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ABSTRACT 
 

 

 

 

Photovoltaic (PV) is becoming a significant solar applications. Air 

conditioning is one of the basic needs for residential indoor comfort in tropical areas. 

A vapour compression air conditioning (VCAC) unit powered by PV is evaluated in 

this thesis by simulations. For energy-saving purpose, the VCAC unit is working with 

R134a, and variable compressor speed and condenser air mass flow rate are assumed. 

A typical residential house located in Senai is modeled and simplified cooling load 

temperature differential (CLTD) is used to find the peak load and determine the 

cooling capacities. Based on the peak load demands, psychrometric study is 

performed and VCAC model is developed to calculate the power supply needed. 

Then a crude stand-alone PV (SAPV) system size is predicted. To estimate the SAPV 

VCAC system performance, long-term average and detailed approaches are 

employed. The former adapted the simplified design method proposed by Hove 

(2000). It is found that without backup utility, 42.336 m2 of PV array area and 441.14 

Ah of battery capacity are required to achieve annual solar fraction of 0.9, using PV 

mean efficiency of 0.13. In the latter approach, transfer function method (TFM) and 

VCAC simulations are performed to compute the hourly cooling loads. A detailed 

modeling of SAPV system based on generality usage is developed and system 

performance for seven days during the highest cooling demands is studied. The 

simulations results are discussed and parametric analysis are shown. The SAPV 

VCAC system is found to be not cost-effective due to efficiency constraint of PV 

technology and high PV capital costs. Electricity cost of minimum RM1/kW will 

make PV applications favourable. The simulation methodology requires empirical 

data to verify. Recommendations are made for improved computations. However, this 

study believes PV still has potential beneficial effects for large-scale residential 

energy applications. 
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ABSTRAK 

 

 

 

 

 Fotovoltaik (PV) merupakan aplikasi suria yang semakin penting. Penyaman 

udara adalah suatu keperluan asas untuk keselesaan dalam rumah di kawasan tropika. 

Seunit penyaman udara mampatan wap (VCAC) yang dibekal kuasa oleh PV telah 

dinilai dengan simulasi. Demi tujuan menjimat tenaga, unit VCAC beroperasi dengan 

R134a, halaju pemampat dan kadar aliran jisim udara memeluwap dianggap sebagai 

pembolehubah. Sebuah rumah kediaman di Senai dimodel dan CLTD mudah diguna 

untuk mencari beban puncak dan menentukan muatan pendinginan. Berdasarkan 

keperluan beban puncak tersebut, psikrometrik dikaji dan model VCAC dibina untuk 

menghitung bekalan kuasa yang diperlukan. Seterusnya, saiz sistem SAPV kasar 

diramalkan. Untuk menjangka prestasi sistem SAPV VCAC itu, pendekatan secara 

purata jangka panjang dan perincian telah digunakan. Pendekatan secara purata 

jangka panjang disesuaikan daripada kaedah rekabentuk mudah yang diutarakan oleh 

Hove (2000). Tanpa utiliti backup, annual solar fraction sebanyak 0.9 dapat dicapai 

dengan menggunakan PV mean efficiency sebanyak 0.13, PV array seluas 42.336 m2 

dan kemuatan bateri sebanyak 441.14 Ah. Bagi pendekatan secara perincian, TFM 

dan simulasi VCAC dilakukan untuk mendapatkan beban pendinginan setiap jam. 

Satu permodelan sistem SAPV secara perincian berasaskan kegunaan umum dibina 

dan prestasi sistem dikaji selama tujuh hari semasa permintaan pendinginan adalah 

tertinggi. Keputusan simulasi telah dibincangkan dan analisis parameter telah 

ditunjukkan. Sistem SAPV VCAC didapati tidak berkesan dari segi kos kerana had 

kecekapan teknologi PV dan kos PV yang tinggi. Kos elektrik sekurang-kurangnya 

RM1/kW akan menjadikan aplikasi PV ini lebih digemari. Metodologi simulasi 

memerlukan pengesahan data empirikal. Cadangan telah dibuat untuk memperbaiki 

komputasi. Malah, kajian ini yakin bahawa PV mempunyai potensi membawa kesan 

bermanfaat terhadap aplikasi tenaga kediaman berskala besar. 
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Air Conditioning and Solar Energy 

 

 

Generally, high solar irradiation requires cooling for food preservation or 

human comfort. Therefore, the application of solar energy instead of popular 

electricity or gas for cooling purposes appears logical for countries with a high solar 

energy supply (Erhard et al., 1997). In Malaysia, air conditioning is a popular 

facility. The necessity of air conditioning for thermal comfort in hot areas and the 

abundance of sunshine have always intrigued the mind of researchers on how to 

combine the two for people’s benefit. 

 

 

For Grossman (2002), the greatest demand for cooling occurs when the solar 

radiation is most intense, thus making its use for cooling all the more attractive. 

Alizadeh (2000) agreed with similar point, stating that cooling load and availability 

of solar radiation are approximately in phase.  

 

 

Today, the attractive idea of solar air conditioning has been put into 

numerous ways of practices. 
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1.2 Main Types of Solar Energy Application in Air Conditioning,  

 

 

Two types of large commercial solar-driven cooling systems have been 

developed: (1) generating electricity from solar radiation to operate a mechanical 

chiller, and (2) converting sunlight to heat which in turn drives an absorption chiller 

(Gordon et al., 2000). 

 

 

A mechanical chiller involves a vapour compression refrigerator, with a 

solar-powered prime mover. This may be done through converting solar energy into 

electricity via means of photovoltaic devices, and then using the electricity in an 

electric motor to drive the vapour compressor, or by Rankine heat engine. 

 

 

Absorption systems are similar to vapour compression air conditioning 

systems but differ in the pressurization stages. An absorbent on the low-pressure side 

absorbs an evaporating refrigerant. The most usual combinations of fluids include 

lithium bromide-water (LiBr-H2O) and ammonia-water (NH3-H2O) systems where 

water vapour and ammonia are the refrigerants respectively. The pressurization is 

achieved by dissolving the refrigerant in the absorbent in the absorber section. 

Subsequently, the solution is pumped to a high pressure with an ordinary liquid 

pump. The addition of heat in the generator is used to separate the low-boiling 

refrigerant from the solution. In this way the refrigerant vapour is compressed 

without the need of large amounts of mechanical energy that a vapour compression 

air conditioning system demands (Florides et al., 2002).  

 

 

The most widely used solar air conditioning system operates on absorption 

cycle for the time being. One reason is, absorption air conditioning is the only air 

conditioning system compatible with the upper collection temperature limits imposed 

by currently available flat-plate collectors (Kreider et al., 1982). 

 

 

  



 3

1.3 Other Attempts of Cooling Methods 

 

 

The weaknesses of solar absorption cooling have lead to numerous efforts of 

exploring other cooling cycle possibilities (Refer Chapter 2). 

 

 

All the refrigeration processes can be classified into open and close cycle. 

Experience has shown that closed-cycle systems most suitable for solar cooling, is 

based on absorption cycles (Grossman, 2002). Absorption and adsorption process are 

referred as sorption process as a whole. In these sorption processes, they can still be 

divided into whether the cycle is continuous or intermittent.  

 

 

Adsorption cooling is another class of sorption air conditioners besides 

absorption cooling that utilizes an adsorbent for adsorbing moisture from the air then 

allow air to evaporative cooling. Besides, when simple absorption and adsorption 

refrigerators operate discontinuously rather than in a cycle, this is called intermittent 

operation. An intermittent solar powered system operates on diurnal cycle with one-

generation cycle per day (Bansal et al., 1997). During this operation, the 

thermodynamic processes are far from reversible, and are dependent upon the 

properties of the refrigerant-absorbent combination used and the proportion of 

refrigerant present at the commencement of generation. Most work to date on these 

cycles has been directed at food preservation rather than comfort cooling. These 

cycles may be of interest in air conditioning because they offer potential solutions to 

the energy storage problem (Duffie et al., 1980).  

 

 

In the solid sorption systems, silica gel is taken for utilized commercial 

chiller. In contrast, complex compounds of ammonia are used more often whereas 

zeolites and hydrides play a minor role in the R&D field (Lamp et al., 1998). 
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Another air conditioning system has been given focus is the open-cycle 

desiccant cooling system. It uses a desiccant dehumidifier to convert latent cooling 

load into sensible load and then meet this load using evaporative coolers (Sheridan et 

al., 1985). Its advantage is using low-grade heat such as solar energy can do the 

regeneration of desiccant. Open cycle regenerates the weak absorbent solution by 

losing refrigerant to the atmosphere. Cooling takes place by evaporating refrigerant 

from an external source in the evaporator (Collier, 1979). The system usually can 

operate in one of two modes: ventilation and recirculation (Kreider et al., 1982). 

 

 

 

 

1.4 Environmental Considerations 

 

 

Solar energy is certainly more environmental friendly compared to current 

main conventional energy sources. Most conventional cooling systems are either 

directly or indirectly driven by gas and fuel or dam-generated electricity. It is our 

main environmental concerns today that lead us to replace them with renewable 

energies. In a tropical country such as Malaysia, the rich solar energy throughout the 

year is ready for us to fully utilize. 

 

 

 From the energy supply perspective, air conditioners can be classified into 

thermally and electrically driven coolers. Most researches have focused on the 

former method since the providing work from solar heat seems convenient. The main 

problem arise here is storage. In the mean time, electrically driven coolers are 

relatively lack of attentions.  

 

 

One of the becoming popular ways to produce electricity from sun is 

photovoltaic (PV) technology.  
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For air conditioning applications, an ideal PV system is producing energy, 

which exceeds the load demand when sunlight is intense. The excess energy shall be 

stored to maintain the storage component such as battery in a fully charged state. 

When solar radiation is less or during the nights, the battery can be discharged to 

provide energy to the load. 

  

 

Europe, Japan, United States and Australia have installed large-scale 

residential PV roof subsidised programs (Green, 2004). Our society should have 

preparations regarding popularise renewable energy applications at residential level. 

As shall be illustrated in Chapter 2, PV energy has a great potential in terms of 

performance and costs in the future. Therefore, researchers have to work on 

exploring the future benefit of PV applications such as air conditioning. 

  

 

Besides the power supply of air conditioning requires attentions, the 

refrigerants used in the conventional vapour compression air conditioning (VCAC) 

units have been identified to cause environmental destructions. R134a is one of the 

ecological refrigerants for its replacement. 

 

 

 

 

1.5 Problem Statement 

 

 

Study the potential of applying photovoltaic power, to generate the highly 

efficient commercial VCAC system for residential application in Malaysia. This is 

one of the efforts to overcome the low-efficiency and high-costs problems 

encountered by current solar cooling methods, particularly those operate in 

absorption cycle. The ultimate goal is to enhance energy saving as well as 

environmental friendly engineering design. 
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1.6 Research Objectives 

 

 

The research objectives are: 

¾ To develop a program to simulate a photovoltaic vapour compression air 

conditioning system working with R134a 

¾ To study the system performance and suggest the optimum system sizing 

 

 

 

 

1.7 Scopes 

 

 

The scopes of the study are: 

¾ The air conditioning system is designed for typical residential purpose 

¾ Only vapour compression cooling cycle is investigated 

¾ Consider environmental factor, R134a is used as the cooling refrigerant 

¾ As an attempt for energy saving purpose, variable compressor speed and 

condenser air flow rate is permitted in this study 

¾ Analysis is done based on Malaysian climatic conditions 

¾ Stand-alone photovoltaic (SAPV) powers the major load portion of the air 

conditioning unit, i.e. the compressor energy demand only 

¾ Silicon is the solar cell material type to allow applications of some modelling 

assumptions. 

¾ Modelling of PV system is based on typical SAPV system configurations, 

and generality of component model is allowed 

¾ Long-term economic study is performed on the PV system 
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