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ABSTRACT 

Information on flow regimes is vital in the analysis and measurement of 

industrial process flow. Almost all currently available method of measuring the flow 

of two-component mixtures in industrial pipelines endeavors to average a property of 

the flow over the pipe cross-section. They do not give information on the nature of 

the flow regime and they are unsuitable for accurate measurement where the 

component distribution is spatially or time varying. The overall aim of this project is 

to investigate the use of an optical tomography method based on infra-red sensors for 

real-time monitoring of solid particles conveyed by a rotary valve in a pneumatic 

pipeline. The infra-red tomography system can be divided into two distinct portions 

of hardware and software development process. The hardware development process 

covers the infra-red sensor selection, fixtures and signals conditioning circuits, and 

control circuits. The software development involves data acquisition system, sensor 

modeling, image algorithms, and programming for a tomographic display to provide 

solids flow information in pipeline such as concentration and velocity profiles. 

Collimating the radiated beam from a light source and passing it via a flow regime 

ensures that the intensity of radiation detected on the opposite side is linked to the 

distribution and the absorption coefficients of the different phases in the path of the 

beam. The information is obtained from the combination of two orthogonal and two 

diagonal light projection system and 30 cycles of real-time measurements. Those 

information on the flow captured using upstream and downstream infra-red sensors 

are digitized by the DAS system before it was passed into a computer for analysis 

such as image reconstructions and cross-correlation process that provide velocity 

profiles represented by 16 × 16 pixels mapped onto the pipe cross-section. This 

project successfully developed and tested an infra-red tomography system to display 

two-dimensional images of concentration and velocity. 
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ABSTRAK 

Maklumat tentang regim aliran adalah sangat penting di dalam analisis dan 

pengukuran aliran proses pengindustrian. Hampir kesemua kaedah pengukuran aliran 

gabungan dua komponen di dalam paip pengindustrian berfungsi untuk mendapatkan 

purata aliran merangkumi keratan rentas paip. Mereka tidak memberi maklumat asal 

kawasan aliran dan tidak sesuai untuk pengukuran tepat di mana taburan komponen 

berubah secara ruang atau masa. Matlamat utama projek ini adalah untuk mengkaji 

penggunaan kaedah tomografi optik berasaskan kepada penderia infra-merah untuk 

pengawasan masa-nyata partikel pepejal yang dialirkan oleh injap berputar di dalam 

satu paip pneumatik. Sistem tomografi  infra-merah boleh dibahagikan kepada dua 

bahagian proses pembangunan iaitu perkakasan dan perisian. Proses pembangunan 

perkakasan meliputi pemilihan penderia infra-merah, peralatan dan litar penyesuaian 

isyarat, dan litar kawalan. Proses pembangunan perisian melibatkan sistem perolehan 

data, pemodelan penderia, algoritma imej, dan pengaturcaraan untuk paparan 

tomografi di dalam menghasilkan maklumat aliran pepejal di dalam laluan paip 

seperti profil tumpuan dan halaju. Penumpuan sinar pancaran daripada satu punca 

cahaya dan melalukannya di dalam kawasan aliran, memastikan kecerahan sinar 

telah dikesan pada bahagian yang bertentangan berkait kepada taburan dan pekali 

penyerapan fasa yang berbeza di sepanjang laluan pancaran. Maklumat diperoleh 

daripada gabungan dua ‘orthogonal’ dan dua ‘diagonal’ sistem projeksi dan 30 kitar 

pengukuran masa-nyata. Maklumat aliran yang diambil menggunakan penderia infra-

merah ‘upstream’ dan ‘downstream’ di digitalkan oleh sistem DAS sebelum 

memasuki sebuah komputer untuk analisis seperti pembinaan semula imej dan proses 

sekaitan-silang yang menghasilkan profil halaju yang dipetakan pada 16 × 16 piksel 

keratan rentas paip. Projek ini dengan jayanya telah membangunkan dan menguji 

satu sistem tomografi infra-merah untuk paparan imej dua-dimensi penumpuan dan 

halaju.
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CHAPTER 1 

INTRODUCTION

Wilhelm Roentgen discovered x-rays in the year 1895, his discoveries 

contributed to the most important diagnostic methods in modern medicine. Since 

then, it is possible to look through into both non-living and living things without 

cutting the certain area of the subject by taking X-ray radiography (Ellenberger et al.,

1993). This method of projection is far from being a perfect image of the real subject 

since the images were a superposition of all planes normal to the direction of X-ray 

propagation. In the 30’s conventional tomography was the tomographic method 

using the X-ray radiation and gave possibility to restore information of 2D and 3D 

images (William and Beck, 1995).

The word ‘tomography’ is derived from the Greek words, where ‘tomo’ 

meaning ‘to slice’/’section’ and the word ‘graphy’ means image. In the year 1970 all 

the possibilities in the 30’s became true when this technique utilized the x-rays to 

form images of tissues based on their x-ray attenuation coefficients. However, this 

technique does not stop at the medical studies area and it was successfully developed 

into the industrial field and commonly known as the Industrial Process Tomography 

(IPT). This technique aims to measure the location concentration, phase proportions, 

and velocity measurement (Chan, 2003) retrieved from the quantitative interpretation 

of an image or, more likely, many hundreds of images corresponding to different 

spatial and temporal conditions using direct measurement/real time due to the 

dynamic changes of internal characteristic. 
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There are many parameters such as 2D and 3D images, velocity, and Mass 

Flow Rates (MFR) which can be retrieved from the tomography visualizing 

techniques within the processor or unit operation. Hence, the latter parameters give 

the information of the distributions of material in a pipeline. Therefore, from the 

knowledge of material distribution and material movement, a mathematical model 

can be derived and it can be used to optimize the design of the process (Tapp et.al,

2003).

1.1 Background of Problems 

Process Tomography has become one of the vast growing technologies 

nowadays The tomographic imaging of objects offers a unique opportunity to unravel 

the complexities of structure without the need to invade the object (Beck and 

Williams, 1996). It is a diversification from the original research on x-ray 

tomography, which focused on how to obtain 2-D cross-section images of animals, 

human, and non-living things (Syed Salim, 2003). Process Tomography can be 

applied to many types of processes and unit operation, including pipelines (Neuffer 

et al., 1999), stirred reactors (Wang et.al, 1999), fluidized bed (Halow and Nicoletti, 

1992), mixers, and separator (Alias, 2002). Process tomography is an essential area 

of research involving flow imaging (image reconstruction) and velocity 

measurement. For example in the research that was carried out by Ibrahim (2000), 

the Linear Back projection (LBP) algorithm which was originally designed for x-ray 

tomography was used to obtain the concentration profiles of bubbles in liquid 

contained in a vertical flow rig. This project investigated the two-phase flow (solid 

particle and air) using a vertical pneumatic conveyor flow rig. 

Flow imaging usually involved obtaining images of particles and gas bubble 

(Yang and Liu, 2000) and the measurements can be either done using on-line (real 

time) or off-line. For on-line measurement, there are many performance aspects that 

must be considered such as hardware performance, data acquisition (signal 

interfacing), and algorithm performance. Limited numbers of measurement affect the 
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quality of images obtained. The input channel of the data acquisition system has to 

be increased with the increase in the number of sensors used. 

LBP algorithm is the most popular technique that was originally applied in 

medical tomography. Research conducted by Chan (2003) improved flow imaging 

using 16 alternating fan-beam projections with an image reconstruction rate of 20 

fps, but this image reconstruction rate not is sufficient to achieve an accurate 

measurement of velocity. Generally, this project performed an investigation on how 

to improve the sensing method developed by Abdul Rahim (1996) which used fiber 

optics in flow visualization. Instead of using one light source, this project focused on 

using individual light source meaning one infra-red LED emitter for one photodiode. 

This method was then combined with an infra-red tomography system which consist 

of a hardware fixture, a signal conditioning system, and a data acquisition system by 

synchronizing the whole process operation. 

Furthermore, image reconstruction in the spatial domain and frequency 

domain were investigated for this project. Generally, the information retrieved from 

the measurement system can be used to determine both the instantaneous volumetric 

and velocity of solids over the pipe cross section.  

1.2 Problem Statement 

The process tomography system requires the knowledge of various discipline 

such as instrumentation, process, and optics to assist in the design and development 

of the system. Generally, the solutions to the problems that were carried out in this 

project are: 

Development of a suitable sensor configuration for the selected infra-red 

emitter and receiver. Design of the fixture must be able to avoid the infra-red 

sensor from being exposed to any kind of ambient light (day light, lamp etc) 

and placed around the boundary of the pipe so that light emitted from the 
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emitter will be the only one that is in contact with the solid particle in the 

pipeline.

Determine the best infra-red emitter and receiver based on the physical nature 

of the design of material that is involved in the transmission of the infra-red 

light, light emission, spectral characteristic, sensor radiation characteristic, 

receiver respond, optical power, and availability from suppliers. 

Selecting suitable signal conditioning and electronic controller. The 

characteristic of the component used will determine the whole measurement 

result, such as power consumption, offset current, input impedance, slew rate, 

and common mode input voltage range (Tan, 2002). 

Increasing the number of sensor measurement (128 pairs of infra-red 

transmitter and receiver for upstream and downstream planes). The number of 

measurement and projection angle subsequently affect the quality of the 

image reconstructed (Ibrahim, 2000). 

Synchronization of the data acquisition with the circuitry operation. A digital 

controller with sufficient of memory, easy programming language, 

programmable, stable, and has a high operation speed. 

The programming language that drive and control the interface between the 

hardware developed must be compatible with the application programming 

language in Windows environment.  

Implementation of the image reconstruction algorithm and velocity 

measurement. The image reconstruction estimated the distribution of material 

within the pipe which would provide the measured sensor output and the 

velocity measurement provide the solid particles velocities values. 

The idea based on Hartley et al. (1995) and Chan (2003) where the method of 
research covers: 
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Two orthogonal parallel projections those are perpendicular to each other. 

The design of the system started with the aim of flow imaging. 

The output of several sensors for each projection are multiplexed, in order to 

minimize the system complexity and cost. 

Hartley’s system (Hartley et al., 1995) made use of 8 × 8 sensors, in which 

each projection has 8 views for image reconstruction, but when larger number 

of views are needed it has to be determined off-line since the transputer being 

used was slow.

In conjunction with the previous research, the solutions required are listed as follow: 

The SFH485P infra-red LED transmitter and the SFH203P photodiode 

receiver selected have a matching wavelength at 990nm, a flat top surface for 

full light collimation before it is distributed using fiber optics, fast switching 

characteristic, and low optical power. 

The appropriate technique of constructing the signal conditioning circuit 

where it is very important to convert the amount of incident infra-red light 

using the photodiode to a suitable voltage level. Then a sample and hold 

circuit will be used to hold the measured signal. 

Increase the numbers of view/measurement by optimizing the time required 

to capture 128 sensor channels, using a data acquisition system with 64 

analog input channels. 

Synchronization between signal conditioning and data acquisition, using a 

PIC controller where the operation between the data acquisition system and 

circuitry operation that involved settling time for hold and sample must be 

configured to make sure data obtained from upstream and downstream 

sensors can be differentiate.
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The Microsoft Visual C++ 6.0 was selected because the C language has the 

advantages of being small size, fast, support modular programming, and 

memory efficient (Bronson, 1999). Microsoft Visual C++ 6.0 is a powerful 

language with a standard user interface and enables device independent 

program. 

A software driver for real-time data acquisition in the Microsoft Window 

environment called DriverLINX provided by Keithley customized to support 

the data acquisition system interface system between the software and 

hardware developed. 

Solving the forward and reverse problem based on the projection theorem. 

The forward problem provides the theoretical output of each sensor under no-

flow and flow conditions when the sensing area is considered to be two-

dimensional and the inverse problem estimates the distribution of material 

within the pipe which would provide the measured sensor outputs (Ibrahim et

al., 1999). 

Numerous image reconstruction technique adapted in the tomography, such 

as Linear Back projection and Fourier reconstruction. In this study the 

reconstruction, covered image reconstruction in the spatial domain, frequency 

domain, and the hybrid approach (Ibrahim, 2000). 

The application of cross correlation technique for velocity measurement.  

1.3 Significance and Objective of the Study 

Uchiyama et al. (1985) pointed out that the use of thermography is an 

inappropriate technique for measuring the temperature distribution in flames, as the 

infra-red radiation received by the sensor is the line integral of the emitted radiation 

along the optical path. Infra-red radiation, having wavelengths which are much 
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longer than visible light, can pass through dusty regions of space without being 

scattered. This means that we can study objects hidden by gas and dust in the infra-

red, which we cannot see in visible light (Mass, 1972). These are the advantages 

using infra-red light where the dust or gas that is produced or fetched by the 

conveyed particles does not affect the measuring systems. 

 Studies have shown that both contrast and spatial resolution of optical images 

are affected by the optical properties of the background medium, and high absorption 

and scattering are generally beneficial. Based on these observations, wavelengths 

shorter could be profitable for optical measuring systems (Taroni et al., 2004). X-

rays, gamma-rays, and ultraviolet-light have a shorter wavelength but the problems 

arise on how to handle properly this kind of material because it’s dangerous to living 

things.

 Research by Ibrahim et al. (1999) has proved that the use of fiber optic can 

enhance the image resolution with the purpose of measuring the concentration and 

velocity of gas bubbles in a vertical water column. Chan (2003) utilized the concept 

of fan beam switching mode to increase the total projections, image resolution and 

the total number of measurements to analyze images of solid particle flow. Pang 

(2004) developed an optical tomography system to perform real-time mass flow rate 

by using two local networked PC and five programs. Based on those researches, the 

tomography system in this project can enhance the image resolution, increase the 

total number of measurements in order to image the flow of solid particles and 

perform velocity measurement based on the use of fiber optic and parallel beam 

switching mode between the measurement planes using one PC and one programs 

(upstream and downstream planes). 

The objectives of this investigation are: 

1) To become familiar with the concept of process tomography, and associated 

sensors.

2) To understand the application of data acquisition system and tomographic 

imaging reconstruction. 
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3) To study the interaction between the collimated infra-red light and the 

targeted object (which is dropped into the flow pipe). 

4) To solve the forward and reverse problems (Ibrahim, 2000). 

5) To calculate the velocity of dropping particle using results from the cross 

correlation method (Plaskowski et al., 1997) and free fall motion. 

6) To design a hardware system for the infra-red tomography system. 

7) To incorporate the signal conditioning (circuitry operation) with the data 

acquisition system by synchronizing the signal conditioning with the data 

sampling processes. 

8) To determine the better reconstruction algorithm for flow imaging between 

spatial domain, frequency domain, and hybrid image reconstruction. 

9) To implement a measurement system that will obtain data from the infra-red 

sensors for concentration and velocity measurements for various flow rates. 

10) To test this system on a pneumatic flow conveyor by distributing solid 

particles into a vertical pipe and to investigate the concentration and velocity 

profiles using the experimental data that have been obtained for various flow 

rates.
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1.4 Scope of Study 

The aim of the study is to investigate the flow regimes (image reconstruction) 

and flow velocity in pipe due to dropping particles and velocity measurement 

(Kaplan, 1993) using a conveyor flow rig. The scope of study includes: 

1) Absorption by the emission of infra-red light. 

2) Flow rates, concentration profiles, and velocity of dropping particles. 

3) Signal conditioning and data acquisition system. 

4) Process modeling: includes sensors fixture, flow rig model, signal 

conditioning circuit’s design and software development.  

5) Image reconstruction algorithm and cross-correlation method. 

6) Thesis writing. 

1.5 Organization of the Thesis 

Chapter 1 presents an introduction on process tomography research’s 

background problem, problem statement, significance and objective and scope of 

study.

Chapter 2 presents a brief review of process tomography, types of process 

tomography such as electrical capacitance, electrical impedance, ultrasonic, x-ray, 

nuclear resonance magnetic, positron emission, mutual inductance, microwave, and 

optical tomography. 

Chapter 3 presents a discussion on the relationship between projection and 

object functions, modeling of the infra-red optical system sensor, software signal 
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conditioning, image reconstruction algorithm, reconstructed image error 

measurement, and velocity of flow.  

Chapter 4 discusses a presentation on the development of infra-red 

tomography measuring system. 

Chapter 5 presents a discussion on the single pixel flow, multiple pixels, half, 

and full flow modeling, image reconstruction algorithm for flow models, results of 

reconstructed model images, comparison of algorithms performance, and conclusion 

from the results. 

Chapter 6 presents a discussion on the concentration measurement and the 

concentration profiles. 

Chapter 7 presents a discussion on the introduction of free fall and air 

resistance theory, velocity measurement, and velocity measurement. 

Chapter 8 presents the conclusion and the recommendations for future work. 
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