.1%. Keputusan-keputusan ya ng didapati dari kerja selidik ini telah 

membuktikan keupayaan rangkaian saraf buatan dalam mengesan kesilapan berganda 

dan kebocoran yang berlaku dalam loji proses kimia. 
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CHAPTER I 

INTRODUCTION

1.1 Motivation 

Continuous and batch processes are two important modes of operations in the 

chemical industry and play an important role in the production and processing of high 

quality, specialty materials. Monitoring these processes is very important to ensure their 

safe operation and consistent production of high quality products. Since the 

manufacturing environment requires higher degrees of automation, fault diagnosis of 

automated manufacturing systems is becoming a critical issue in production control. 

Success in detecting and diagnosing faults will decrease system downtime, production 

delay, and overall production cost. 

Research on fault detection has received increased attention in recent years as a 

result of fatal accidents such as those at Chernobyl and Bhopal, some of which have 

been traced to sensor failure. Sensors reading provide controllers and operators with a 

view of the process status and impact the plant operations significantly. Failures in 

providing correct measurement at the desired frequency can cause process disturbances, 

loss of control, profit loss, or even catastrophic accidents. In process control, up to 60% 

of the perceived malfunctions in a plant are found to stem from the lack of credibility of 

sensor data (Yang and Clarke, 1999). In the interest of maintaining safe and profitable 

operations, process plant must therefore be equipped with all the required features to 

provide or maintain reliable measurement. 



2

Major or catastrophic changes are often easy to detect. Unfortunately when such 

events occur, irreversible damages due to the magnitude of the impact are often 

incurred. On the contrary, although smaller or non-catastrophic failures may not result in 

serious immediate damage, detection of these failures is often difficult. Sensor and 

measurement system failures are examples of the latter. Some of these failure events can 

result in undesirable process performances. For example, off-calibration instruments 

provide wrong measurement that will, in turn, result in wrong control action. To 

alleviate such problems, reliable fault detection mechanisms should be established. 

Fault detection is essentially a pattern recognition problem, in which a functional 

mapping from the measurement space to a fault space is calculated. A wide variety of 

techniques have been proposed to detect and diagnose faults. Generally speaking, there 

are three different options available to approach a fault diagnosis problem: state 

estimation methods, statistical process control methods, and knowledge-based methods. 

A neural network, a type of knowledge-based system, possesses many desirable and 

preferred properties for chemical process fault diagnosis. These properties include its 

abilities to learn from example, extract salient features from data, reason in the presence 

of novel, imprecise or incomplete information, tolerate noisy and random data, and 

degrade gracefully in performance when encountering data beyond its range of training 

(Venkatasubramanian and Chan, 1989). Reviewing the development of neural network 

fault detection and diagnosis systems, the general trend in research is to increase the 

robustness of the system to unmodelled patterns, realise fast and reliable diagnosis in 

dynamic processes, and dynamically filter noisy data used for detection. 

In this study, a model-based fault detection system proposed by Ahmad and 

Leong (2001) will be further developed. Figure 1.1 displays the overall structure of the 

system. Here, a model-based fault detection system consisting of a process predictor and 

a fault classifier is proposed. The process predictor is used to predict the normal fault-

free operating condition of a Precut column in the Fatty Acid Plant. The deviation of the 

actual condition from the output of this predictor, termed the residual, is then fed to the 

classifier, which identifies the residual signal from the process predictor and classifies 
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the cause of faults. The development of both models utilises the nonlinear mapping 

capability of neural networks. 

Figure 1.1  The model-based fault detection system 

The residual signal plays a central role in the proposed fault detection. It is a 

measure of process departure from the expected normal operating condition. The idea of 

utilising the residual signal in fault detection originated from the concept of analytical 

redundancy. According to Patton et al. (1994), analytical redundancy is a procedure of 

using model information to generate additional signals to be compared with the original 

measured quantities.  

In their work, Ahmad and Leong (2001) concentrated on the detection of sensor 

failure in the Tennessee Eastman (TE) plant. Their work revealed the associated 

problems in implementing the detection scheme. One major difficulty is the training of 

recurrent network used in the predictor. The proposed system was only capable of 

detecting single fault. Since various faults can in practice occur simultaneously, there is 

a need for multiple faults detection scheme.  
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1.2 Problem Statement and Importance of Study 

Artificial neural networks (ANNs) have made rapid developments in the fault 

diagnosis of chemical processes and related fields. Process fault detection by artificial 

intelligence techniques have been studied by Venkatasubramanian et al. (1990), 

Rengaswamy and Venkatasubramanian (2000), Himmelblau (2000), Ungar et al. (1990), 

Watanabe et al. (1989), Wang et al. (1998), Scenna (2000), Tarifa and Scenna (1999), 

Pareek et al.(2002), Ferentinos (2003), Sharma et al. (1999, 2004) and others. However, 

most of the research has been limited to rather ‘simple’ systems that are systems which 

can be ably simulated by mathematical models. These models are derived from the 

various functions that relate the system process variables. Further, most of the work is 

directed towards identifying operating faults with the focus on safety/reliability aspects 

rather than process faults; perhaps, except for Sharma et al. (2004).  

In this work, the potential of the ANNs to diagnose process faults in a 

commercially important Precut column in the fatty acid fractionation plant has been 

explored. These process faults only cause fluctuations in the product quality and yields; 

they do not lead to failures or operational hazards that might lead to equipment damage 

and/or plant shutdown. The system investigated operates at dynamic. In addition to the 

single fault detection and diagnosis, the ability of ANNs to extrapolate and detect 

leakage and multiple faults is also shown. Relative importance of the various input 

variables on the output variables plays a vital role in selecting the input/output nodes of 

ANN architecture. 

 The main contributions of this work to the fault detection and diagnosis 

techniques, which also represent the new developments in this field, are the following: 

1. The proposed scheme can be applied in detection of single fault or 

simultaneously multiple faults. 

2. The proposed scheme can also be applied to detect leakage in the stream. 
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3. In the development of process estimator and fault classifier, the MISO model has 

better generalisation ability compared to MIMO model. 

4. The proposed scheme capable to detect single and multiple faults as well as 

leakage in the light noisy environment. 

1.3 Objective and Scope of Work 

The main aim of this study is to develop a multiple faults detection scheme using 

artificial neural networks. The proposed fault detection scheme will able to detect single 

or multiple faults and also leakage in the selected case study. The selected case study is 

a Precut Column in the Fatty Acid Plant (FAP). In order to achieve the above objective, 

the following scopes have been drawn. 

1. Simulation of case study – Precut Column. 

Simulation of the plant was carried out within HYSYS.Plant version 2.4.1 

process simulator using a flowsheet provided by a local industry. In doing so, a 

number of modifications were implemented to successfully represent the 

behaviour of the FAP process especially in the Precut Column. 

2. Development of process predictor.  

Process predictor is used to predict the normal behaviour of the process. The 

development of the process predictor involves selecting an appropriate ANN 

architecture to differentiate the abnormal behaviour of the process and the 

normal condition to enable the generation of residual signal. Here, Matlab 6.1 

software is used. 

3. Development of fault classifier.  

Fault classifier is a decision making system used to detect process faults. 

Residual signals generated from the process predictor serve as an input to the 

classifier. Structure selection and training method are the criteria that must be 

taken into consideration. Matlab 6.1 was used to develop the fault classifier. 
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4. Implementation of the proposed fault detection strategy.  

Here, the proposed model-based fault detection strategy is implemented to detect 

faults in the Precut column. The work illustrates the detection of sensor failures 

and leakage in pipelines.  

1.4 Thesis Organisation 

In general the thesis was organised as follows: 

Chapter II presents the literature overview about different approaches to the fault 

detection problem. Early diagnosis of the process faults while the plant is still operating 

in a controllable region can help avoid event progression and reduce the amount of 

productivity loss during an abnormal event. Due to the broad scope of the process fault 

diagnosis problem and the difficulties in its real time solution, various computer-aided 

approaches have been developed over the years. They cover a wide variety of techniques 

such as the early attempts using fault trees and diagraphs, analytical approaches, and 

knowledge-based systems and neural networks in more recent studies. The chapter also 

discusses neural networks that have been used for the fault detection purposes.

Chapter III elaborates the Fatty Acid Plant (FAP) in detail especially Precut 

column. Description of typical packed column with pumparound system was also 

mentioned. Simulation methodology of this case study using HYSYS.Plant dynamic 

simulator was described and validation of the flowsheet with the real data was 

presented. The mathematical modelling of the distillation operation also presented in 

this chapter.  

Chapter IV presents in details the development of process estimation for fault 

detection purposes. The process estimator was used to predict the ‘fault free’ operating 

condition of the process. The model was constructed using a class of recurrent neural 
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network known as Elman network. Procedures for development of process estimator 

were explained. In this chapter, network structure and training algorithm were studied.

Issues of residual generation and prediction accuracy are central to the chapter.  The 

outputs from the process estimator are used as inputs for fault classifier. 

Chapter V elaborates the development of fault classifier. This fault classifier is 

also based on an artificial neural network. In this chapter the study of two types of fault 

was discussed in details, they are corrupted sensor measurement and leakage in the 

pipeline. At the end of this chapter, description of the performance of the proposed fault 

detection scheme tested in the presence of the noise-corrupted measurements and 

without noise-corrupted measurements was discussed. 

Chapter VI is the conclusions and recommendation section. For conclusion, the 

researcher proposed an effective artificial neural networks fault detection scheme that 

was able to detect single and multiple faults simultaneously as well as leakage in the 

light noisy environment. Recommendations were proposed to enhance its efficiency, 

application and robustness. 
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6.4 Recommendations for Future Work 

The study undertaken here is preliminary towards providing a complete solution 

to the fault detection and fault diagnosis problem in complex plants. Although this study 

proved the capability of proposed fault detection scheme, there are still more works 

required to study various aspects of the approach. To enhance its efficiency, application 

and robustness, the following works are recommended: 

1. Online implementation was not applied in this study. Through online 

implementation, robustness and efficiencies of the scheme can be evaluated. 

2. Capability of the proposed scheme to work effectively in the very noisy 

environment. In actual process condition, significant process noise can affect the 

performance of fault detection. 

3. Integration of the “fault detection and diagnosis” and the process control system 

would be most beneficial to the process industries. Investigations should include 

the efficiency of the fault detection scheme in assisting process control and 

safety issues. The aim is towards providing a complete package for fault-tolerant 

control system. 
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