THE DEACIDIFICATION OF PINEAPPLE JUICE USING ELECTRODIALYSIS WITH MONOPOLAR ION EXCHANGE MEMBRANES

MASNIZA BINTI SAIRI

A thesis submitted in fulfilment of the requirements for the award of the degree of Master of Engineering (Bioprocess)

Faculty of Chemical and Natural Resources Engineering Universiti Teknologi Malaysia

MAY 2005

Specially dedicated to my beloved mak, abah, Achik, Abang Dzul, Jojo, Angah, Abang Chik, Alang, Along and my fiancé, Hadi for all the encouragement and help during the hard time...

ACKNOWLEDGEMENT

First of all, I wish to express my sincere appreciation to my supervisor, Professor Dr. Mohamad Roji bin Sarmidi, Research and Development Manager of Chemical Engineering Pilot Plant, Universiti Teknologi Malaysia for the guidance, advice, help and encouragement throughout my study.

I would also like to express my gratitude to all staffs of Bioprocess Engineering Department, Faculty of Chemical and Natural Resources Engineering; Mr. Yaakop, Mr. Malek, Mr. Nur Muhammad El-Qarni and especially to Mrs. Siti Zalita for their guidance and assistance. Thanks also to School of Graduate Studies, Universiti Teknologi Malaysia for funding my master's study with two years UTM -Grant Vote 72101 and UTM - PTP scholarship.

Deep thanks and appreciation are also due to all of my friends and colleagues for their true friendship, help, support and motivation, especially during my hard times. Thank you so much to Law Jeng Yih, Ting Lee Yu, M. Taher, Mahadevan, Chua Lee Suan, Cheng Kian Kai, Wan Mohd. Hafizudin, Hanamasayu, Fairuz, Ida Juliana, Mazatusziha, Sitti Asmah, Siti Khadijah, Suzana, Yap Wei Ney, Wee Chen Chen, Wong Fui Ling, Faizall, Hadi, Maznah, Norzaliana and Shamsaaiza. My sincere appreciation also extends to all my colleagues in Mechanisation and Automation Research Centre, MARDI.

Last but not least, I wish to express my deepest thanks and gratitude to all my family members; my parents, brothers and sisters for their eternal love, continuous prayers, moral supports and financial help. Without all of you, this study would not have been successful.

ABSTRACT

The objective of this research was to study the performance of the electrodialysis using monopolar ion exchange membranes for the deacidification of pineapple juice. Based on preliminary experimental data using citric acid solution, AFN monopolar anion exchange membrane was selected for the subsequent study of the deacidification of pineapple juice. Electrodialysis of pineapple juice resulted in the reduction of the conductivity and the total acidity in the diluted stream. The deacidification value was 27.53 %. Deacidification process unexpectedly decreased the pH value from 4.01 to 3.75. However the Brix values were essentially unchanged (from 10.50 to 10.17 % Brix). A slight fluctuation in sugar compositions during electrodialysis was observed after 80 minutes of the processing. The sugar analysis was carried out using High Performance Liquid Chromatography (HPLC). HPLC analysis also showed that citric acid and malic acid compositions were always higher in the concentrated stream as compared to the diluted stream. The elemental analysis of the pineapple juice indicated that the composition of magnesium, phosphorus and potassium were reduced in the diluted stream but increased in the concentrated stream. The results from sensory evaluation test showed a higher overall acceptance for the electrodialysed pineapple juice compared to the fresh juice. The values of the overall acceptance were 66.0 % and 56.0 %, respectively. The findings showed that electrodialysis offer a better processing route and produce a more acceptable product for the deacidification of pineapple juice.

ABSTRAK

Objektif penyelidikan ini adalah mengkaji prestasi elektrodialisis menggunakan membran pertukaran ion monopolar bagi penyahasidan jus nanas. Berdasarkan data eksperimen permulaan menggunakan larutan asid sitrik, membran pertukaran anion monopolar, AFN dipilih untuk kajian penyahasidan jus nanas. Elektrodialisis jus nanas menyebabkan pengurangan nilai konduktiviti dan asid keseluruhan di dalam aliran pencairan. Nilai penyahasidan adalah 27.53 %. Nilai pH berkurang tanpa dijangka daripada 4.01 kepada 3.75. Walaubagaimanapun, nilai Brix tidak banyak berubah (daripada 10.50 kepada 10.17 % Brix). Komposisi gula semasa elektrodialisis menunjukkan sedikit turun naik selepas minit ke-80 pemprosesan. Analisis gula dijalankan menggunakan Kromatografi Cecair Prestasi Tinggi (HPLC). Analisis HPLC turut menunjukkan kandungan asid sitrik dan asid malik di dalam aliran pemekatan sentiasa lebih tinggi daripada aliran pencairan. Analisis elemen jus nanas menunjukkan komposisi magnesium, fosforus dan kalium berkurang di dalam aliran pencairan tetapi bertambah di dalam aliran pemekatan. Keputusan ujian penilaian sensori menunjukkan penerimaan keseluruhan yang lebih tinggi bagi jus nanas yang diproses menggunakan elektrodialisis berbanding jus segar, di mana nilai masing-masing adalah 66.0 % dan 56.0 %. Penemuan ini menunjukkan elektrodialisis menyediakan aliran pemprosesan yang lebih baik dan menghasilkan produk yang lebih diterima bagi penyahasidan jus nanas.

TABLE OF CONTENTS

1

2

TITLE

PAGE

5

TITL	ĿE	i
DEC	LARATION	ii
DED	ICATION	iii
ACK	NOWLEDGEMENT	iv
ABS	TRACT	v
ABS	TRAK	vi
TAB	LE OF CONTENTS	vii
LIST	OF TABLES	xiv
LIST	OF FIGURES	XV
LIST	OF SYMBOLS	XX
LIST	OF APPENDICES	XX
INT	RODUCTION	1
	Electrodialysis and Ion Exchange Membrane	1
1.1		
1.1 1.2	Deacidification of Pineapple Juice by	
	Deacidification of Pineapple Juice by Electrodialysis	2
		2 3
1.2	Electrodialysis	_

LITERATURE REVIEW: ELECTRODIALYSIS AND ION EXCHANGE MEMBRANE

2.1	Memb	prane Separation Technology	5
	2.1.1	Types of Membranes	9
		2.1.1.1 Microporous Membranes	9
		2.1.1.2 Homogeneous Membranes	10
		2.1.1.3 Asymmetric Membranes	10
2.2	Ion Ex	kchange Membrane	10
	2.2.1	Introduction to Ion Exchange	
		Membrane	10
	2.2.2	Properties of Ion Exchange	
		Membrane	11
	2.2.3	Anion Exchange Membrane	12
	2.2.4	Cation Exchange Membrane	13
2.3	Electr	odialysis	13
	2.3.1	Introduction to Electrodialysis	13
	2.3.2	Fundamental of Electrodialysis	14
	2.3.3	Electrodialysis Equipment	15
2.4	Indust	rial Application of Electrodialysis	16
	2.4.1	Desalination of Brackish Water	16
	2.4.2	Production of Table Salt	16
	2.4.3	Electrodialysis in Wastewater	
		Treatment	16
	2.4.4	Acid and Base Production	17
	2.4.5	Electrodialysis in the Food Industry	17
		2.4.5.1 Special Consideration for Food	
		and Biotechnology Application	17
2.5	Conce	entration Polarization and Limiting	
	Curren	nt Density of Electrodialysis Process	18
	2.5.1	Concentration Polarization	18
	2.5.2	Limiting Current Density	19
	2.5.3	Limiting Current Density Determination	19
	2.5.4	Derivation of the Limiting Current	
		Density Equation	20
2.6	Water	and Ion Transport in Ion Exchange	
	Memt	prane	21

	2.6.1	Water Transport in Electrodialysis	,
	2.6.2	Ion Transport in Electrodialysis	,
	2.6.3	Derivation of the Water Transport	
		Equation	,
	2.6.4	Derivation of the Ion Transport	
		Equation	
2.7	Memb	prane Fouling	
	2.7.1	Process Factors Affecting Fouling	
	2.7.2	Fouling of Electrodialysis Membranes	
	2.7.3	Anti Fouling Technology	
LITH	ERATUI	RE REVIEW: PINEAPPLE AND	
DEA	CIDIFI	CATION OF FRUIT JUICES	
PRO	CESS		
3.1	Pinea	ople	
	3.1.1	Introduction	
	3.1.2	Pineapple and Pineapple Juice	
		Compositions	
	3.1.3	Pineapple Industry in Malaysia	
3.2	Memb	prane for Processing Fruit Juice and	
	Bever	ages	
3.3	Conve	entional Deacidification of Fruit Juices	
	Proces	5S	
3.4	Electr	odialysis for Deacidification of Fruit	
	Juices		
3.5	Electr	odialysis Deacidification of Citric Acid	
МАТ	TERIAL	S AND METHODS	
4.1		uction to Experimental Work	
4.2	Mater		
	4.2.1	Chemicals	
	4.2.2	Equipments	

3

	4.2.3	Membranes	43
4.3	Experi	mental Set-up	45
4.4	Experi	mental Procedure to Determine the	
	Effect	of Operating Parameters on	
	Electro	odialysis Membrane Performance	47
	4.4.1	Effect of Current Density	48
	4.4.2	Effect of Feed Concentration	49
	4.4.3	Effect of Anion Exchange	
		Membrane Types	49
4.5	Experi	mental Procedure for the Measurement	
	of Lim	iting Current Density	50
4.6	Experi	mental Procedure to Determine Water	
	Transp	port	51
4.7	Experi	mental Procedure to Determine Ion	
	Transp	port	52
4.8	Prepar	ation of Experimental Solution	53
	4.8.1	Preparation of Citric Acid Solution	53
	4.8.2	Preparation of Electrode Rinse	
		Solution	54
4.9	Experi	mental Procedure for Deacidification	
	of Pine	eapple Juice Using Electrodialysis	54
	4.9.1	Preparation of Pineapple Juice	54
	4.9.2	The Electrodialysis of Pineapple Juice	55
4.10	Analyt	tical Procedures	56
	4.10.1	Titratable Acidity of Pineapple Juice	56
	4.10.2	pH of Pineapple Juice	57
	4.10.3	Total Soluble Solids in Pineapple	
		Juice	57
	4.10.4	Analysis of Sugar Contents in	
		Pineapple Juice by HPLC	57
	4.10.5	Analysis of Organic Acid Contents in	
		Pineapple Juice by HPLC	58
	4.10.6	Analysis of Elemental Components	
		in Pineapple Juice by ICP-MS	59

4.11	Senso	ry Analysis of Pineapple Juice	59
	4.11.1	Introduction	59
	4.11.2	Organisation of Sensory Evaluation	
		Test	60
RESU	ULTS A	ND DISCUSSION	65
5.1	Introd	uction	65
5.2	Effect	of Operating Parameters on Membrane	
	Perfor	mance Using Citric Acid Solution	66
	5.2.1	Effect of Current Density on	
		Electrodialysis Membrane Performance	66
	5.2.2	Effect of Feed Concentration on	
		Electrodialysis Membrane Performance	69
	5.2.3	Effect of Anion Exchange Membrane	
		Type on Electrodialysis Membrane	
		Performance	74
5.3	The C	urrent-Voltage Curve Study of Anion	
	and C	ation Exchange Membranes Using Citric	
	Acid S	Solution	76
	5.3.1	Introduction to the Limiting Current	
		Density	76
	5.3.2	General Features of Current-Voltage	
		Curve for Anion and Cation	
		Exchange Membranes	77
	5.3.3	The Characterisation of Current-	
		Voltage Curve for Anion Exchange	
		Membranes	78
	5.3.4	Comparison of the Limiting Current	
		Density for the Anion Exchange	
		Membranes	83
5.4	Water	and Ion Transport in Ion Exchange	
	Memb	pranes for the Deacidification of Citric	
	Acid S	Solution	84

	5.4.1	Water Transport of Citric Acid in the						
		1-L Laboratory Scale Electrodialysis						
		System	85					
	5.4.2	Comparison of Water Transport Rate						
		for Ion Exchange Membrane	87					
	5.4.3	Ion Transport of Citric Acid in the						
		1-L Laboratory Scale Electrodialysis						
		System	88					
5.5	Limiti	ing Current Density Analysis	91					
	5.5.1	Limiting Current Density Calculation	91					
	5.5.2	Determination of the Empirical						
		Constants <i>m</i> and <i>n</i> of Limiting Current						
		Density Calculation	91					
	5.5.3	Comparison between the Measured						
		and Calculated Limiting Current Density						
		for Anion Exchange Membranes	92					
5.6	Analy	sis of Water and Ion Transport	95					
	5.6.1	Water Transport Calculation	95					
	5.6.2	Ion Transport Calculation	95					
	5.6.3	Water and Ion Transport Calculation						
		Reliability Test	96					
5.7	Deaci	Deacidification of Pineapple Juice Using						
	Electr	odialysis	98					
	5.7.1	Effect of Electrodialysis on Titratable						
		Acidity	100					
	5.7.2	Effect of Electrodialysis on pH of						
		Pineapple Juice	102					
	5.7.3	Effect of Electrodialysis on Soluble						
		Solids	103					
	5.7.4	Effect of Electrodialysis on Sugar						
		Contents in Pineapple Juice	105					
	5.7.5	Effect of Electrodialysis on Organic						
		Acid Contents in Pineapple Juice	109					
	5.7.6	Effect of Electrodialysis on Elemental						

	Components in Pineapple Juice	113
5.8	Sensory Analyses of Pineapple Juice	115
CON	CLUSION AND RECOMMENDATIONS	118
6.1	Conclusion	118
6.2	Recommendations for Future Work	120
REFI	ERENCES	121
APPI	ENDICES	129
Apper	ndix A	129
Apper	ndix B	130
Apper	ndix C	136
Apper	ndix D	143
Apper	ndix E	152
Apper	ndix F	157
Apper	ndix G	162
Apper	ndix H	165

LIST OF TABLES

TABLE NO.	TITLE	PAGE
2.1	The characteristics of membrane used in different	
	membrane separation process, process driving	
	forces and applications of such processes	6
2.2	Membrane separation technologies	8
3.1	The composition of pineapple juice	33
3.2	The composition and nutritive value of pineapple	34
4.1	Measured anion exchange membrane (AEM)	
	properties and data provided by the membrane	
	manufacturer	44
4.2	Measured cation exchange membrane (CEM)	
	properties and data provided by the membrane	
	manufacturer	45
5.1	The data on deacidification values for AFN, AM-1,	
	AM-3 and AMX anion exchange membranes at	
	different current densities	67
5.2	The data on flux values for AFN, AM-1, AM-3 and	
	AMX anion exchange membranes at different current	
	densities	68
5.3	The data on deacidification values for AFN, AM-1,	
	AM-3 and AMX anion exchange membranes at	
	different feed concentrations	71
5.4	The data on flux values for AFN, AM-1, AM-3 and	
	AMX anion exchange membranes at different feed	

concentrations

5.5	The data on deacidification values through different	
	types of Neosepta anion exchange membranes	75
5.6	The value of limiting current density for different	
	types of anion exchange membranes and different	
	citric acid concentrations	82
5.7	The data on water transport rate for different current	
	densities applied to AFN, AM-1, AM-3 and AMX	
	anion exchange membranes	88
5.8	The data on deacidification values between current	
	density and feed concentration effect	89
5.9	The data on flux values between current density and	
	feed concentration effect	89
5.10	The empirical constants of m and n of limiting	
	current density for different type of anion exchange	
	membranes (AEMs)	92
5.11	The data on phenomenological coefficients of water	
	transport and ion transport rate constants for 0.2379 M	
	citric acid solution	96
5.12	Data for titratable acidity	101
5.13	pH value in the diluting stream during electrodialysis	103
5.14	Degree Brix value of pineapple juice samples taken	
	during electrodialysis processing	104
5.15	Data on Brix-acid ratio in the diluting stream and	
	concentrating stream during electrodialysis processing	105
5.16	The data on peak areas from HPLC chromatograms	
	for the determination of sugar contents in the diluting	
	stream during electrodialysis processing	106
5.17	The data on peak areas from HPLC chromatograms	
	for the determination of sugar contents in the	
	concentrating stream during electrodialysis processing	107
5.18	The data on peak heights from HPLC chromatograms	
	for the determination of organic acid contents in the	
	diluting stream during electrodialysis processing	110
5.19	The data on peak heights from HPLC chromatograms	

	for the determination of organic acid contents in the	
	concentrating stream during electrodialysis processing	111
5.20	The compositions of fresh pineapple juice and	
	processed pineapple juice using electrodialysis	114
5.21	Sensory evaluation test results	115

LIST OF FIGURES

FIGURE NO	. TITLE	PAGE
2.1	Microstructure of a cation exchange membrane	13
2.2	Principles of electrodialysis process	15
4.1	The experimental flowchart	41
4.2	Schematic flow diagram of electrodialysis system	45
4.2	An overview of 1-L laboratory scale electrodialysis	
	system	47
4.3	The schematic diagram of membranes arrangement	
	in the five-compartment electrodialysis system	48
4.4	The schematic diagram of current-voltage	
	measurement	50
4.5	Apparatus for measuring the volume of water	
	transport	52
5.1	Comparison of deacidification percentage at different	
	current densities using AFN, AM-1, AM-3 and AMX	
	anion exchange membrane	67
5.2	Comparison of flux value at different current densities	
	using AFN, AM-1, AM-3 and AMX anion exchange	
	membranes	69
5.3	Variation of citric acid deacidification curves during	
	electrodialysis processing at different feed	
	concentrations using AFN anion exchange membrane	70
5.4	Comparison of deacidification percentage at different	
	feed concentrations using AFN, AM-1, AM-3 and	

AMX anion exchange membrane

5.5	The influence of feed concentration on the flux of citric acid across the AFN, AM-1, AM-3 and AMX anion exchange membranes at current density of	
	2.60 mA/cm^2	73
5.6	Comparison of different anion exchange membrane	
	types on deacidification value using 0.5, 1.0, 2.0 and	
	5.0 (% w/v) citric acid solution	75
5.7	The current-voltage curve for ion exchange	
	membrane	78
5.8	The current-voltage curve of AFN anion exchange	
	membrane at 0.5 % (w/v) citric acid solution	79
5.9	The current-voltage curve of AFN anion exchange	
	membrane at 1.0 % (w/v) citric acid solution	80
5.10	The current-voltage curve of AFN anion exchange	
	membrane at 2.0 % (w/v) citric acid solution	80
5.11	The current-voltage curve of AFN anion exchange	
	membrane at 5.0 % (w/v) citric acid solution	81
5.12	The limiting current density for different type of	
	anion exchange membranes at various citric acid	
	concentrations	82
5.13	The limiting current density value for different type	
	of anion exchange membranes at 0.5, 1.0, 2.0 and	
	5.0 % (w/v) synthetic citric acid solution	83
5.14	The effect of current density on citric acid volume	
	difference in concentrating stream for AFN, AM-1,	
	AM-3 and AMX anion exchange membranes	85
5.15	The effect of citric acid feed concentration on volume	
	difference in concentrating stream for AFN, AM-1,	
	AM-3 and AMX anion exchange membrane	86
5.16	The relationship between water transport rate with	
	current density for AFN, AM-1, AM-3 and AMX	
	anion exchange membranes	88
5.17	The influence of current density and feed concentration	
	on deacidification value	90

5.18	The influence of current density and feed concentration	
	on flux value	90
5.19	Measured (Mea.) and calculated (Cal.) result of	
	limiting current density as a function of citric acid	
	concentration for AFN anion exchange membrane	93
5.20	Measured (Mea.) and calculated (Cal.) result of	
	limiting current density as a function of citric acid	
	concentration for AM-1 anion exchange membrane	93
5.21	Measured (Mea.) and calculated (Cal.) result of	
	limiting current density as a function of citric acid	
	concentration for AM-3 anion exchange membrane	94
5.22	Measured (Mea.) and calculated (Cal.) result of	
	limiting current density as a function of citric acid	
	concentration for AMX anion exchange membrane	94
5.23	Measured (Mea.) and calculated (Cal.) results of	
	water transport at different constant current densities	96
5.24	Measured (Mea.) and calculated (Cal.) results of ion	
	transport rate for 0.2379 M citric acid solution	97
5.25	Deacidification curve of pineapple juice after two	
	hours of processing using electrodialysis	99
5.26	Comparison of total acidity in the diluting stream	
	and concentrating stream	102
5.27	Sugars concentrations variation as a function of time	
	in the diluting stream (DS) and concentrating stream	
	(CS)	108
5.28	Organic acids concentrations variation as a function	
	of time in the diluting stream (DS) and concentrating	
	stream (CS)	112
5.29	Comparison graph on pineapple juice characteristics	
	in sample M (fresh pineapple juice) and sample H	
	(processed pineapple juice using electrodialysis)	116

LIST OF SYMBOLS

A	-	Ion transport rate constant (M/(A.s))
A, AEM	-	Anion exchange membrane
В	-	Ion transport rate constant (1/(A.s))
BMED	-	Bipolar-membrane electrodialysis
C, CEM	-	Cation exchange membrane
CD	-	Current density
CD_{lim}	-	Limiting current density
CE	-	Current efficiency
СР	-	Concentration polarization
CS	-	Concentrating stream
D	-	Diffusion coefficient
DC	-	Direct current
DS	-	Diluting stream
ED	-	Electrodialysis
ERS	-	Electrode rinse solution
F	-	Faraday constant (96500 C.mol ⁻¹)
HPLC	-	High Performance Liquid Chromatography
i	-	Current density
Ι	-	Current, Current intensity
ICP-MS	-	Inductively Coupled Plasma Mass Spectrometer
IEM	-	Ion exchange membrane
<i>I-V</i> curve	-	Current-voltage curve
<i>m</i> , <i>n</i>	-	Empirical constant
n	-	Average current efficiency
рK	-	Dissociation constant
R	-	Gas constant

S	-	Effective membrane area
SS	-	Soluble solid
t	-	Time
Т	-	Temperature
ТА	-	Titratable acidity
v	-	Velocity of convection transport, Feed solution velocity
V	-	Voltage
x	-	Direction of coordinate
Ζ	-	Electrochemical valence
α	-	Phenomenological coefficient (ml/s)
eta	-	Phenomenological coefficient (ml.cm ² /(A.s))
ϕ	-	Electrical potential
H^+	-	Hydrogen ion
OH	-	Hydroxide ion
C_0	-	Feed concentration
J_k	-	Flux of component k
Q_F	-	Amount of electrical charges expressed in Faraday
$\frac{dV}{dt}$	-	Water transport rate
C_c^0	-	Concentration at time = 0 in the concentrate stream
C_c^t	-	Concentration at time = t in the concentrate stream
C_d^0	-	Concentration at time = 0 in the diluate stream
$n_{citric}^0(0)$	-	Number of moles of citric acid in the concentrating stream at
		initial stage
$n_{citric}^{c}(t)$	-	Number of moles of citric acid in the concentrating stream at
		time t
V_c^0	-	Initial volume of the concentrating stream
V_c^t	-	Volume of the concentrating stream at time t
Δn	-	The difference in the number of moles of citric acid in the
		concentrating stream at time t and at initial stage
ΔV_c	-	Volume of water transported from diluting stream to
		concentrating stream

+	-	Anode
-	-	Cathode
(% w/v)	-	Percent by weight

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
A-1	The Standard Curve of Citric Acid Solution	129
B-1	Effect of Current Density on Electrodialysis	
	Membrane Performance	130
B-1.1	Experimental Data Worksheet	130
B-2	Effect of Feed Concentration on Electrodialysis	
	Membrane Performance	132
B-2.1	Experimental Data Worksheet	132
B-2.2	The deacidification curves for AM-1, AM-3 and	
	AMX anion exchange membranes at various citric	
	acid concentrations	134
C-1	Current-Voltage Curve of Anion Exchange	
	Membranes Under the Influence of Different Feed	
	Citric Acid Concentrations	136
C-1.1	AM-1 Anion Exchange Membrane	136
C-1.2	AM-3 Anion Exchange Membrane	138
C-1.3	AMX Anion Exchange Membrane	140
D-1	Determination of the Empirical Constants m and n	
	of Limiting Current Density Calculation	143
D-1.1	AFN Anion Exchange Membrane	144
D-1.2	AM-1 Anion Exchange Membrane	146
D-1.3	AM-3 Anion Exchange Membrane	148
D-1.4	AMX Anion Exchange Membrane	150
E-1	Water Transport Analysis of Citric Acid	152
E-2	Ion Transport Analysis of Citric Acid	154

F-1	HPLC Chromatogram for Sugar Contents Analysis	157
F-1.1	HPLC Chromatogram for Sugar Standards	157
F-1.2	The Data on Sugars Standard	157
F-1.3	The Standard Curve of Sugars	158
F-2	HPLC Chromatogram for Organic Acid Contents	
	Analysis	158
F -2 .1	HPLC Chromatogram for Organic Acid Standards	158
F-2.2	The Data on Organic Acids Standard	160
F-2.3	The Standard Curve of Organic Acids	161
G-1	Questionnaire for Sensory Taste Panels Selection	162
G-2	Data of Panel Preference on Pineapple Juice Samples	164
H-1	Local and International Conference/Exhibition	165

CHAPTER 1

INTRODUCTION

1.1 Electrodialysis and Ion Exchange Membrane

Electrodialysis is an electrochemical membrane separation process in which electrically charged membranes and an electrical potential difference used to separate ionic species from aqueous solution and other uncharged components (Strathmann, 1992; Bazinet *et al.*, 1998). The separation is not based on the size of the particles, but by their electrical charge (Bazinet *et al.*, 1998).

The interest in electrodialysis as a membrane separation process due to the developments in new membrane materials that offer better stability and performance, thus facilitating for new applications (such as bipolar membrane) (Bazinet *et al.*, 1998). The applications of electrodialysis include the desalination process, production of table salt from seawater, demineralization of cane sugar, desalination of cheese whey, deacidification of fruit juices, wines stabilization, production of acids and bases from a salt stream and to the recovery of concentrated acids (Strathmann, 1992; Alvarez *et al.*, 1997; Bazinet *et al.*, 1998; Ling, 2002).

The ion exchange membranes are the most important component in the electrodialysis equipment. Ion exchange membranes are made of polymer matrix material with fixed charged groups covalently bonded to the polymer matrix (Strathmann, 1992). The ion exchange membranes are subdivided into two basic categories, which are the monopolar membranes and the bipolar membranes. The

type of fixed charged groups attached to the polymer matrix, determines the classification of ion exchange membrane (Ling, 2002). Monopolar membranes can be further classified into anion exchange membrane and cation exchange membrane. A membrane containing fixed negative charges is called a cation exchange membrane, while a membrane with fixed positive charges is referred as anion exchange membrane (Strathmann, 1981).

1.2 Deacidification of Pineapple Juice by Electrodialysis

Pineapple or *Ananas comosus* is a popular tropical fruit due to its unique aroma and pleasant flavour. A ripe pineapple is juicy, succulent and has a tangy sweet-tart flavour. Pineapple juice is obtained by squeezing pineapple fruit. Pineapple juice contains 12 % - 15 % (w/v) sugars of which two-third is in the form of sucrose and the rest are glucose and fructose. 0.6 % - 1.2 % (w/v) of pineapple is acid of which 87 % is citric acid and 13 % is malic acid (Samson, 1986; Adhikary *et al.*, 1987). The pH of pineapple juice is in the acidic region, which is of around 3.71 and the acidity percentage is 53.5 %. The composition of the juice varies with geographical, seasonal harvesting and processing.

Several methods have been attempted to reduce the sour taste of pineapple juice, due to its high acidity. The methods include adding sweetening agents, simple neutralization by alkali and partially removal of the acid by ion-exchange techniques (Bhatia *et al.*, 1979; Adhikary *et al.*, 1983; Lue and Chiang, 1989).

At present, there is an increase demand for fruit juices with authentic characteristics of fresh fruits and free from chemical additives. As a result, the industry is searching for new technology that could maintain the sensorial and nutritional quality of the fruit juices (Carneiro *et al.*, 2002). The conventional thermal processing method reduced the quality of the pineapple juice. An alternative pineapple juice processing is by using electrodialysis. The advantages of electrodialysis in relation to the thermal processing are the use of mild temperature and pressure conditions, which maintain the nutritional quality and the sensorial attributes of the products. Hence a study is warranted to develop pineapple juice with acceptable acidity level using laboratory scale electrodialyzer equipment.

1.3 Objective of the Study

The objective of this research was to study the performance of monopolar ion exchange membranes during electrodialysis for the deacidification of pineapple juice.

1.4 Scope of the Study

In order to achieve the objective, the research is divided into three phases. The first phase involved the study on the effect of operating parameters on the performance of electrodialysis equipment using citric acid solution. The operating parameters studied were the current density, feed concentration and anion exchange membranes type. The study on limiting current density, water transport and ion transport were also conducted.

The second phase was to study the reliability of the developed limiting current density, water transport and ion transport equation to describe the performance of electrodialysis process using citric acid solution.

The third phase was to study the deacidification of pineapple juice using electrodialysis. The effect of electrodialysis on the physico-chemical and chemical characteristics of pineapple juice was investigated. The sensory analysis was also conducted to determine the acceptability of the processed pineapple juice using electrodialysis.

1.5 Organization of Thesis

The research work in this thesis deals with the application of electrodialysis with ion exchange membranes for deacidification of pineapple juice. The thesis is divided into six chapters. Chapter 1 presents the background and overview of the overall study. An introduction to electrodialysis, ion exchange membrane and its application in the process of pineapple juice deacidification are presented. The research objective and scope are also outlined.

The Chapter 2 of this thesis is the comprehensive literature review, including membrane separation technology, the basic principles of electrodialysis and ion exchange membranes, the applications of electrodialysis, limiting current density in electrodialysis process and ion transport in ion exchange membranes.

In Chapter 3, the background of pineapple, the pineapple and pineapple juice composition and pineapple industry in Malaysia are presented. Besides that, membrane processing of fruit juices and the conventional methods for fruit juice deacidification are presented. A review of the previous study on the application of electrodialysis with ion exchange membrane for deacidification of fruit juices is also cited.

Chapter 4 listed out the materials and equipments used in this study. The methods for the experimental work were also described. All the experimental results and discussion of the performance of electrodialysis to deacidify citric acid solution and pineapple juice are outlined in Chapter 5. This chapter also includes the analysis of limiting current density and water and ion transport. Finally, Chapter 6 concludes the findings from this research and with recommendations for future work.

REFERENCES

- Abdulah Elattar, Azzedine Elmidaoui, Pismenskaia, N., Gavach, C. and Pourcelly, G. (1998). Comparison of Transport Properties of Monovalent Anions Through Anion Exchange Membranes. *Journal of Membrane Science*. 143: 249 - 261.
- Adhikary, S. K., Harkare, W. P., Govindan, K. P. and Nanjundaswamy, A. M. (1983). Deacidification of Fruit Juices by Electrodialysis. *Indian Journal of Technology*. 21: 120 - 123.
- Adhikary, S. K., Harkare, W. P., Govindan, K. P., Chikkappaji, K. C., Saroja, S. and Nanjundaswamy, A. M. (1987). Deacidification of Fruit Juices by Electrodialysis
 Part II. *Indian Journal of Technology*. 61: 177 - 190.
- Aguilella, V. M., Mafe, S., Manzanares, J.A. and Pellicer, J. (1991). Current-Voltage Curves for Ion Exchange Membranes. Contribution to the Total Potential Drop. *Journal of Membrane Science*. 143: 249 - 261.
- Alcaraz, A., Holdik, H., Ruffing, T., Ramirez, P. and Mafe, S. (1998). AC Impedance Spectra of Bipolar Membranes: An Experimental Study. *Journal of Membrane Science*. 150: 43 - 56.
- Alvarez, F., Alvarez, R., Coca, J., Sandeaux, J., Sandeaux, R. and Gavach, C. (1997). Salicylic Acid Production by Electrodialysis with Bipolar Membranes. *Journal of Membrane Science*. 123: 61 - 69.
- American Society for Testing and Materials (1968). *Manual on Sensory Testing Methods*. Philadelphia, No. 434.

- Amerine, M. A., Pangborn, R. M. and Roessler, E. B. (1965). Principals of Sensory Evaluation of Food. New York: Academic Press.
- Aponte, V. M. and Colon, G. (2001). Sodium Chloride Removal from Urine via a Six-Compartment ED Cell for Use in Advanced Life Support Systems (Part 2: Limiting Current Density Behaviour. *Desalination*. 140: 133 - 144.
- Arthey, D. (1995). Food Industries Manual. In: Ranken, M. D., Kill, R. C. and British Food Manufacturing Industries Research Association eds. *Fruit and Vegetable Product*. London: Blackie Academic and Professional. 151.
- Association of Official Analytical Chemists (1984). *Official Methods of Analysis:* 14th ed. USA.
- Bartolomé, A. P., Rupérez, P. and Fúster, C. (1995). Pineapple Fruit: Morphological Characteristics, Chemical Composition and Sensory Analysis of Red Spanish and Smooth Cayenne Cultivars. *Food Chemistry*. 53: 75 - 79.
- Bazinet, L., Lamarche, F. and Ippersiel, D. (1998). Bipolar-membrane
 Electrodialysis: Applications of Electrodialysis in the Food Industry. *Trends in Food Science and Technology*. 9: 107 - 113.
- Bell, G. and Cousins, R. B. (1994). Membrane Separation Processes. In: Weatherley,
 L. R. ed. *Engineering Processes for Bioseparations*. Oxford: ButterworthHeinemann Ltd. 135 165.
- Berita Harian (7th January 2004). Kajian 10 Tahun Mardi Lahirkan Hibrid Josepine. *MOA Inc.*: 2.
- Bhatia, A. K., Dang, R. L. and Gaur, G. S. (1979). Deacidification of Apple Juice by Ion Exchange Resins. *Indian Food Packer*. 33: 15 - 20.

- British Standards Institution (1980). *Methods for Sensory Analysis of Food. Part 1: Introduction and General Guide to Methodology*. London, BS 5929.
- Brogley, J., Mullick, J. and Quigley, M. N. (1993). Liquid Chromatographic
 Determination of Malic and Lactic Acid in Wine Following Malolactic
 Fermentation. *Journal of Chromatography*. 70(6): 507 508.
- Campos, D. C. P., Santos, A. S., Wolkoff, D. B., Matta, V. M., Cabral, L. M. C. and Couri, S. (2002). Cashew Apple Juice Stabilization by Microfiltration. *Desalination*. 148: 61 - 65.
- Carneiro, L., Iralla dos Santos Sa, Flávia dos Santos Gomes, Matta, V. M. and Cabral, L. M. C. (2002). Cold Sterilization and Clarification of Pineapple Juice by Tangential Microfiltration. *Desalination*. 148: 93 - 98.
- Chapra, S. C. and Canale, R. P. (1998). *Numerical Methods for Engineers*. Singapore: McGraw Hill.
- Chiao, Y. C., Chlanda, F. P. and Mani, K. N. (1991). Bipolar Membranes for Purification of Acids and Bases. *Journal of Membrane Science*. 61: 239 - 252.
- Couture, R. and Rouseff, R. (1992). Debittering and Deacidifying Sour Orange (*Citrus aurantium*) Juice Using Neutral and Anion Exchange Resins. *Journal of Food Science*. 57(2): 380 - 384.
- Duke, J. A. (1983). *Ananas comosus (L.) Merr*. Handbook of Energy Crops. unpublished.
- Elkins, E. R., Lyon, R., Huang, C. J. and Matthys, A. (1997). Characterization of Commercially Produced Pineapple Juice Concentrate. *Journal of Food Composition and Analysis*. 10: 285 - 298.
- Fane, A. G. and Fell, C. J. D. (1987). A Review of Fouling and Fouling Control in Ultrafiltration. *Desalination*. 62(May 1987): 117 - 136.

- Forgas, C., Ishibashi, N. and Leibovitz, J. (1972). Polarisation at Ion Exchange Membranes in Electrodialysis. *Journal of Membrane Science*. 10: 181 – 214.
- Girard, B. and Fukumoto, L. R. (March 2000). Membrane Processing of Fruit Juices and Beverages: A Review. *Critical Reviews in Food Science and Nutrition*. 40: 911 - 157.
- Grebenyuk, V. D., Chebotareva, R. D., Peters, S. and Linkov, V. (1998). Surface Modification of Anion-Exchange Electrodialysis Membranes to Enhance Anti-Fouling Characteristics. *Desalination*. 115: 313 - 329.
- Heatherbell, D. A., Short, J. L. and Strubi, P. (1977). Apple Juice Clarification by Ultrafiltration. *Confructa*. 22: 157.
- Horner, R. D. (1997). Biochemistry Laboratory. Johns Hopkins University.
- Hyams, D. G. (1993). Curve Expert V1.34. MS (U.S.A): Microsoft Corporation.
- Khairul Faezah Md. Yunos (2002). *Electrodialysis Process for Recovery of Citric Acid Using Simulated Medium*. Universiti Teknologi Malaysia: Master Thesis.
- Kontturi, K., Mafe, S., Manzanares, J. A., Murtomaki, L. and Viinikka, P. (1994). Limiting Current and Sodium Transport Numbers in Nafion Membranes. *Electrochimica Acta*. 39(7): 883 - 888.
- Korngold, E., Kock, K. and Strathmann, H. (1978). Electrodialysis in AdvancedWaste Water Treatment. *Desalination*. 24: 129.
- Koter, S., Piotrowski, P. and Kerres, J. (1999). Comparative Investigations of Ion Exchange Membranes. *Journal of Membrane Science*. 153: 83 90.

- Krol, J. J., Wessling, M. and Strathmann, H. (1999). Concentration Polarisation with Monopolar Ion Exchange Membranes: Current-Voltage Curves and Water Dissociation. *Journal of Membrane Science*. 162: 145 - 154.
- Krueger, D. A., Krueger, R. G. and Maciel, J. (1992). Composition of Pineapple Juice. *Journal of AOAC International*. 75(2): 280 - 282.
- Lindstrand, V., Sundstrom, G. and Jonsson, A. (2000). Fouling of Electrodialysis Membranes by Organic Substance. *Desalination*. 128: 91 - 102.
- Ling, Lay Pee, Mohamad Roji Sarmidi and Leow, Heng Fatt (1999). Water Transport Modeling and Simulation in Ion Exchange Membranes. *Regional Symposium of Chemical Engineering 1999*. November 22 - 24. Songkhla, Thailand, B2.1 -B2.6.
- Ling, Lay Pee (2002). A Study on Citric Acid and Sodium Citrate Recovery in the Electrodialysis Process with Ion Exchange Membranes. Universiti Teknologi Malaysia: Ph.D. Thesis.
- Lixin, Mi and Sun, Tak Hwang (1999). Correlation of Concentration Polarization and Hydrodynamic Parameters in Hollow Fiber Modules. *Journal of Membrane Science*. 159: 143 - 165.
- Lonsdale, H. K., Merten, U. and Riley, R. L. (1965). Transport Properties of Cellulose Acetate Osmotic Membranes. *Journal of Applied Polymer Science*. 9: 1341.
- Lue, S. J. and Chiang, B. H. (1989). Deacidification of Passion Fruit Juice by Ultrafiltration and Ion-Exchange Processes. *International Journal of Food Science and Technology*. 24: 395 - 401.
- Matsuura, T. (1994). Membranes for Separation Processes. In: Matsuura, T. Synthetic Membranes and Membrane Separation Processes. Florida: CRC Press. 1 - 10.

Meilgaard, D., Civille, G. V. and Carr, B. T. (1991). *Sensory Evaluation Techniques*. Boca Raton: CRC Press.

Ministry of Primary Industries Malaysia (1995). Statistic on Commodities. 115 - 123.

- Mizutani, Y. (1990). Structure of Ion Exchange Membranes. *Journal of Membrane Science*. 49: 121 - 144.
- Mohamad Roji Sarmidi, Ling, Lay Pee, Leow, Heng Fatt and Khairul Faezah Md
 Yunos (2001). Ion Transport Modeling for Electrodialysis of Citric Acid. 6th
 World Congress of Chemical Engineering. September 23 27. Melbourne,
 Australia.
- Mohamed Hassan Al-Marzouqi, Hogendoorn, K. J. A. and Versteeg, G. F. (2002). Analytical Solution for Facilitated Transport Across a Membrane. *Chemical Engineering Science*. 57: 4817 - 4829.
- Mulder, M. (1996). *Basic Principles of Membrane Technology*. 2nd ed. Dordrecht: Kluwer Publishers.
- Novalic, S., Jagschits, F., Okwor, J. and Kulbe, K. D. (1995). Behaviour of Citric Acid during Electrodialysis. *Journal of Membrane Science*. 108: 201 205.
- Omahony, M. (1986). Sensory Evaluation of Food. New York: Marcel Dekker Inc.
- Potter, N. N. (1986). *Food Science*. 4th ed. Westport, Connecticut: The AVI Publishing Company Inc.
- Riedl, K., Girard, B. and Lencki, R. W. (1998). Influence of Membrane Structure on Fouling Layer Morphology during Apple Juice Clarification. *Journal of Membrane Science*. 139: 155 - 166.

- Riesmeier, B., Kroner, K. H. and Kula, M. R. (1987). Studies on Secondary Layer Formation and its Characterization during Cross-flow Filtration of Microbial Cells. *Journal of Membrane Science*. 34 - 35: 245 - 266.
- Rodgers IV, W. J. (1997). The Concentration and Deacidification of Reclaimed Condensate from Processed Peaches (Prunus persica L. Batsch) Using Ultrafiltration. Michigan State University: Master Thesis.
- Rubinstein, I. and Shtilman, L. (1979). Voltage Against Current Curves of Cation Exchange Membranes. *Journal of Chem. Soc., Faraday Trans. II*. 75: 281.
- Ruthven, D. M. (1997). Membrane Technology. In: Ruthven, D. M. Encyclopedia of Separation Technology: Volume 2. New York: John Wiley and Sons. 1212 -1270.
- Sáenz, C. and Sepúlveda, E. (2001). Cactus-Pear Juices. J. Profess. Assoc. Cactus. Develop. 3 - 10.
- Samson, J. A. (1986). Tropical Fruits. 2nd ed. New York: Longman Inc.
- Spiegler, K. S. (1971). Polarisation at Ion Exchange Membrane Solution Interfaces. Desalination. 9: 367 - 385.
- Sreenath, H. K., Sudarshanakrisna, K. R. and Santhanam, K. (1994). Improvement of Juice Recovery from Pineapple Pulp or Residue Using Cellulases and Pectinases. *Journal of Fermentation and Bioengineering*. 78(6): 486 - 488.
- Srikanth, G. (2003). Membrane Separation Processes: Technology and Business Opportunities. In: TIFAC Study Report: Membrane Separation Systems (TMS: 106).
- Strathmann, H. (1981). Membrane Separation Processes. Journal of Membrane Science. 9: 121 - 189.

- Strathmann, H. (1991). Electrodialysis. In: Baker and William, R. eds. Membrane Separation Systems: Recent Development and Future Directions. Park Ridge, N.J.: Noses Data Corp. 396 - 445.
- Strathmann, H. (1992). Electrodialysis. In: Winston Ho, W. S. and Sirkar, K.K. eds. *Membrane Handbook*. New York: Van Nostrand Reinhold. 218 - 262.
- Takatsuji, W., Nakauchi, M. and Yoshida, H. (1999). Removal of Salt and Organic Acids from Solution Used to Season Salted Japanese Apricots (Ume) by Electrodialysis, Precipitation and Adsorption. *Journal of Bioscience and Bioengineering*. 88(3): 348 351.
- Tokuyama Corporation. (1997). *Characteristics of Neosepta Ion-Exchange Membranes*. Tokyo, Japan: SEC System Department.
- U. S. Customs Laboratory Methods. Fruit Juices and Fruit Syrups. USCL 20-08.
- Valerdi-Pérez, R. and Ibáñez-Mengual, J. A. (2001). Current-Voltage Curves for a Electrodialysis Reversal Pilot Plant: Determination of Limiting Currents. *Desalination*. 141: 23 - 37.
- Voss, H. (1986). Deacidification of Citric Acid Solutions by Electrodialysis. *Journal of Membrane Science*. 27: 165 171.
- Wen, L. and Wrolstad, R. E. (2002). Phenolic Composition of Authentic Pineapple Juice. *Journal of Food Science*. 67(1): 155 - 161.
- Young, C. T. and How, J. S. L. (1986). Composition and Nutritive Value of Raw and Processed Fruit. In: Woodroof, J. G. ed. *Commercial Fruit Processing: 2nd ed.* USA: Avi Publishing Company Inc. 552 - 553.