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ABSTRACT 

 

 

 

Silica aerogel and titania silica aerogel were synthesized by chemical means. 

The effect of titanium source, sulphuric acid and titanium loading were studied. The 

structure and properties of the aerogels were examined by X-ray diffraction (XRD), 

scanning electron microscopy (SEM), nitrogen adsorption (BET), energy dispersive 

X-ray analysis (EDX), Fourier transform infrared (FTIR), and ultra violet-visible 

diffuse reflectance spectroscopy (UV-Vis DRS). Both silica aerogel and titania silica 

aerogel are amorphous. The surface area of the resulting titania silica aerogel was 

significantly affected by the quantity of the acid used during synthesis. The 

physicochemical properties were found could be engineered by the change of acid 

loading and titanium loading. Isolated titanium in tetrahedral framework position, 

well dispersed titania particle or crystalline titania (anatase) were formed in-situ 

during the aerogel synthesis process. Catalytic reaction of cyclohexene and hydrogen 

peroxide was carried out at 70 ˚C in a fixed batch reactor. The effects of 

physicochemical properties of the catalyst, solvent, reaction temperature, oxidant 

content and alkene to the reaction have been investigated. Both allylic and non-

allylic oxidation process have occurred in the reaction. 1,2-cyclohexanediol was 

formed as major compound in the reaction. 
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ABSTRAK 

 

 

 

Aerogel silika dan aerogel titania-silika telah disintesis melalui pendekatan 

kimia. Pengaruh daripada sumber titanium, asid sufurik dan kepekatan titanium telah 

dikaji. Struktur dan sifat aerogel telah dikaji menggunakan pembelauan sinar-X 

(XRD), mikroskop imbasan elektron (SEM), penjerapan nitrogen, analisis 

penyerakan tenaga sinar-X (EDX), Fourier transform infra merah (FTIR), and 

spektroskopi pemantulan bauran ultra lembayung-nampak (UV-Vis DRS). Kedua-

dua aerogel silika dan aerogel titania-silika bersifat amorfus. Luas permukaan 

aerogel titania silika didapati amat dipengaruhi oleh kuantiti asid yang digunakan 

semasa sintesis. Sifat fizikokimia didapati dapat dikawal dengan mengubah 

penggunaan asid dan penggunaan titanium. Titanium terpencil dalam keadaan rangka 

tetrahedral, partikel titania dalam penaburan sempurna and hablur titania (anatase) 

didapati terbentuk in-situ dalam proses sintesis aerogel. Tindakbalas pemangkinan 

bagi sikloheksena dengan hidrogen peroksida telah dijalankan dalam reaktor pukal. 

Pengaruh daripada sifat fizikokimia mangkin, pelarut, suhu tindakbalas, kuantiti 

pengoksida dan alkena terhadap keaktifan mangkin telah dikaji. Kedua-dua proses 

pengoksidaan allilik and bukan-allilik didapati telah berlangsung dalam tindakbalas. 

1,2-sikloheksanadiol didapati terbentuk sebagai hasil utama dalam tindakbalas. 
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CHAPTER 1 

 

 

 
INTRODUCTION 

 

 

 

1.1 General Introduction 

 

Aerogel is a gel in which the liquid phase has been replaced by air without 

damaging the solid phase. Aerogel is a novel space-age super material. It is inert, 

non-toxic, and environmental friendly new material. It has been used as a catcher’s 

mitt in spacecraft to capture dust from a comet [1]. 

 

Silica aerogel is a very interesting material. It is extremely light (specific 

gravity as low as 0.025 g/cm3), with the lowest thermal conductivity known to solid 

material, high surface area and high porosity. This makes it suitable for many 

applications. It has been applied as heat storage systems, catalysts and catalyst 

supports. Silica aerogel is dielectric with air filled pores (can be as small as 10 

nanometers in diameter) offers a better way to keep the interconnecting wires from 

shorting across the narrow dividing space between transistors [2]. 

 

 Many physical and chemical properties of a metal oxide can be modified by 

interaction with a second oxide. Silica–alumina, for example, has stronger acidity 

than both silica and alumina [3]. A screening study of silica-supported catalysts was 

conducted by Hisao Yoshida et al. and they found that silica supported Ti system was 

the most effective catalyst for epoxidation of propene [4]. It strongly suggests that 

silica-titania mixed oxide might be the best combination to become the best catalyst 

for the oxidation reaction compared to other oxides.
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1.2 Research Background and Problem Statement 

 

Titania (TiO2) is a technologically important material as catalyst and as 

support. With its special properties, TiO2 attracts more attention recently, especially 

for hydrodesulphurisation (HDS) or hydrodenitrogenation (HDN) in the petroleum 

refining process [5, 6, 7]. The character of the catalyst with TiO2 carrier is superior to 

that with γ-Al2O3 carrier. However, TiO2 is seldom used as a catalyst carrier in 

commercial process due to two disadvantages. TiO2 has a small specific surface area 

(usually 10 m2/g) and the mechanical strength is five times less than γ-Al2O3. In 

addition, TiO2 in high surface area form has low mechanical strength, limited 

extrudability and low thermal stability. Therefore, effort has been devoted in recent 

years to coat titania onto high surface area supports such as silica and alumina to 

improve the thermal stability and the surface area of TiO2 [8]. 

 

Despite the disadvantages, titania has the ability to modify catalytic 

properties of the metal, thus attracts the studies of the interaction between titania-

metal interfaces [9]. Since, it is very difficult to obtain high surface area titania (>100 

m2/g); its use has been limited. 

 

It is now established that nanoscale engineering of sol–gel TiO2–SiO2 mixed 

oxides provides excellent epoxidation catalysts. The area of titanosilicate-catalyzed 

epoxidation of olefins with hydrogen peroxides is largely because of the discovery of 

TS-1 where Ti has been substituted for Si in the MFI framework by Shell in 1971 

[10]. This molecular sieve was reported to be active in the following oxidation 

reactions [11]: (i) oxidation of primary and secondary alcohols to the corresponding 

aldehydes and ketones, (ii) hydroxylation of aromatics to phenol derivatives, (iii) 

epoxidation of alkenes to epoxides, (iv) oxyfunctionalization of alkanes to alcohol 

and ketones, (v) ammoximation of carbonyl compounds aldoxymes or ketoximes, 

(vi) oxidation of thioethers to sulfoxides and sulfones, and (vii) oxidation of primary 

and secondary amines to oximes or azoxy compounds and hydroxylamines. TS-1 is 

the most prominent representative of epoxidation catalyst [12]. However, the use of 

TS-1 is limited by inherently small pore size and only relatively few substrates can 

be oxidized. Moreover, an obstacle in the commercialisation of TS-1 is that it is not 

possible to be moulded.  
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The search for large pore analogues of TS-1 has led to the study of Ti 

substituted into the framework or grafted onto the channels of zeolite beta or MCM 

type silicalites. A series of new preparation methods of materials containing highly 

dispersed titanium centres in a silica matrix were developed [13, 14, 15]. 

 

 Smaller particles of metal oxide can be obtained when two oxide gel are 

mixed at the same time. However, phase separation may occur due to different rates 

of hydrolysis (sol-gel process) of silicon and titanium alkoxide, which results in 

formation of larger TiO2 particles and prevents the homolytic substitution of titanium 

in silica framework. Thus, Ti-MCM, Ti-aerogel or Ti-zeolite in several researches 

are fail to be engineered the Ti-O-Si bonding as in TS-1 [3, 13, 15]. However, high 

catalytic activity has been achieved by the use of organic based peroxide as oxidant 

if the TiO2 particle was small enough. Thus, most studies avoid the use of hydrogen 

peroxide in their catalytic oxidation. In addition, Dusi [16] has synthesized 20% 

TiO2–80 wt% SiO2 aerogel from alkoxide sources and found that highly dispersed 

titania in the silica matrix was obtained, showed outstanding performance in the 

epoxidation of cyclic olefins with alkylhydroperoxides but inactive with hydrogen 

peroxide. This was due to the formation of TiO2 particles inside the silica matrixes.  

 

Therefore, it is a challenge to synthesize titania-silica aerogel to produce 

homogeneous or well-dispersed mixed oxide by using aqueous solution. In recent 

publications, there were several synthesis routes for the production of titania-silica 

mixed oxide but alkoxide precursors are used. As the alkoxide is commonly more 

expensive starting material, it will directly increase the cost of the final material and 

limit its commercial value. Recently, Chan [17] have successfully synthesized silica 

aerogel using organic waste precursor. Their innovation has resulted in a more 

economical production of silica aerogel. Therefore it is feasible to find a better path 

to synthesize well-dispersed titania-silica mixed oxide prepared from an organic 

waste. 

 

In addition, crystalline titanium oxide has great potentials in other various 

applications, such as in photocatalysis [18], making the study of the titania-silica 

aerogel more desirable. 
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Titania oxide is of interest as catalyst or support. A disadvantage of titania as 

support is its low surface area. Therefore, inert oxide like silica aerogel is selected as 

a support in order to obtain higher surface area dispersed titania. 

 

 

 

1.3 Research Objectives and Scope 

 

The objectives of this research are: 

1) To synthesize titanium containing silica aerogel. 

2) To investigate and characterize the physical and chemical properties of 

titanium containing aerogel. 

3) To identify the catalytic properties of the titanium containing silica aerogel in 

the oxidation of cyclohexene by using hydrogen peroxide as oxidant. 

4) To identify the influence of reaction conditions in the oxidation of 

cyclohexene by titanium containing silica aerogel. 

 

 

 

1.4 Hypothesis 

 

 To overcome these problems, inert oxides like silica have been used as 

support to obtain high surface area dispersed titania. In this research work, direct 

synthesis, precipitation and grafting of titania were implemented on the silica aerogel 

as support. This approach not only increases the surface area of the titanium oxide 

but also strengthens the silica aerogel.  

 

Deposition or anchoring of Ti sites on silica circumvents the steric problem 

by avoiding narrow channels. Sol–gel process provides an attractive route to the 

preparation of multi-component oxide materials that show homogeneity in the 

distribution of heterometal oxide bonds [19]. Catalysts prepared by sol-gel contain 

accessible immobilized Ti within the silica framework. Since high specific surface 

area is obtained and the resulting porous structure is very open, larger substrates can 
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access the active sites. Better accessibility may be obtained by having the active 

component on the surface.  



 

 

84

5.2 Suggestions 

 

 Some suggestions for future work:  

 

1. Incorporation of third oxide to the titania silica aerogel either during 

the sol-gel synthesis or via post synthesis. The properties of the 

physical and chemical properties of the ternary oxide system formed 

may be varied. 

 

2. Application of titania silica aerogel in photocatalytic reaction. The 

advantage of in-situ formation of the crystalline anatase during 

aerogel synthesis, in addtion to immobilization of anatase in the silica 

matrix may overcome the anatase powder lost during the application. 
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