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ABSTRACT 

Air pollution by nitrogen oxides (NOx) is currently one of the most serious 
environmental problems.  The conventional three-way catalyst shows low NOx
conversion in lean burn exhaust that contains high concentration of O2.  The selective 
catalytic reduction of NO (SCR-NO) with C3H6 in the presence of excess O2 over 
bimetallic Cu-Ag catalysts supported on CeO2-ZrO2 was investigated in this study.  
Initially, it was found that the loading of Ag strongly promoted the catalytic 
performance of Cu(4)/CeO2 catalyst, reaching a maximum NO conversion with the 
doping of 1 wt% Ag.  The UV-Vis DRS results revealed that the major species on 
Cu(4)/Ag(1)/CeO2 catalyst were isolated Cu2+ species and Agn

+ clusters which are 
responsible toward a higher NO reduction activity.  However, Cu(4)/Ag(1)/CeO2
catalyst is not a promising catalyst for practical use due to its low activity in the 
temperature region of 250-350ºC.  Extended studies were conducted to investigate 
the influence of different supports on the activity of SCR-NO.  
Cu(4)/Ag(1)/CeO2(75)-ZrO2(25) catalyst was observed to demonstrate higher NO 
conversions at low temperature region than the Cu(4)/Ag(1)/CeO2 catalyst due to its 
strong metal-support interaction and high reducibility.  It is presumed that these 
features would enhance the activation of C3H6 to selectively react with NO at low 
temperature region.  Central composite design coupled with response surface 
methodology was employed to study the effect of operating variables on the SCR 
activity of Cu(4)/Ag(1)/CeO2(75)-ZrO2(25) catalyst and to determine the optimum 
NO conversion.  The ranges of the temperature, NO concentration and C3H6
concentration used in this study were 224-576ºC, 818-2582 ppm and 818-2582 ppm , 
respectively as determined by the central composite design. The optimum NO 
conversion of 82.89% was obtained at 415.38ºC, 1827.16 ppm of NO concentration 
and 1908.13 ppm of C3H6 concentration.  A Langmuir-Hinshelwood kinetic model 
was proposed for this study over Cu(4)/Ag(1)/CeO2(75)-ZrO2(25) catalyst.  
Prediction from the model agreed well with the experimental results.  The model 
indicated that the surface reaction between adsorbed NOx species and partially 
oxidized hydrocarbon was the rate-limiting step for this process.  
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ABSTRAK

Pencemaran udara oleh gas NOx merupakan salah satu masalah alam sekitar 
yang paling serius dewasa ini. Mangkin tiga hala yang lazim digunakan 
menunjukkan penukaran NOx yang rendah dalam enjin yang beroperasi dalam 
keadaan O2 berlebihan.  Dengan itu, pengurangan NO secara memilih dengan C3H6
bermangkinkan CeO2-ZrO2 yang diubahsuai dengan dua logam (Cu dan Ag) secara 
serentak telah dijalankan dalam kehadiran O2 yang berlebihan dalam penyelidikan 
ini.  Pada mulanya, penambahan Ag dalam mangkin Cu/CeO2 didapati sangat 
menggalakkan aktivitinya dengan mencapai pengurangan NOx maksimum dengan 
muatan Ag 1%.  Keputusan UV-Vi s DRS menunjukkan bahawa spesies Cu2+

terpencil dan gugusan Agn
+ merupakan spesies utama dalam mangkin 

Cu(4)/Ag(1)/CeO2 yang bertanggungjawab terhadap aktiviti pengurangan NO yang 
lebih tinggi.  Namun demikian, mangkin Cu(4)/Ag(1)/CeO2 bukan satu mangkin 
yang baik untuk digunakan secara praktikal disebabkan aktivitinya yang rendah 
dalam julat suhu 250-350ºC.  Penyelidikan lanjutan telah dijalankan untuk mengkaji 
pengaruh penyokong yang berbeza terhadap prestasi mangkin.  Mangkin 
Cu(4)/Ag(1)/CeO2(75)-ZrO2(25) menunjukkan prestasi pengurangan NO yang lebih 
tinggi daripada mangkin Cu(4)/Ag(1)/CeO2 dalam julat suhu 250-350ºC disebabkan 
interaksi logam-penyokongnya yang kuat dan kadar penurunannya yang tinggi.  
Sifat-sifat ini dianggap akan menggalakkan pengaktifan C3H6 untuk bertindak balas 
dengan NO secara memilih dalam julat suhu 250-350ºC.  Rekabentuk “central 
composite design” berganding dengan “response surface methodology” telah 
digunakan untuk mengkaji kesan pembolehubah proses terhadap prestasi mangkin 
Cu(4)/Ag(1)/CeO2(75)-ZrO2(25) dan menentukan nilai optimum penukaran NO.  
Julat suhu, kepekatan NO dan kepekatan C 3H6 yang digunakan dalam kajian ini 
adalah ditentukan oleh rekabentuk “cen tral composite design” iaitu 224-576 oC, 818-
2582 ppm NO dan 818-2582 ppm C3H6 Nilai optimum penukaran NO sebanyak 
82.89% boleh dicapai pada 415.38ºC, 1827.16 ppm kepekatan NO dan 1908.13 ppm 
kepekatan C3H6.  Satu model kinetik “Langmui r-Hinshelwood” telah diterbitkan 
untuk penyelidikan ini.  Anggaran yang diperolehi dari model tersebut selaras 
dengan keputusan eksperimen.  Model tersebut menunjukkan tindak balas 
permukaan antara spesies NOx terjerap dan hidrokarbon teroksida separa merupakan 
langkah menghad kadar proses ini.      
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CHAPTER 1 

INTRODUCTION

1.1 General Introduction 

Since their first appearance on the market, mankind has enthusiastically 

embraced the automobile.  The enthusiastic public acceptance was predictable as 

motorized vehicles offer virtually unlimited flexibility, freedom and mobility.  

Although only within the reach of the fortunate and the wealthy few at first, they 

have now forced their way into modern society.  It is hardly uncommon nowadays 

for a household to own two or even more cars or motorcycles. 

Nevertheless, the environment that we depend on so much is paying a big 

price for the luxury of personal transportation.  Acid rain and air pollution are very 

important problems that must be solved soon because such pollution has major 

effects on terrestrial and aquatic ecosystems.  At present, one of the most significant 

problems is removal of NOx, which are produced during high-temperature 

combustion and are an important group of air contaminants (EPA, 1998; and EPA, 

2002).

Due to its explosive growth, automobile use has become one of the most 

important sources of environmental pollution today.  Hence, the control of NOx

emissions for all vehicles are very essential, since 20-70% of NOx generated from 

anthropogenic activities is attributed to the mobile sources (Lox and Engler, 1999).  
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The only counterweight to increasing vehicle use is increasingly stringent 

legislation with respect to emission limits.  Subsequent legal norms are becoming

tighter and tighter.  The Clean Air Act of 1963 and its subsequent amendments set 

federal emissions control standards for all new cars and light trucks sold in the

United States (GAO, 2000).  The most recent Clean Air Act Amendments (CAAA)

in 1990 established more restrictive “Tier 1” emissions standards, which became

effective in 1994.  The CAAA also required Environmental Protection Agency 

(EPA) to study whether more stringent “Tier 2” standards was needed to meet the

National Ambient Air Quality Standards (NAAQS).  In 1999, EPA determined that 

new standards were needed and cost-effective (EPA, 2002).  Starting in 2004, all 

classes of passenger vehicles, including sport utility vehicles and light trucks, will 

have to comply with new average tailpipe standards of 0.07 grams per mile for 

nitrogen oxides as shown in Figure 1.1.

Figure 1.1 Standard of nitrogen oxide emission (Davis, 2000)

The three-way catalytic converter technology is the principal method of 

controlling the emissions from internal combustion engines from vehicles.  This

catalytic treatment has been in use since year 1979.  The three-way catalytic 

converters used in automobile exhaust gas are produced from expensive noble metals

(Pt, Rh and Pd).  The TWC is capable to diminish the emission of hydrocarbons, 

NOx and CO from gasoline-fuelled engines operate around the stoichiometric air to 
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fuel ratio.  However, three-way catalysts only achieve good simultaneous conversion 

of the main pollutants (CO, NOx and hydrocarbons) in a relatively narrow window of 

the air-to-fuel ratio, which in turn can oscillate even in the presence of electronic 

control (Taylor, 1993). 

As the concerns about global warming have increased, there is more 

emphasis placed on higher fuel economy lean-burn engines (Belton and Taylor, 

1999).  More lean burn fuel-efficient engines can accomplish decreased emissions of 

CO2 (greenhouse gas).  Hence, the lean-burn diesel and direct injected gasoline 

engines are logically solutions since fuel economies of >20% can be realized.  

Current three-way catalyst could not be employed for the removal of NOx from lean 

burn gasoline and diesel engines, since the high level of O2 are contained in the 

exhaust of the engine.  If a lean-burn engine is to become commercially viable, novel 

catalyst technologies are needed.  Similar catalysts may also find application for 

compression ignition, direct injection (CIDI or diesel) engines, where highly 

oxidizing conditions in the exhaust stream demand similar advances in catalyst 

technology.

1.2 Research Background 

In this following sections, the types, sources and the emission levels of 

nitrogen oxides, their influence on the environmental and public health, their 

regulation, the approaches for their removal and the state of the art with respect to 

catalytic solutions for their removal is reviewed. 
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1.2.1 Description on Nitrogen Oxides 

1.2.1.1 Origins of Nitrogen Oxides 

The main source of NOx emissions is the combustion of fossil fuels such as 

coal in electrical power plants or petroleum in vehicles.  Table 1.1 shows the three 

typical types of NOx that produced from combustion processes.  The combustion 

gases resulting from fossil fuels contain NOx pollutants consisting mainly have NO 

and NO2, with NO representing 90 to 95% of the total NOx (Fritz and Pitchon, 1997). 

Table 1.1: Three types of NOx that can be distinguished in flue-gas (Bosch and 

Janssen, 1987)

Fuel NOx Formed by oxidation of the nitrogen-containing compounds in 

the fuel and from the heterogeneous oxidation of char nitrogen in 

the flame tail. 

Thermal NOx Formed by fixation of atmospheric nitrogen and its formation 

is thermodynamically favored by high flame temperature and 

atomic oxygen concentration. 

Prompt NOx Formed by the oxidation of intermediate HCN via reaction of 

nitrogen radicals and hydrocarbons followed by oxidation of the 

HCN to NO. 

 NO or NO2 formation depends on temperature, oxygen concentration, 

residence time or light intensity.  At temperatures above 1300oC, the reaction 

between molecular oxygen and nitrogen introduced with air prevails.  In excess of 

oxygen the NO formation goes according to the mechanism established by Zeldovich 

(Bosch and Janssen, 1987).  The first step of this mechanism requires thermal 

dissociation of molecular oxygen and the following reactions: 

N2 + O*  NO + N*                 (1.1) 

N* + O2  NO + O*                 (1.2) 

__________________

N2 + O2  2NO                 (1.3) 
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By assuming a constant concentration of N* radicals and a large oxygen 

content when compared to NO concentration, the following equation is obtained: 

d[NO]/dt = 2kexp(-EA/RT)[N2][O*]          (1.4) 

Equation (1.4) shows that the formation of NO is essentially controlled by reaction 

(1.1).  It also reveals the importance of both temperature and atomic oxygen 

concentration.  From the point of view of NO production, the oxidation of organic 

nitrogen compounds from fuel is not significant.  Fuel NOx formation is independent 

of the temperature of the flame at normal combustion conditions and insensitive to

the kind of organic nitrogen compound (Bosch and Janssen, 1987). 

Figure 1.2 indicates that the two primary sources of NOx emissions are 

stationary-source fuel combustion and transportation.  Together, these two sources 

comprise 94% of 2000 total NOx emissions in the United State (EPA, 2002). 

Emissions from transportation sources have increased over the last 20 years (24 %) 

and during the past 10 years (6 %).  Emissions of nitrogen oxides have increased

over the last 20 years by 7 % and by less than 1 % over the most recent 10-year 

period from 1991 to 2000 in the United State (EPA, 2002).

Figure 1.2 NOx Emissions by Source Category in United State, 2000 (EPA, 

2002)
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1.2.1.2 Environmental and Health Related Problem 

Nitrogen oxides are an extremely harmful to the environment and represent a 

serious hazard to the health (Bosch and Janssen, 1987; Fritz and Pitchon, 1997; and 

EPA, 2002).  Figure 1.3 shows the chemical transformation of NO in the atmosphere

and how it affects the environment.  NO is the precursor for the different nitrogen 

oxides.  Once released into the atmosphere NO undergoes chemical transformations.

It is rapidly oxidized by ozone, OH or HO2 radicals to form higher oxides of nitrogen 

such as NO2, HNO2 and HO2NO2.

Figure 1.3 Transformations of atmospheric NOx: ( ) photochemical processes, 

( ) thermal gas-phase processes, ( ) heterogeneous reaction, ( ) dry 

deposition (Bosch and Janssen, 1987) 

NOx reacts in the air to form ground-level ozone and fine particle pollution,

which are both associated with adverse health effects (EPA, 1998).  NOx contributes 

to a wide range of environmental effects directly and/or when combined with other 

precursors in acid rain and ozone.  Nitrogen, alone or in acid rain, also can acidify 

soils and surface waters.  Acidification of soils causes the loss of essential plant
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nutrients and increased levels of soluble aluminum that are toxic to plants.  

Acidification of surface waters creates conditions of low pH and levels of aluminum 

that are toxic to fish and other aquatic organisms.  

 In the presence of air, NO is oxidized to NO2, which is a rapid conversion at 

high concentrations, further accelerated in the presence of sunlight and hydrocarbon 

from unburned gasoline.  Short-term exposures (less than 3 hours) to low levels of 

NO2 may lead to changes in airway responsiveness and lung function in individuals 

with preexisting respiratory illnesses and increases in respiratory illnesses in 

children.  Long-term exposures to NO2 may lead to increased susceptibility to 

respiratory infection and may cause irreversible alterations in lung structure.  

Epidemiological studies have revealed that concentrations of nitrogen oxides having 

hazardous effects for people in good health are above 0.05 ppm for an exposure of 

over 24 hours (EPA, 2002). 

1.2.1.3 Legislation Aspect 

The negative impacts on the health and environment as well as economic 

losses caused by NOx have resulted to stringent emissions standards imposed by 

environmental regulations. In 1955, an initiative to limit toxic emissions was taken in 

the US where clean air legislation was enacted (Armor, 1992) It was followed by the 

air Quality Act of 1967 and the Clean Air Amendments of 1970 and 1977.  In 1990 

further refinements in the pollution control were introduced.  In Table 1.2 an 

historical overview of the limits of CO, HC and NOx emissions from passenger cars 

in the US is given. It is seen that strict legislation for passenger cars was established 

every year to ensure significant reduction in exhaust emissions. 
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Table 1.2: Historical overview of the limits for emissions from passenger cars in the 

United States (Lox and Engler, 1999) 

Year Area Pass levels (g mile-1 except where stated) 

CO HC NOx

1966-67 California 1.5% 275 ppm -

1968-69 Federal & California 1.5% 275 ppm -

1970 Federal & California 23 2.2 -

1972 California

Federal

39

39

3.2

3.4

3.2

-

1975 California

Federal

9

16

0.9

1.5

2

2

1980 California

Federal

8

7

0.41

0.41

1

2

1981 Federal & California 3.4 0.41 1

1993 Federal & California 3.4 0.25 0.4

Similar to the US, legal norms for Europe are becoming tighter and tighter 

(see Table 1.3).  For NOx, subsequent European norms with interval of less than 5 

years sometimes require as much as 50% reduction.  The situation become such, that 

very sophisticated exhaust control technology will play an important role in future 

emissions reduction.      

Table 1.3: European emission norms for private cars (Khadilkar et al., 1999) 

EURO I 

1992

EURO II 

1996

EURO III 

2000

EURO IV 

2005

HC (g km-1) 0.97 (a) 0.5 (a) 0.20 0.10

CO (g km-1) 2.72 2.2 2.3 1.0

NOx (g km-1) - - 0.15 0.08

(a) HC + NOx

.



9

1.2.1.4 Emission Control Strategies 

There are several techniques developed to control NOx emissions.  These can 

be classified in three categories: pre-combustion control techniques, combustion 

control techniques and post-combustion control techniques (Bosch and Janssen, 

1987; Ismagilov and Kerzhentsev, 1990; and Latta, 1998).  Pre-combustion control 

techniques involve removing nitrogen, which is organically bound in the fuel, 

through a hydrotreating process (Wojciechowska and Lomnicki, 1999).  Combustion 

control techniques involve modifying the combustion process and/or equipment to 

inhibit the formation of NOx and this is usually achieved by lowering the combustion 

temperature (below 1300°C) to minimize the NOx formation through the atmospheric 

nitrogen fixation (Bosch and Janssen, 1987; and Ismagilov and Kerzhentsev, 1990).  

As mentioned above, lower temperatures of flame limit the thermal NO formation.  

Injection of steam, water into the combustion chamber or partial flue-gas 

recirculation achieves this goal and results in reduction of NOx emissions.  Pre-

combustion procedures are not very expensive, but a drawback of these techniques is 

sometimes they enhanced N2O formation (Armor, 1995).  The main disadvantage of 

these methods is the low NOx conversion (<50%) compared to post-combustion 

techniques (100%) (Ismagilov and Kerzhentsev, 1990; Pârvulescu et al., 1998; and 

Wojciechowska and Lomnicki, 1999).

On the other hand, post-combustion control techniques involve injection of 

chemicals in specific temperature windows, in presence or absence of catalysts, to 

convert NOx to N2.  Post-combustion methods are secondary measures for the 

treatment of the flue gas already containing NOx.  According to the environment in 

which they are applied secondary methods for NOx control can be separated in wet 

and dry methods.  The wet methods or chemical scrubbing are chemical 

oxidation/absorption processes that are applied to small NOx sources and have 

disadvantages such as high cost and waste generation in the form of dissolved 

nitrates and nitrites (Ismagilov and Kerzhentsev, 1990; and Maisuls, 2000).  The dry 

methods include catalytic and non-catalytic process.  An example of non-catalytic 

methods is the selective non-catalytic reduction (SNCR), developed by Exxon 

(Altwicker et al., 1999).  It is a homogenous gas phase reduction process in which 

NOx is selectively reduced by NH3 to N2.  This process requires low capital 
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investment however its temperature operation window (850-1050ºC) is very narrow 

and difficult to operate in larger facilities (Bosch and Janssen, 1987; Ismagilov and 

Kerzhentsev, 1990; and Latta, 1998).  In comparison to the non-catalytic solutions, 

catalytic methods offer lower operating temperatures and are the primary method to 

control gas emissions.  The possible catalytic solutions can be divided into two main 

categories which are direct catalytic decomposition of NO and selective catalytic 

reduction of NOx using reducing agents such as ammonia, carbon monoxide and 

hydrocarbons.

On the other hand, a new class of prospective catalysts for the removal of 

nitrogen oxides from vehicle exhaust is NOx storage-reduction (NSR) catalysts 

(Matsumoto, 1996; and Shinjoh et al., 1998).  The mechanism of NOx adsorption and 

desorption/reduction is shown schematically in Figure 1.4.  In lean-burn conditions, 

where oxygen exists in high concentration in exhaust gasses, NOx are stored at the 

surface of a Ba-containing catalyst under various forms (surface nitrites/nitrates).  

After that, the stored NOx species will be reduced to N2 over Pt or more generally, 

TWC-type catalyst when the engine operates in the stoichoimetric or rich burn 

condition.  In NSR catalyst, the basis of the active phase is platinum modified with 

alkaline earth metals and metal oxides supported on alumina.  The conversion 

obtained is 60% and higher (Matsumoto, 1996).  The major drawback of the NSR 

catalyst is its sensitivity to SOx due to the fact that surface sulphates are invariably 

more thermally stable compared to nitrate (Engström et al., 1999).  However, these 

catalysts are still under study.  Since the proposed research focuses on catalytic 

reduction of NOx, a detailed review of NSR catalysts will not be included here. 
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Figure 1.4 Principle of operation of an NSR catalyst: NOx are stored under 

oxidising conditions (1) and then reduced on a TWC when the A/F is temporarily

switched to rich conditions (2) (Kašpar et al., 2003)

1.2.2 NOx Emission Control for Lean-burn Engine 

The goal for future automobile development is to have more fuel efficient and

lower emission vehicles.  Lean-burn engines have been identified by U.S. 

automakers as the next major technological step in combustion engine design and 

fuel economy.  By using more air during combustion, lean-burn engines yield better 

mileage and produce less carbon monoxide and unburned hydrocarbon pollutants 

than conventional gasoline engines.  Lean-burn engines have been developed to 

improve the fuel efficiency.  These lean-burn engines operate at an air/fuel ratio of 

18:1 or higher, which is much higher than the stoichiometric air/fuel ratio of 14.7. 

Engines operate under these conditions can improve the fuel efficiency by 10-15% 

(Shelef, 1995; Farrauto and Heck, 2001; Ménil et al., 2000; and Ozawa et al., 1996). 

This is due to: 
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a) Lower pumping losses 

b) A higher ratio of the specific heat of the burnt gases at constant pressure 

to the specific heat at constant volume 

c) Reduced heat losses to the walls of the combustion chamber 

Besides, there is another advantage of lean-burn engine, which is the fact that the 

highest exhaust temperatures are typically lower (  800 – 850°C) compared to the 

stoichiometric engine in which the exhaust temperature can go up to 1100ºC.   

 One great technical obstacle for the application of the lean-burn engines for 

the modern vehicles is the lack of a catalyst for effective emission control.  Although 

it is very effective under the stoichiometric air/fuel ratio, the traditional three-way 

catalyst cannot selectively reduce NOx in the lean-burn exhaust that contains a high 

concentration of O2 (Figure 1.5).  So there is an immediate need to develop catalysts, 

which can operate with excess oxygen (lean NOx control) conditions to meet the NOx

standards for lean-burn engine exhaust.  Table 1.4 shows the typical lean-burn 

exhaust compositions. 

 Nowadays, the challenge of lean-burn engine emission control is reducing 

NOx in the presence of excess oxygen.  Tabata et al. (1994) have reviewed the patent 

literatures NOx reduction by hydrocarbon in the presence of excess oxygen.  Nearly 

200 patents were cited, and most of them were filed between 1987-1992.  Other 

articles by Pârvulescu et al. (1998) and Shelef (1995) gave excellent reviews on the 

progress of fundamental research and practical development of the catalysts for lean 

NOx reduction by hydrocarbon. 
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Figure 1.5 Three way catalyst performance determined by engine air to fuel ratio

(Farrauto and Heck, 2000) 

Table 1.4: Exhaust composition of lean-burn engine at air/fuel ratio of 18 and 22

(Kharas, 1993) 

Air/fuel

ratio

NO

(ppm)

HCa

(ppm)

CO

(ppm)

O2 (%) CO2

(%)

H2O

(%)

H2

(ppm)

18 1200 1600 3000 3.2 10 10 1000

22 1200 3000 1000 7.5 9 10 330
a based on C3H6

1.2.3 Practical Considerations for Lean NOx Reduction Catalyst 

1.2.3.1 Selectivity 

In lean NOx reduction, the catalyst should be highly selective in the reduction 

of NOx rather than the non-selective reduction of O2 (combustion) in the presence of 

high concentration of O2.  In this study, the concept of selectivity of a NOx reduction 



14

catalyst is represented by the competitiveness factor (SSCR-HC), which is defined as a 

ratio of oxygen atoms supplied from NO to all oxygen atoms reacts with 

hydrocarbons to form CO and CO2 (Shimizu et al., 1998a).  The following 

soichiometry reactions are considered:  

C3H6 + 6NO  3CO + 3H2O + 3N2                        (1.5) 

C3H6 + 9NO  3CO2  + 3H2O + 9/2N2                   (1.6) 

C3H6 + 3O2  3CO + 3H2O                     (1.7) 

C3H6 + 9/2O2  3CO2 + 3H2O                     (1.8) 

The SSCR-HC is equal to 100% in the case of complete selective oxidation of 

hydrocarbon by NO (only reactions (1.5) and (1.6) occur).  The value of SSCR-HC

decreases as the reaction between the hydrocarbon and O2 become dominant 

(reaction (1.7) and (1.8)) (Amin et al., 2003). 

1.2.3.2 Durability 

According to the new regulation, the lifetime of the automobile catalyst must 

be at least 100,000 miles or 10 years of engine operation (Shelef, 1995).  As in most 

heterogeneous catalytic processes, lean NOx reduction catalysts are also susceptible 

to thermal and hydrothermal.  The car engine normally operates at temperatures 

above 400oC and occasionally to 800-900oC depending on the operation status.  

Besides, steam is an unavoidable component in the combustion exhaust.  Water 

vapor found to be reversely suppress the fresh activity of many lean NOx reduction 

catalysts (Kikuchi and Yogo, 1994).  The irreversible deactivation of the lean NOx

reduction catalysts in the presence of water vapor is also very common. 
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1.2.3.3 Activity 

The lean NOx reduction catalysts should show good activity under various 

conditions depending on the operation of the engines.  Two main parameters related 

to the catalytic activity are the width of the operating window and space velocity.  

The actual operating temperature of the lean-burn engine can be in a range as wide as 

several hundred degrees owing to the change of speed as tested by Federal Test 

Procedure (Yan, 1997).  This requires the catalyst to remain active in a wide 

temperature window.  Furthermore, in order to keep the volume of the catalyst used 

for treatment within affordable limits, the catalyst needs to be active in a range of gas 

hour space velocity (GHSV), from 30,000 to 100,000 hours-1 (Shelef, 1995).

1.2.4 Catalytic Control of NO 

1.2.4.1 Direct Decomposition of NO 

At low temperatures, nitric oxide is a thermodynamically unstable molecule 

when compared with N2 and O2 (Iwamoto and Yahiro, 1994).  Thus, its catalytic 

decomposition seems to be the simplest and cheapest method to remove NOx from 

exhausts gases.

NO (g)  1/2N2 + 1/2O2   Go = -86kJ mol-1                          (1.9) 

The direct decomposition of NO to N2 and O2 is an attractive option because it does 

not involve the use of reductant.  Thermodynamically the reaction is favorable up to 

1000oC; however, due to its high activation energy of NO decomposition (364 kJ 

mol-1) makes it necessary to use a catalyst (Fritz and Pitchon, 1997). 

 Many papers have been devoted to the catalytic decomposition of nitric oxide 

over noble metals, transition metal oxides and zeolite (Lee et al., 1994; and Iwamoto, 

1996).  It is widely accepted that the active centers of metal oxide catalysts for NO 

decomposition are the oxygen defects on the surface.  Hamada et al. (1990) have 
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shown that, by adding silver to cobalt oxide, both activity and resistance to oxygen 

poisoning are increased.  Namely, they reported that the oxide catalysts bonded the 

oxygen atoms formed during NO decomposition, which resulted in catalysts 

deactivation.  The additive effect of silver would be due to weak affinity of silver for 

oxygen.

 Perovskite-type oxides have also been investigated for this reaction (Zhao et

al., 1996; and Wu et al., 2000).  The advantages of these catalysts are their extreme 

thermal stability (Iwamoto, 1994) and they permit easy desorption of a large amount 

of oxygen from oxide bulk, thereby implying that inhibition by oxygen would not be 

extensive (Fritz and Pitchon, 1997).  Unfortunately, the surface areas of these 

catalysts are low (Iwamoto, 1994). 

 The most promising results for the NO decomposition were obtained on the 

high-silica zeolite catalysts containing copper ions (Iwamoto and Yahiro, 1994; Li 

and Hall, 1990; and Schay et al., 1998).  Unfortunately, the most promising systems 

for NO decomposition, such as Cu-ZSM-5, do not suppress the inhibiting effect of 

oxygen.  The presence of water vapor also has an inhibiting effect on the NO 

decomposition and the deactivation is usually irreversible as it affects the very 

framework of the zeolite (Fritz and Pitchon, 1997).

1.2.4.2 Selective Catalytic Reduction of NO by Ammonia (SCR-NH3)

No such catalyst exists today which is capable of decomposing NOx

according to reaction (1.10).  So an alternative approach is to catalytically reduce 

NOx selectively using reducing agents.  The most common catalytic procedure for 

selective catalytic reduction (SCR) is using ammonia or ammonia-containing 

compounds, mainly urea, as reducing agents.  The process was discovered first by 

Cohn in 1961 (Cohn et al., 1961).  It is the most effectively applied catalytic method 

of NOx reduction in conventional electric power plants (Shelef, 1995).  Lean-NOx

engine manufacturers are also considering the use of NH3 as the reductant for NOx



17

for heavy duty truck.  Urea is convenient for on board use as liquid carrier for 

ammonia.  It hydrolyzes in the exhaust system according to reaction (1.10). 

CO(NH2)2 + H2O 3 + CO2             (1.10) 

The NH3 will then react selectively with NOx (Equations (1.11) and (1.12)) to give 

conversions ranging between 80 and 90%. 

4NH3 + 4NO + O2 4N2 + 6H2O                                                                         (1.11) 

4NH3 + 2NO2 + O2 3N2 + 6H2O                                                                        (1.12) 

although other undesired reactions also may occur.  Such undesired reactions are the 

oxidation of NH3 to N2 (1.13) or NO (1.14).  Another side reaction involves the 

reduction of NOx to N2O. 

4NH3 + 3O2 N2 + 6H2O              (1.13) 

4NH3 + 5O2 4NO + 6H2O              (1.14)    

An excellent review by Bosch and Janssen (1987) on different types of 

catalysts investigated for use in the DeNOx process appeared in the late 1980s.  The 

active component is selected mainly from tungsten, molybdenum and vanadium 

oxides, whereas the support is usually TiO2, Al2O3, SiO2, zeolites and various 

combinations of these oxides (Radojevic, 1998; and Pereira and Phumlee, 1992).  

The temperature of activity for these catalysts varies in the 200-550ºC range 

according to conditions.  The active sites seem to be the (V=O)2+ groups in the case 

of vanadia catalysts (Ciambelli et al., 1992).  The presence of gas-phase oxygen 

enhances the catalyst activity and this effect is more pronounced at higher vanadia 

loading.  Two mechanisms have been proposed for this reaction: 

The Eley-Redeal mechanism which involves the direct reaction between 

absorbed ammonia molecule and gaseous NO (Jansen et al., 1987), while 

oxygen regenerates the active sites as described: 
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NH3 + s  [s-NH3]              (1.15) 

[s-NH3] + NO  [s-H] + N2 + H2O            (1.16) 

2[s-H] + 1/2O2  2s + H2O              (1.17) 

The formation of a reaction intermediate nitrosoamine (Turfano and Turco, 

1993); here again, the role of oxygen is to regenerate the active site: 

NH3 + s  [H-s-NH2]                    (1.18) 

NO + [H-s-NH2]  [H-s-NH2-NO]            (1.19) 

[H-s-NH2-NO]  [s-H] + N2 +H2O            (1.20) 

2[s-H] + 1/2O2  2s + H2O                        (1.21) 

The SCR by the ammonia method has found many applications in Japan, 

Germany and USA since the early 1970s, when it was applied for the first time.  

SCR-NH3 has a few advantages with NOx reduction efficiency being the most 

obvious, together with the well-known and comparatively simple reaction system.  

The disadvantages of this method include the need for a reducing agent to be 

temporarily stored on board the vehicle and for which there is yet no infrastructure 

for supply.  High costs of the SCR-NH3 installations are also a disadvantage.  

Furthermore, SCR-NH3 systems may show ammonia slip, which can produce 

additional environmental pollution.  Due to these reasons, the use of ammonia in 

vehicles is somewhat controversial (Armor, 1992; and Armor, 1995).  

1.2.4.3 Selective Catalytic Reduction of NO by Hydrocarbon (SCR-HC)

Hydrocarbon was found to be also effective for NO reduction under lean 

conditions over Cu-ZSM5 in 1990 (Iwamoto and Hamada, 1991).  The use of 

hydrocarbon is very attractive because it can be applied for both mobile and 

stationary sources.  Although Cu-ZSM5 is not a practical catalyst because of its lack 

of hydrocarbon stability, other systems have been studied extensively in an attempt 

to find an effective lean NOx reduction catalyst. 
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The field of application of metal oxide catalysts for SCR-HC is still to be 

explored.  In particular, the latest results indicate that the metal oxide catalysts can be 

as active as zeolite systems in the SCR-HC process.  For example, Shimizu et al.

(1998b) revealed that the activity of Ga2O2 supported alumina, in SCR process with 

CH4, is similar to that of Ga-ZSM5 and its selectivity is even higher that of Co-

ZSM5.  Besides, Ga2O3/Al2O3 is highly resistant to the presence of moisture in the 

reactant gases. 

The biggest challenge in lean NOx reduction catalyst is the need to selectively 

reduce NO with hydrocarbon in the presence of an excess amount of oxygen and the 

competing reactions of hydrocarbon oxidation: 

NO reduction: NO + HC  N2 + COx + H2O            (1.22) 

Hydrocarbon oxidation: O2 + HC  COx + H2O           (1.23) 

The competition can be expressed by a competitiveness factor, which can be 

used to compare the activities for NO reduction and for hydrocarbon oxidation of a 

catalyst.  It is defined as the ratio of the rate of hydrocarbon conversion to produce 

N2 (i.e. the rate of N2 formation) to the rate of total hydrocarbon conversion.  In 

addition, a practical catalyst should maintain its high activity and selectivity over a 

wide temperature range in the presence of water and SO2, as well as its structural 

integrity at high temperatures.  Because of these stringent requirements, no practical 

catalyst has been developed for this application yet. 

1.3 The Statement of Problems

The selective reduction of NOx during lean exhaust mixture conditions has 

proved a challenging problem, which, particularly during the last five years, 

automobile manufacturers have shared with many research laboratories.  The 

resulting large number of publications serves both academic and applied interests.  

Equally, a terrific number of catalysts, in continuing association with and developed 

from differing technologies, do not appear to meet the requirements in real exhaust 
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application.  Many researchers are still competing to create a better DeNOx catalyst 

due to several problems as below: 

1. Lean burn engines operate at an air/fuel ratio of 18:1 or above, which is much 

higher than the stoichiometric air/fuel ratio of 14.7.  The current three-way 

catalyst is not able to reduce NOx in the lean burn exhaust that contains a high 

concentration of O2.

2. Cu-ZSM-5, under certain experiment conditions, exhibits a good activity and 

high selectivity towards nitrogen in the lean burn engine.  However, these 

catalysts are subject to hydrothermal deactivation and are only active at 

temperatures too high to be considered for real applications. 

3. Most of the current research is directed at the use of modified zeolite or 

simple metal oxides.  Clearly simple extensions of these current approaches 

have not and probably will not lead to satisfactory solutions.  Therefore, the 

focus of research needs to shift to more complex catalyst compositions.  

   

Recently some publications have reported the drastic enhancement of NO 

reduction activity by the combination of two (or more than two) catalytic species.  In 

this study, Cu is the primary active component in the CeO2-ZrO2 catalyst while Ag is 

the secondary component functioning mainly as promoter.  The selection of Ag as 

promoter is due to the previous study done by other researchers (Chajar et al., 1998 

and Amin et al., 2004).  Amin et al. (2004) reported that the loading of Ag into 

Cu/CeO2 catalyst enhanced a better metal dispersion and eliminate the formation of 

nitrous oxide (N2O).  It is believed that the addition of Ag into Cu/CeO2-ZrO2

catalyst will improve the catalytic performance of the catalyst in SCR-NO reaction. 



21

1.4 Objectives 

The objectives of this thesis are: 

1. To prepare and characterize CeO2, CeO2-ZrO2, Cu/CeO2, Cu/Ag/CeO2 and 

Cu/Ag/CeO2-ZrO2 catalysts. 

2. To investigate the effect of Ag loading on the catalytic performance of 

Cu/CeO2 catalyst for SCR of NO by C3H6.

3. To examine the influence of different supports over SCR of NO by C3H6 by 

comparing the catalytic performance of Cu/Ag/CeO2 and Cu/Ag/CeO2-ZrO2

catalysts.

4. To conduct a detailed parametric studies of the optimal catalyst. 

5. To perform a kinetic study of SCR of NO by C3H6 over the optimal catalyst 

and elucidate the mechanism of this reaction on this catalytic system.  

1.5 Scope of the Study

This study consists of three parts.  The first is to examine the effect of 

different Ag loading on the catalytic performance of Cu/CeO2 catalysts.  The optimal 

Ag loading was determined by varying the Ag loading on the Cu/CeO2 catalyst from 

0 – 3 wt% and tested in the NO reduction activity over a temperature range of 250 - 

550ºC.  The influence of different composition of CeO2-ZrO2 catalysts on the SCR of 

NO activity were examined at 400ºC in the second part of this study.  Afterward, the 

catalytic activity of Cu/Ag/CeO2-ZrO2 catalyst was compared with Cu/Ag/CeO2 over 

a temperature range of 250 - 550ºC to examine the effect of ZrO2 loading onto the 

ceria-based catalyst.  

All the synthesized catalysts in the first and second parts of this study were 

prepared by conventional impregnation method and were characterized with X-ray 

diffraction (XRD), Nitrogen Adsorption (NA), Temperature Programmed Reduction 

(TPR) and UV-Vis Diffuse Reflectance Spectroscopy (UV-Vis DRS).  The 

performance of each synthesized catalyst was investigated in a lab-scale fixed bed 
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reactor at atmospheric pressure.  A simplified synthetic exhaust gas comprising of 

NO (2000 ppm), C3H6 (2000 ppm), O2 (10%), H2O (10%) if present and He 

(remainder) were fed to the catalyst bed at F/W = 30,000 ml g-1 hours-1.  The 

concentration of NO was analyzed with a NOx emission analyzer, while the 

compositions of other products were analyzed by using a gas chromatograph 

equipped with a TCD detector.

Finally, steady-state kinetics experiments were conducted over Cu/Ag/CeO2-

ZrO2 catalyst in the third part of this study.  The experiments in this part were 

performed in a differential reactor where a bed consisting of a smaller amount of 

catalyst (0.25 g) was employed to control the NO conversions at <20% in most cases.

The NO conversion rate dependence on the concentration of NO, C3H6 and O2 were 

determined at 350 and 400ºC and a simplified NO reduction mechanism was 

proposed based on the kinetic results.
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concentrations, and nearly half-order with respect to O2 concentration.  These results 

suggested that the NO conversion was strongly depended on the NO and C3H6

concentration, and the dissociatively adsorbed O2 was important for the activation of 

NO and C3H6.  Based on the kinetic expressions from the homogeneous model, a 

Langmuir-Hinshelwood kinetic model which satisfactorily fit the experimental data 

has been developed.  It is proposed that the reduction process proceeded via the 

reaction of surface oxygenated hydrocarbons formed by the partial oxidation of 

gaseous C3H6 with the adsorbed NOx species.

6.2 Recommendations 

1. Detailed FTIR adsorption-desorption studies with various gases 

recommended using Cu/Ag/CeO2-ZrO2 catalyst.  These studies will provide 

information about intermediates as well as about oxidation state changes of 

Cu and Ag.  Therefore, these studies can be used to elucidate the proposed 

promotion effect and reaction pathways on this catalyst. 

2. The addition of water vapor negatively impacted the NOx reduction 

performance with C3H6.  Certain types of higher hydrocarbons are more 

reactive by their capability to generate the critical active hydrocarbon 

intermediate.  These types of hydrocarbon need to be investigated to 

determine the impact of water vapor in the suppression or generation of the 

correct hydrocarbon intermediate. 

3. Finally, the catalyst needs to be tested under real lean-burn exhaust.  Firstly, 

the influence of O2 on the catalytic performance needs to be studied 

extensively in view of the fact that it is plentiful in the lean-burn engine.  

Then, the effect of SO2 on the catalytic activity is worthy to be studied since 

it is characterized as a poison due to its ability to deactivate catalyst.  The 

influence of co-existence of other hydrocarbons in the exhaust gas such as 

CH4, C2H4 and CO on the catalytic performance of catalyst should be also 

investigated.  
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