
Vot 74076

DEVELOPMENT OF AN INTELLIGENT AGENT FOR SPEECH
RECOGNITION AND TRANSLATION

(PEMBANGUNAN AGEN PINTAR UNTUK PENGECAMAN SUARA

DAN PENTERJEMAHAN)

ABD MANAN BIN AHMAD

RESEARCH VOT NO:
74076

Jabatan Kejuruteraan Perisian
Fakulti Sains Komputer dan Sistem Maklumat

Universiti Teknologi Malaysia

2006

 i

ABSTRACT

Nowadays, speech researchers and software engineer make an effort to integrate

speech function into internet applications. Intelligent Agent for Speech Recognition and

Translation prototype has been build to achieve that purposed. This prototype also

proposed a new framework for speech recognition, word translation and mobile agent

technology. Intelligent Agent for Speech Recognition and Translation is a system that

recognized human voice in spoken English, then translate English word to Malay word.

Generally, this prototype is a merge of two areas, speech recognition and word translation

and using mobile agent technology to integrate them. This prototype is a system executed

in Local Area Network (LAN) environments and also called Distributed Speech

Recognition (DSR) system. DSR system divided into two parts, front-end processing

(feature extractions) and back-end processing (recognition). There is a server which

connected with a number of client devices. At the client side, the system will received

human voice in spoken English and front-end processing will be done here. Then the

feature files will be transmits to the server side which executed the back-end processing.

When the voice has been recognized, the result will be translated into Malay word in text.

After translation process is done, the Malay word in text will be send back to the client

computer. All these processes will be handled and monitor by agent. With contribution

from mobile agent technology, the efficiency of speech recognition server can be

improved compared with traditional distributed speech recognition server in term of time

processing. By using mobile agent technology, speech recognition server can perform

their task as parallel processing. Beside that, this approach also can reduce network

traffic while handling the transfer data.

 ii

ABSTRAK

Kini, penyelidik suara dan juga jurutera perisian telah berusaha untuk

mengintegrasikan fungsi-fungsi suara ke dalam aplikasi internet. Prototaip Agen Pintar

untuk Pengecaman Suara dan Penterjemahan telah dibangunkan untuk bersama-sama

memenuhi tujuan tersebut. Prototaip ini juga mengusulkan kerangka baru untuk

pengecaman suara, penterjemahan perkataan dan juga teknologi agen bergerak. Prototaip

ini adalah satu sistem yang mengecam suara manusia dalam sebutan bahasa Inggeris,

kemudian menterjemahkan perkataan Inggeris tersebut ke dalam perkataan bahasa

Melayu. Umumnya, prototaip ini adalah gabungan daripada dua bidang iaitu pengecaman

suara dan juga penterjemahan perkataan serta menggunakan pendekatan teknologi agen

bergerak untuk proses pengintegrasian. Prototaip ini dilarikan pada persekitaran

Rangkaian Kawasa Setempat (LAN) serta boleh dinamakan sebagai sistem Pengecaman

Suara Teragih (PST). Sistem PST dibahagikan kepada dua bahagian utama iaitu

pemprosesan bahagian hadapan dan pemprosesan bahagian belakang. Terdapat satu

komputer pelayan yang bersambung dengan sejumlah alat peranti pelanggan. Pada

bahagian pelanggan, sistem ini akan menerima suara pelanggan dalam percakapan

Inggeris dan pemprosesan bahagian hadapan akan dilaksanakan di bahagian alat peranti

pelanggan. Kemudian, fail pengekstrakan ciri akan dihantar ke bahagian pelayan dimana

bahagian pemprosesan belakang akan dilaksanakan. Setelah, proses pengecaman di

lakukan ke atas suara tadi berjaya, hasil keputusan tersebut akan di terjemahkan ke dalam

bahasa Melayu dalam bentuk teks. Setelah proses penterjemahan selesai, hasil keputusan

akan di hantar ke alat peranti pelanggan. Proses-proses yang berlaku akan di kawal selia

dan di awasi oleh agen. Dengan sumbangan daripada teknologi agen, tahap prestasi

 iii

pengecaman suara pelayan adalah lebih baik jika dibandingkan dengan pengecaman suara

teragih tradisional dalam konteks pemprosessan masa. Secara kesimpulannya, dengan

menggunakan pendekatan teknologi agen, pengecaman suara pelayan boleh

melaksanakan tugas-tugasnya secara pemprosesan selari. Selain itu, pendekatan ini juga

mampu untuk mengurangkan kesesakan traffik semasa pengendalian penghantaran data.

 iv

CONTENTS

NO TITLE PAGE

 ABSTRACT i

 ABSTRAK ii

 CONTENTS iii

 LIST OF FIGURES viii

 LIST OF TABLES x

 LIST OF ABBREVIATIONS xi

 LIST OF APPENDICES xii

CHAPTER I PROJECT OVERVIEW

1.1 Introduction

1.2 Background

1.3 Problem Statement

1.4 Aim

1.5 Project Objective

1.6 Scope Project

1.7 Thesis Arrangement

1

2

2

3

4

5

5

 v

CHAPTER II LITERITURE REVIEW

2.1 Introduction

2.2 Mobile Agent

2.2.1 Network Computing Paradigm

2.2.2 Contemporary Mobile Agent System

2.2.3 Agent Design Pattern

2.2.3.1 Traveling Pattern

2.2.3.2 Task Pattern

2.2.3.3 Interaction Pattern

2.2.4 Parallel Processing using Mobile Agent

2.2.5 Multi-Threaded Application

2.2.5.1 Single-Threaded Programming

2.2.5.2 Multiprocess Programming

2.2.5.3 Multi-threaded Programming

2.3 Speech Recognition

2.4 Distributed Speech Recognition

2.4.1 Fundamental Architecture of DSR

2.4.2 Advantages of DSR

2.5 Word Translation

2.6 Development Tools

2.6.1 Java Agent Development Framework

2.6.2 CMU Sphinx4 Speech Recognition Engine

Framework

7

8

10

12

13

14

15

16

18

20

21

21

22

23

27

28

29

30

31

32

33

CHAPTER III METHODOLOGY

3.1 Introduction

3.2 Research Framework

3.2.1 Planning & Selection Phase

3.2.2 Design Phase

35

36

37

38

 vi

3.2.2.1 Analysis Stage

3.2.2.2 Design Stage

3.2.3 Operation & Implement Phase

3.2.3.1 Develop Prototype

3.2.3.2 Implement & Prototype Testing

3.2.3.3 Result & Discussion

3.2.3.4 Revise & Enhance

3.2.3.5 Wrapping Modules

3.2.4 Validation Phase

3.3 Research Methodology

3.4 General Framework of Intelligent Agent for

Speech Recognition and Translation.

3.5 Data Source

3.5.1 Training and Testing Data

3.6 Analyze Requirement

3.6.1 Software Requirement

3.6.2 Hardware Requirement

3.7 Summary

39

40

40

40

41

41

42

43

43

44

47

48

48

50

50

52

53

CHAPTER IV DATA & DISCUSSION

4.1 Introduction

4.2 Data

4.2.1 DSR & Agent Development Data

4.2.1.1 DSR Data

4.2.1.2 Agent Development Data

4.2.2 Prototype Data

4.3 Data Format

4.4 Discussion

4.4.1 Design Process

4.4.2 Implementation Process

54

54

55

55

56

57

57

59

59

67

 vii

4.4.3 Testing Process and Result

4.5 Summary

73

84

CHAPTER V CONCLUSION

5.1 Introduction

5.2 Advantages

5.3 Contribution

5.4 Suggestion & Future Work

5.4.1 Academic Values

5.4.2 Commercial Values

5.5 Summary

86

87

87

89

89

90

90

 REFERENCES

APPENDICES

92

97

 viii

LIST OF FIGURES

NO FIGURES PAGES

2.1 Client-Server Paradigm 10

2.2 Code-on-Demand Paradigm 11

2.3 Mobile Agent Paradigm 12

2.4 Scenario of master-slave agent technique 16

2.5 Block diagram of recognition management in SRP 19

2.6
In single-threaded execution, statements are executed

sequentially
21

2.7
Application process can fork into two, having one or more sub-

processes perform useful work
22

2.8 Human speech recognition process 24

2.9 General Speech Recognition Architecture 25

2.10 General architecture for distributed speech recognition system 27

2.11 Jade platform 32

2.12 Sphinx4 Framework 33

3.1
Research framework for intelligent agent for speech recognition

and translation.
37

3.2
Research Methodology for Intelligent Agent for Speech

Recognition and Translation.
44

3.3
Framework of Intelligent Agent for Speech Recognition and

Translation.
48

 ix

4.1 Example of transcripts and format naming files 58

4.2 Example of naming file 58

4.3
Applying Intelligent agent for Speech Recognition and

Translation Framework
59

4.4 Block diagram of the client-side for speech recognition system. 60

4.5
The architecture of an intelligent agent for speech recognition

and translation prototype
61

4.6 Master-Slave Agent Architecture for Speech Recognition &
Translation in Network

63

4.7 Detailed architecture of distributed speech recognition system 65

4.8 Sample code for SpeechAgent 69

4.9 Sample code for TranslationAgent 70

4.10 Sample code for ClientAgent 71

4.11 Sample code for register the service 72

4.12 User interface at the client side 72

4.13 Server side interface 73

4.14
Time Processing of Speech Recognition Engine Server and

Word Translation for 2 clients
78

4.15
Time Processing of Speech Recognition Engine Server and

Word Translation for 4 clients
79

4.16
Time Processing of Speech Recognition Engine Server and

Word Translation for 6 clients
80

4.17
Average Task Time Processing of Speech Recognition Engine

time performance
82

4.18 Average Speech Recognition Time Processing for every one task 83

 x

LIST OF TABLES

NO TABLE PAGE

2.1 Agent Design Patterns 17

2.2 List of Technical Terms 30

3.1 English and Malay word keep in MySQL database 49

4.1 Grouping of computer clients 74

4.2 Speech recognition time processing for 2 clients. 75

4.3 Speech recognition time processing for 4 clients. 76

4.4 Speech recognition time processing for 6 clients. 77

4.5 Average speech recognition engine time processing for each

task per total assigned tasks.
81

4.6 Average time processing for 2, 4 and 6 clients. 84

 xi

LIST OF ABBREVIATIONS

ASR - Automatic Speech Recognition

AMS - Agent Management System

AUML - Agent Oriented Unified Modeling Language

CORBA - Common Object Request Broker

 Architecture

DCT - Discrete Cousine Transform

DF - Directory Facilitator

DSR - Distributed Speech Recognition

FFT - Fast Fourier Transform

HMM - Hidden Markov Models

IP - Internet Protocol

Jade - Java Agent Development

JDK - Java Development Kit

LAN - Local Area Network

LPC - Linear Predictive Coding

MaSE - Multiagent Systems Engineering

MESSAGE - Methodology For Engineering Systems Of

Software Agent

 WWW - World Wide Web

 xii

LIST OF APPENDICE

APPENDIX TITLE PAGE

A List of feature files transmit to speech recognition server. 81

CHAPTER I

PROJECT OVERVIEW

1.1 Introduction

Intelligent networking is helping to advance the sharp rise and wide exploitation

of agent technologies. Mobile agent technology, a profound revolution in computer

software technology, is a brand new computing technique promoted for solving the

complicated and dynamic applications of distributed intelligence. Followed by the rapid

development of artificial intelligence and computer networking, especially for the

popular applications of Internet and related technologies in recent years, the network has

become a basic platform for people to publish and obtain information. Under this

background, computing is no longer limited to few servers in the network, but all

computers are required to get involved into this environment.

The current distributed computing model typically utilizes Remote Procedure Call

(RPC), process immigration and Client/Server architecture, but all these computing

models have limitations. The biggest one is that all the nodes involved in computing have

to be available in the network at the same time during the interaction. If some required

resources are not accessible, the whole computing process will fail.

 2

1.2 Background

This research is about Development of an Intelligent Agent for Speech

Recognition and Translation. Basically, input for this system is voice in English sound

and the output is Malay text. Therefore, this system also can call it as English – Malay

word translation system based on voice input and the result is in text. This system support

utterance of technical terms based on Information Technology domain. This research

involved three main parts: mobile agent, speech recognition and word translation.

Generally, this system runs on Local Area Network (LAN) environments and it also

called distributed speech recognition. User will record voice at the client-side while at the

server-side, recognition and translation process will be done and the result will be send to

the user. Translation part was based on translate word from English word to a Malay

word. Those words were based on 10 confusable technical terms – in the Information

Technology domain.

This system was developed based on mobile agent technology on networks to

support distributed speech recognition system and English – Malay word translation as

well. Agent development was based on Java Agent DEvelopment (JADE) framework,

which contained management agent for both speech process and word translation process.

While, speech recognition processed was based on CMU Sphinx4 Speech Recognition

engine. MySQL 5.1 also has been applied to support prototype database, especially used

in translation parts. Further description about these parts will be explains in the next

section.

1.3 Problem Statement

Based on Antonio Cardenal-Lopez et. al (2004), the increasing use of both the

Internet and Automatic Speech Recognition (ASR) systems makes Internet-based

Distributed Speech Recognition (DSR) services very attractive. In DSR, speech feature

 3

vectors are obtained at the client side and transmitted to the remote server for recognition.

These services are based on a client-server architecture:

i. The client device quantizes and packetizes the speech features and

transmits them over the communication channel to a remote ASR server.

ii. The remote ASR server performs the speech recognition task.

For this research, we also applied both of the services but not exactly based on

client-server architecture. It is because client-server implementation was highly

dependent on sufficient network bandwidth (Robert S. Gray, 2001). However, for

running distributed speech recognition system, network bandwidth was not usually in a

good condition. Differs from mobile agent technology, agent implementations saved

network bandwidth at the expense of increased server computation. In this situation, we

believed by using mobile agent technology to support distributed speech recognition

system was an excellent idea. We also applied mobile agent parallel processing to support

remote server computation to recognize the features files.

Based on experiments done by Robert S. Gray (2001), mobile agents can be

beneficial in situations with low network bandwidth and plentiful server capacity. Indeed,

in many environments it is easier to add more server capacity than to add network

capacity. With those problems, we believed this project, Development of Intelligent

Agent for Speech Recognition and Translation can solve the problems either to improve

the accuracy of speech recognition performance or to come out with new architecture of

mobile agent technology in DSR systems.

1.4 Aim

The aim of this research is to develop agent-based distributed speech recognition

and English – Malay word translation system for information technology term, input by

 4

spoken English and output as a Malay in text. In addition, the systems run on Local Area

Network (LAN) environment.

1.5 Project Objectives

The purposed of this research was to develop agent-based distributed speech

recognition and translation. The input was spoken English and the output was Malay

word in text. The systems execute on LAN environment. There are several objectives for

this project. There are:

i. To identify a framework of human speech.

ii. To develop an architecture of an intelligent agent for speech recognition.

iii. To develop a prototype of a speech recognition system for the

improvement of an existing online ‘Sistem Penterjemahan Istilah

Teknologi Maklumat’ from Dewan Bahasa dan Pustaka.

This research also wants to know the efficiency of mobile agent technology in

distributed speech recognition environment. These efficiencies can be look deeper in two

ways:

i. How mobile agent technology is competent to support distributed speech

recognition application through network compare with client-server

method?

ii. How mobile agent technology can optimize speech recognition engine

server processes for each request and response from client devices?

Therefore, in the next chapter will discuss about these two issues that been

highlighted in detail.

 5

1.6 Scope Project

Development of Intelligent Agent for Speech Recognition and Translation

prototype is based on several conditions and scopes. These kinds of scopes are lists

below:

i. The prototype runs on Local Area Network (LAN) environments.

ii. The translation process is based on English – Malay word translations.

iii. The prototype used CMU Sphinx4 speech recognition engine as speech

recognition engine server.

iv. The prototype used Java Agent Development Framework to develop agent

functions.

1.7 Thesis Arrangement

i. Project Overview.

First chapter that should be done is Project Overview. This chapter describes

project overview: Development of an Intelligent Agent for Speech Recognition and

Translation. It contains of general overview about three main parts in this research

project: Mobile Agent, Speech Recognition Engine and Word Translation, our research

target and project objectives.

ii. Literature Review

After project overview has been defined, our project’s problem definitions and

literature review will be done. After problem definition and literature review done, the

suitable methodology for this research project will be describes further in chapter 3.

 6

iii. Methodology

In this chapter, it will describe about the methodology, method and techniques

that will be use in this system development life cycle. This chapter will be divided into

two parts: project development methodology and system prototype development

methodology.

iv. Project Design and Implementation

In this chapter, it consists of two main process development : mobile agent system

development and speech recognition engine development. This chapter will describe a

model to develop the system and the methodology based on agent development process

and also methodology based on CMU Sphinx4 Speech recognition engine.

v. Result and Conclusion

This chapter will describe our result that we get from our system, speech

recognition engine and word translation. After that, we will make a conclusion about the

whole process development that we have done.

CHAPTER II

LITERATUR REVIEW

2.1 Introduction

This research project developed to captures voice in spoken English and

recognized the voice in text. After some recognition processes is done, the recognized

text will be translate from English word to Malay word in text. This research project

consists of three main parts: mobile agent, speech recognition and word translation.

Mobile agent technology is the main part in this research project. Mobile agent is used to

control and manage the interaction and the processes around the system. Mobile agent is

the middleware between speech recognition engine and word translation engine. Speech

recognition engine is responsible to recognize the human speech and word translation

engine responsible to translate from source word (English) to target word (Malay) in text.

The further description about those parts will be describes in the next sections.

 8

2.2 Mobile Agent

Mobility is an orthogonal property of agents. That is, not all agents are mobile.

An agent can just sit there and communicate with its surroundings by conventional

means, such as various forms of remote procedure calling and messaging. We call agent

that do not or cannot move stationary agent.

Stationary Agent-A stationary agent executes only on the system where it begins

execution. If it needs information that is not on that system or needs to interact with an

agent on a different system, it typically uses a communication mechanism such as remote

procedure calling (RPC) (Danny B. Lange and Mitsuru Oshima, 1998).

In contrast, mobile agent is not bound to the system where it begins execution.

The mobile agent is free to travel among the hosts in the network. Created in one

execution environment, it can transport its state and code with it to another execution

environment in the network, where it resumes execution. By the term state, it typically

means the attribute values of the agent that help it determine what to do when it resumes

execution at its destination. By the term code, in an object-oriented context, the class

node necessary for the agent to execute.

Mobile Agent - A mobile agent is not bound to the system where it begins

execution. It has the unique ability to transport itself from one system in a network to

another. The ability to travel allows a mobile agent to move to a system that contains an

object with which the agent wants to interact and then to take advantage of being in the

same host or networks as the object (Danny B. Lange and Mitsuru Oshima, 1998).

An agent is usually defined as an independent software program that runs on

behalf of a network user. It can be characterized as having more or less intelligence and it

has the ability to learn. Mobile agents add to regular agents the capability of traveling to

multiple locations in the network, by saving their state and restoring it in the new host. As

they travel, they work on behalf of the user, such as collecting information or delivering

 9

requests (Herve Paulino, 2002). This mobility greatly enhances the productivity of each

computing element in the network and creates a powerful computing environment.

Mobile agents require a software infrastructure that provides them security and data

protection. This infrastructure includes protocols, rules for safe mobility and, directions

and directories with information about all available hosts.

The use of mobile agents for distributed applications has several potential benefits

(Stefan Fünfrocken and Friedemann Mattern, 1999). Those benefits are as follows:

i. Asynchronous task execution: while the agent acts on behalf of the client on a

remote site, the client may perform other task.

ii. More dynamic: It is not necessary to install a specific procedure at a server

before-hand and to anticipate specific service request types; a client or a

service provider may send different types of agents to a server without the

need to reconfigure the server.

iii. Reduced communication bandwidth: If vast amounts of server data have to be

processed and if only a few relevant pieces of information have to be filtered

out, it is more economical to transfer the computation to the data than the data

to the computation.

Generally, based on those advantages of mobile agent above, they can reduce

network traffic, provide an effective means of overcoming network latency, and perhaps

most importantly, through their ability to operate asynchronously and autonomously of

the process that created them. Mobile agent also can help programmers to construct more

robust and fault-tolerant applications (Yariv Aridor and Danny B. Lange, 1998).

 10

2.2.1 Network Computing Paradigm

Mobile agents provide a powerful, uniform paradigm for network computing.

Mobile agents can revolutionize the design and development of distributed systems.

There are several programming paradigm for distributed computing such as client-server,

code-on-demand and mobile agents (Danny B. Lange and Mitsuru Oshima, 1998).

i. Client-Server Paradigm

In the client-server paradigm (see figure), a server advertises a set of services

that provide access to some resources (such as database). The code that

implements these services is hosted locally by the server. The server holds the

know-how. Finally, it is the server itself that executes the services and thus has

the processor capability. If the client is interested in accessing a resource

hosted by the server, the client will simply use one or more of the services

provided by the server. Clients need some “intelligence” to decide which of

the services it should use. The server has it all: the know-how, resource and

processor. So far, most distributed systems have been based on this paradigm.

We see it supported by a wide range of technologies such as remote procedure

calling (RPC), object request broker (CORBA) and Java remote method

invocation (RMI).

Figure 2.1: Client-Server Paradigm

 11

ii. Code-On-Demand Paradigm

According to the code-on-demand paradigm (see figure), you first get the

know-how when you need it. Suppose that the client initially is unable to

execute its task because of a lack of code (know-how). Fortunately, a host in a

network provides the needed code. Once the code is received by the client, the

computation is carried out in the client. The client holds the processor

capability as well as the local resource. In contrast to the classical client-

server paradigm, the client does not need preinstalled code because all the

necessary code will be downloaded. The client has the resource and processor,

and the host has the know-how. Java applets and servlets are excellent

practical examples of this paradigm. Applets get downloaded in web browsers

and execute locally, whereas servlets get uploaded ti remote Web servers and

execute there.

Figure 2.2: Code-On-Demand Paradigm

iii. Mobile Agent Paradigm

A key characteristic of the mobile agent paradigm (see figure) is that any host

in the network is allowed a high degree of flexibility to possess any mixture of

know-how, resources and processors. Its processing capability can be

combined with local resources. Know-how (in the form of mobile agents) is

not tied to a single host but rather is available throughout the network.

 12

Figure 2.3: Mobile Agent Paradigm

The comparison between these three paradigms is the chronological trend toward

greater flexibility. The client and server has merged and become a host. The applet and

the servlet, while serving as client and server extenders, respectively, have been

combined and improved with the emergence of mobile agents.

2.2.2 Contemporary Mobile Agent Systems

What kind of mobile agent systems are available? Fortunately, Java has generated

a flood of experimental mobile agent systems. Numerous systems are currently under

development, and most of them are available for evaluation on the web (Danny B. Lange

and Mitsuru Oshima, 1998). Some of Java-based mobile agent systems are as follows:

i. Aglets. This systems, mirrors the applet model in Java. The goal was to bring

the flavor of mobility to the applet. The term aglet is a portmanteau word

 13

combining agent and applet. One of the aglet purposed is to make aglets an

exercise in clean design. So that, applet programmers will appreciate the many

ways in which the aglet model reflects the applet model.

ii. Odyssey. General Magic Inc. invented the mobile agent and created

Telescript, the first commercial mobile agent system. Based on proprietary

language and network architecture, Telescript had a short life. In response to

the popularity of the internet and later the steamroller success of the Java

language, General Magic decided to re-implement the mobile agent paradigm

in its Java-based Odyssey. This system effectively implements the Telecsript

concepts in the shape of Java calluses. The result is a Java class library that

enables developers to create their own mobile agent applications.

iii. Concordia. Mitsubishi’s Concordia is a framework got the development and

management of mobile agent applications that extend to any system

supporting Java. Concordia consists of multiple components, all written in

Java, which are combined to provide a complete environment for distributed

applications. A Concordia system, at its simplest, is made up of a standard

JavaVM, a server and a set of agents.

iv. Voyager. ObjectSpace’s Voyager is a platform for agent-enhanced distributed

computing in Java. While Voyager provides an extensive set of abject

messaging capabilities, it also allows objects to move as agents in the

network. You can say that the voyager combines the properties of a Java-

based object request broker with those of a mobile agent system. In this way,

Voyager allows Java programmers to create network applications using both

traditional and agent-enhanced distributed application techniques.

2.2.3 Agent Design Pattern

Based on (Emerson Ferreira et. al, 2003), a different approach to increase the

usage of mobile agent in real applications is the definition of design patterns. The basic

 14

idea of design patterns is to define general solution models for common problems found

in a given context. In fact, some problems can be faced many times during different

phases of the development process. It would be worthwhile if good solutions for these

problems could be reused instead of the necessity to develop a new one from scratch.

Design patterns make easier the development of applications, increasing flexibility and

promoting reuse.

The advantage of using mobile agent design patterns in JADE framework has

been shown in (Emerson Ferreira et. al, 2003). The use of agent design patterns has

generally increased due to the advantages they can bring to applications development,

like reuse and a better understanding of their project. These advantages can also be

obtained when developing mobile agent-based applications by using mobile agent design

patterns. These patterns present solutions that can be reused, avoiding loss of time and

effort to investigate problems that have already been solved.

The patterns so far can be divided into three classes: traveling, task and

interaction. This classification scheme makes it easier to understand the domain and

application of each pattern, to distinguish different patterns, and to discover new patterns.

We describe the three classes of patterns as well as the patterns in each class.

2.2.3.1 Traveling Pattern

The itinerary pattern is an example of a traveling pattern that is concerned with

routing among multiple destinations. An itinerary maintains a list of destinations, defines

a routine schema, handle special cases such as what to do if the destination does not exist,

and always to know where to go next. Objectifying the itinerary allows you to save it and

reuse it later in much the same way that you save URLs as bookmarks.

 15

The ticket pattern, an enriched version of the concept of a URL, embodies

requirements concerning quality of service, permission or other data. For example, it can

include time-out information for dispatching the agent to a remote host. Thus, instead of

naively trying to dispatch to a disconnected host forever, the agent now has the necessary

information to make reasonable decisions while traveling.

2.2.3.2 Task Pattern

Task patterns are concerned with the breakdown of task and how these tasks are

delegated to one or more agent. In general, task can be dynamically assigned to general

purpose agents. Furthermore, a given task can be accomplished either by a single agent or

by multiple agent working in parallel and cooperating to accomplish it (such as in the

case of a parallel search).

The fundamental task pattern is Master-Slave pattern, which allow the master

agent to delegate a task to a slave agent. The slave agent moves to a destination host,

performs the assigned task, and sends back the result of that task. The more complex

Plan pattern adopts a workflow concept to organize multiple tasks to be performed in

sequence or in parallel by multiple agents. The plan encapsulates the task flow, which is

then hidden from the agent. The agent merely provides the mobility capabilities needed to

perform activities at specific destinations. The plan promotes reusability of tasks,

dynamic assignment of tasks to agent, and even composition of tasks. Figure 2.4 show

the scenario of master-slave agent technique.

 16

Figure 2.4 : Scenario of master-slave agent technique

2.2.3.3 Interaction Pattern

The ability of agent to communicate with one another is vital for cooperation

among agents. The interaction patterns are concerned with locating agent and facilitating

their interactions. The Meeting pattern is an interaction patterns that provides a way for

two or more agent to initiate local interaction at a given host. It abstracts the

synchronization in time and place that is required for local interactions. Agent can

dispatched themselves to a specific destination, called a meeting place, where there are

notified of the arrival of their counterparts and can engage in local interaction. Agent can

exploit the Locker pattern to temporarily store data in private. In this way, they can avoid

 17

bringing along data that for the moment are not needed. Later, agent can return and

retrieve the private data stored in the locker. For example, in an agent-based purchasing

system, an agent may visit a vendor’s host locker before leaving the company network.

The result is a reduction of network traffic and improved data confidentially.

 Agent can establish remote communication by using the Messenger pattern,

which objectifies messages in the form of agent that carry and deliver messages between

agents. For example, if a slave agent wishes to report a possibly intermediate result back

to the master agent, it can send the result by a messenger agent while continuing with its

current task.

 The Finder pattern describes a naming and locating service for agents. It is so

often convenient to assign a symbolic (meaningful) name to an agent in order to locate it

later. For example, an information-gathering agent may continuously move in the

network and other agents may from tome to time wish to retrieve updates from the

information-gathering agent without actually knowing its present location.

Table 2.1: Agent Design Patterns

Patterns Description

Traveling Patterns

Itinerary

Forwarding

Ticket

Objectifies agent’s itineraries and routing among the

destination.

Provides a way for host to forward newly arrived agents

automatically to another host.

Objectifies a destination address and encapsulates the quality of

service and permissions needed to dispatch an agent to a host

address and execute it there.

Task Patterns

Master-Slave

Plan

Defines a scheme whereby a master agent can delegate a task to

a slave agent.

Provides a way of defining the coordination of multiple tasks to

 18

be performed on multiple hosts.

Interaction Patterns

Meeting

Locker

Messenger

Finder

Provides a way for two or more agents to initiate local

interaction at a given host.

Defines a private storage space for data left by an agent before

it is temporarily dispatched (sent) to another destination.

Defines a surrogate agent to carry a remote message from one

agent to another.

Defines an agent that provides services for naming and locating

agents with specific capabilities.

2.2.4 Parallel Processing using Mobile Agent

This Intelligent Agent for Speech Recognition and Translation prototype executed

in LAN environments. There is a server waiting and answer a request from the computer

client that request for speech recognition and word translation applications. This server

connected with a number of computer clients through network or internet. Therefore,

there is a need for the server to perform all requests from the computer client. However,

there is a burden jobs for the server to completely process both parts recognition and

translation process. For recognition process, there is a need to process a complex

computation before the speech data can be recognized. Based on Wei Qi Zhang et. al

(2000), there decided that the recognition server should use some parallel program

method to support the recognition server. Their suggestions are to use some parallel

program method such as multithread, variable-share and COOP (Concurrent Object-

Oriented Program) to efficiently use these computers. It is because DSR server has to be

constructed by multiple computers and parallel program to support multiple requests.

 19

Wei Qi Zhang et al, (2000) also described implementation of recognition server

which they used CORBA method and the core components in CORBA is SRP. The

data/control flow inside SRP is shown in figure 2.5. In this figure, when a request arrives

on SRP, SRP creates a new thread Thread2 to manage the connection and receive the

following feature data. When the data completely received, the handle of Thread2 is put

into Thread Queue, which is a buffer used to contain all the requesting thread handles.

When Thread2’s handle reaches the top of the queue, this handle is deleted from the

queue if there are available engine servers. Otherwise, Thread2’s handle has to wait.

Moderator decides which engine server is available according to a workload

schedule scheme. A workload schedule scheme is typically geared to meet certain

performance metrics, which include CPU efficiency of engine server, number of jobs

(threads), response time of each request (user), amount of processed data, communication

throughput and memory requirement.

Figure 2.5: Block diagram of recognition management in SRP

 20

This prototype intelligent agent for speech recognition and translation applied

mobile agent technology to support parallel processing in speech recognition server.

Mobile agent has a method that called agent design pattern. This method has been

described before at section 2.1.3. This method has three classes and task pattern class has

been chosen to support parallel processing in speech recognition server.

In class task pattern, it provided Master-Slave pattern, which allow the master

agent to delegate a task to a slave agent. The slave agent moves to a destination host,

performs the assigned task, and sends back the result of that task (Danny B. Lange and

Mitsuru Oshima, 1998). Based on this pattern, a parallel processing for speech

recognition server has been build and implemented. A master-slave responsible to

manage, monitor, create and control each agent that executed and connected with this

system. Master-slave will delegate the speech and translation process to each slave-agent

that he created. For every slave-agent, they have their own thread. With that thread, they

can perform the given task without have to queue.

2.2.5 Multi-Threaded Application

Multi-threaded programming is an important concept in Java networking, as

networking clients and servers must often perform several different tasks at a time (for

example, listening for incoming requests and responses, processing data, and updating the

text or graphical user interface for the user). Multi-threading is a strategy to split tasks

into manageable units (David Reilly and Michael Reilly, 2002). There are three types of

multi-threaded programming:

i. Single-Threaded Programming

ii. Multiprocess Programming

iii. Multi-threaded Programming

 21

2.2.5.1 Single-Threaded Programming

Traditional software written in procedural languages is compiled into a machine-

readable format, which is called machine code. This code is read by a central processing

unit (CPU), which executes programming statements one after another, in a sequential

manner (see figure 2.6). The time taken to execute each statement may vary (due to the

nature of the operation, such as comparing two bytes for quality or adding two number

together), but until a statement is completed, no further statement will run. This is single-

threaded execution.

Figure 2.6 : In single-threaded execution, statements are executed sequentially

statement 1
statement 2
statement 3
…………..
…………..
statement n

2.2.5.2 Multiprocess Programming

Multiprocess programming can be described as each application runs as a process,

with memory allocated for program code and data storage (Multiple processes would run

on the same machine. The operating system would allocate CPU time to each process,

suspending a process when its time was up and allowing another to take its place.

Sometime, a process will become blocked (waiting an I/O), or may voluntarily choose to

yield it CPU time.

Multiprocesses programming can create new processes, having one part of the

program performing a task while another part does something else (figure 2.7). This type

 22

of programming is useful, as it means that work can be performed even if one part of the

program becomes stalled (for example, waiting for input).

Although multiprocess programming works well, there are disadvantages to its

use. First, when a process branches into two, there is overlap between the data storage of

one process and another. Because two copies of data are being kept, more memory than is

needed is consumed. Second, there isn’t an easy way for one process to access and

modify the data of another.

Figure 2.7: Application process can fork into two, having one or more sub-processes

perform useful work

2.2.5.3 Multi-threaded Programming

Multi-threaded programming requires a different way of looking at software.

Rather than executing a series of steps sequentially, tasks are executed concurrently-that

 23

is, many tasks are performed at the same time, rather than one task having to finish before

another can start. Multi-threading, also known as multiple thread of execution, allow a

program to have multiple instances of itself running, while using the same shared

memory space and code (David Reilly and Michael Reilly, 2002). An application can be

performing many different tasks concurrently and thread may access shared data

variables to work collaboratively.

2.3 Speech Recognition

Speech recognition is an alternative to traditional methods of interacting with a

computer, such as textual input through a keyboard. An effective system can replace, or

reduce the reliability on, standard keyboard and mouse input. This can especially assist

the following:

• People who have little keyboard skills or experience, who are slow typist,

or do not have the time to resources to develop keyboard skills.

• Dyslexic people, or others who have problems with character or word use

and manipulation in a textual form.

• People with physical disabilities that affect either their data entry, or

ability to read (and therefore check) what they have entered.

Speech and understanding voice message by human is a complex process. Factors

like height, weight, sex, teeth and lips can give an impact to their speech. Voice

processing by human can be simplified as below.

Processing sequence in the human auditory system.

- Fixed filter which represents the transfer from free field to eardrum and through

the middle ear.

- A bank of logarithmically spread bandpass filters in cochlea.

 24

- Dynamic compression, when mechanical energy is transformed to neural signals

by the hair cells.

- Periodicity estimation at each band.

- Integration of the band-wise processed signals and further calculations. This takes

place in the central nervous system (brains).

Human perception of speech starts with receiving signal by the ear. It will then

pass the membrane basilar in the inner ear where the signal will be analyzed. The

analyzed signal will pass to neural tranductor that convert the signal into activity signal

on the auditory nerve and the brain will translate and understood the speech. Figure 2.8

show the scenario of human speech recognition process.

Figure 2.8: Human speech recognition process

A speech recognition system consists of the following:

• A microphone, for the person to speak into.

• Speech recognition software.

• A computer to take and interpret the speech.

• A good quality soundcard for input and/or output.

At the heart of the software is the translation part. Most speech recognition

software breaks down the spoken words into phonemes, the basic sounds from which

syllables and words are built up. These are analyzed to see which string of these unit best

 25

“fits” an acceptable phoneme string or structure that the software can derive from its

dictionary.

It is a common misassumption that such a system can just be used “out of the

box” for work purposes. The system has to train to recognize factors associated with the

users voice e.g speed, pitch. Even after this training, the user often has to speak in a clear

and partially modified manner in order for his or her spoken words to be both recognized

and correctly translated.

Most speech recognition software is configured or designed to be used on a stand-

alone computer. However, it is possible to configure some software in order to be used

over a network. We can classify speech recognition tasks and systems along a set of

dimensions that produce various tradeoffs in applicability and robustness. A speech

recognition system can be used in many different modes (speaker dependent or

independent, isolated / continuous speech, for small or large vocabulary). Figure 2.9

show the general speech recognition architecture which it contains two main components,

Features Extraction and Speech Recognizer. This architecture received speech voice as an

input and text as an output.

Figure 2.9: General Speech Recognition Architecture

 26

Isolated word versus continuous speech: Some speech systems only need identify

single words at a time (e.g., speaking a number to route a phone call to a company to the

appropriate person), while others must recognize sequences of words at a time. The

isolated word systems are, not surprisingly, easier to construct and can be quite robust as

they have a complete set of patterns for the possible inputs. Continuous word systems

cannot have complete representations of all possible inputs, but must assemble patterns of

smaller speech events (e.g., words) into larger sequences (e.g., sentences).

Speaker dependent versus speaker independent systems: A speaker dependent system

is a system where the speech patterns are constructed (or adapted) to a single speaker.

Speaker independent systems must handle a wide range of speakers. Speaker dependent

systems are more accurate, but the training is not feasible in many applications. For

instance, an automated telephone operator system must handle any person that calls in,

and cannot ask the person to go through a training phase before using the system. With a

dictation system on your personal computer, on the other hand, it is feasible to ask the

user to perform a hour or so of training in order to build a recognition model.

Small versus vocabulary systems: Small vocabulary systems are typically less than 100

words (e.g., a speech interface for long distance dialing), and it is possible to get quite

accurate recognition for a wide range of users. Large vocabulary systems (e.g., say

20,000 words or greater), typically need to be speaker dependent to get good accuracy (at

least for systems that recognize in real time). Finally, there are mid-size systems, on the

order to 1000-3000 words, which are typical sizes for current research-based spoken

dialogue systems.

Some applications can make every restrictive assumption possible. For instance, voice

dialing on cell phones has a small vocabulary (less than 100 names), is speaker dependent

(the user says every word that needs to be recognized a couple of times to train it), and

isolated word. On the other extreme, there are research systems that attempt to transcribe

recordings of meetings among several people. These must handle speaker independent,

continuous speech, with large vocabularies. At present, the best research systems cannot

achieve much better than a 50% recognition rate, even with fairly high quality recordings.

 27

2.4 Distributed Speech Recognition

Based on (Imre Kiss et. al, 2003), in the Distributed Speech Recognition (DSR)

system, the recognition process is split between the terminal device and the network

server. Feature extraction (front-end) followed by parameter compression is carried out at

the terminal end (server). The compressed recognition parameters are subsequently

transmitted to the network server where the actual pattern matching stage (back-end) is

performed. (Imre Kiss et. al , 2003) also mentioned that the development of DSR has

been motivated by two main reasons. By computing the recognition parameters at the

terminal end and sending them as data over the channel, it is possible to have less

distorted input for the recognition process. This arrangement helps to improve the

robustness against channel errors, as well as distortions introduced by the speech coding

algorithm. Secondly, DSR is efficient from the channel occupation point of view, as only

a handful of recognition parameters need to be sent to the network end. Figure 2.10 show

the general architecture for distributed speech recognition.

Figure 2.10: General architecture for distributed speech recognition system

 28

2.4.1 Fundamental Architecture of DSR

Generally there are three alternative strategies in the design of DSR architectures

(Wei Qi Zhang et. al, 2000). Those three architectures are as follows:

i. Server-only processing.

All processing done at the server side and the speech signal is transmitted to

the server either through the internet by using speech coding or via a second

channel like telephone (Domonic Vaufreydaz et. al. 1999; Zhemin Tu and

Philipos C. Loizou, 1999).

ii. Client-only Processing

Most of speech processing is done at the client-side and the results are

transmits to the server (Aldebaro Klautau, 2000).

iii. Client-server processing.

In this model, front-end processing of speech features are transmitted to the

server and finally the processing of speech decoding and language

understanding are performs at the server-side. However, all the distributed

speech recognition strategies were based on client-server model.

These types of architectures gave some advantages to the DSR systems. By using

DSR systems:

i. By maintaining language models, dictionaries and user interface components

on the server, DSR is less constrained by memory limitations on wireless

devices.

ii. DSR lets the developer add voice interfaces to a variety of mobile devices

without significant hardware requirements.

iii. It’s much easier to update services, content and code when the majority of the

recognition application is on the server.

 29

For this development of an intelligent agent for speech recognition and

translation, we used the third architecture: client-server processing. We divided speech

recognition components into two parts. One part runs at the client-side (front-end

processing) and the other part runs at the server-side (back-end processing). At the client-

side, the user will speak a word in English and record the voice into the interface layer.

The interface layer can receive and record voice from the user. After the voice is

recorded, it will send to the speech encoder. The speech encoder processes the input and

extracts the features of the voice. The extracts data then send to the speech decoder at the

server-side. At the server-side, speech decoder will recognize the extract data and covert

it into a text.

2.4.2 Advantages of DSR

Based on (David Pearce, 2000), the main benefits of DSR are as follows:

i. Improved recognition performance over wireless channel and network.

The use of DSR minimizes impact of speech codec and channel errors that

reduce the performance from recognizers accessed over digital mobile speech

channels.

ii. Ease of integration of combined speech and data applications.

Many new mobile multimodal applications are envisioned; such as the use pf

speech to access wireless internet content. The use of DSR enables these to

operate over a single wireless data transport rather than having separate

speech and data channels

iii. Ubiquitous access with guaranteed recognition performance levels.

There are currently 4 different major digital mobile systems each using

several different codec. These all produce different effects on recognition

performance. Mismatches in the channels used for training and recognition

can result in severe degradations in performance, while models that have been

 30

trained over man network give a compromise performance. DSR in the other

hand offers the promise of guaranteed level of recognition performance over

every network. It uses the same front-end and there is no channel distortion

coming from the speech coded and its behavior in transmission errors.

2.5 Word Translation

This prototype involved two main areas, speech recognition and word translation.

It will receive a wav file as an input and a text file as an output. After the prototype

received a wav file, the file will be processes by speech recognition engine until get a

result. The result is in text file and in English. The purpose of this prototype is to translate

the English word to Malay word. So, the translation engine will translate the source word

(English) to the target word (Malay). For this prototype, several technical terms has been

used for both processes training and testing. The lists of the technical terms are shows at

table 2.2.

Table 2.2: List of technical terms

No Utterance (English) Utterance (Malay)

1. Access Time Masa Capaian

2. Access Right Hak Capaian

3. Download Muat Turun

4. Upgrade Tatar

5. Upload Muat Naik

6. Artificial Intelligent Kepintaran Buatan

7. Central Processing Unit Unit Pemprosesan Berpusat

8. File Transfer Protocol Protokol Pemindahan Fail

9. Local Area Network Rangkaian Kawasan Setempat

10. Wide Area Network Rangkaian Kawasan Luas

 31

2.6 Development Tools

In this research project, “Development an Intelligent Agent for Speech

Recognition and Translation” we selected and used several tools that we found it suitable

for us to develop the systems. Tools like Java Agent Jade for mobile agent development

and Sphinx4 Speech Recognition engine for speech recognizer are the best framework

that we have chosen.

2.6.1 Java Agent Development Framework (JADE)

JADE is completely written in Java and JADE programmers work in full Java

when developing our agents. An overview of the JADE platform, the description of it

architecture, main functionalities and the outline of the conceptual model is shown in

(Willlie Walker et al ,2004). There are two major aspects in Jade: distributed system

topology with peer-to-peer networking and software component architecture with agent

paradigm. JADE is an enabling technology, a middleware for the development and run-

time execution of peer-to-peer applications which are based on the agents paradigm and

which can seamless work and interoperate both in wired and wireless environment.

JADE is the middleware developed by TILAB for the development of distributed

multi-agent applications based on the peer-to-peer communication architecture. Both the

intelligence, the initiative the information, the resources and the control can be fully

distributed on mobile terminals as well as on computers in the fixed network. The

environment can evolve dynamically with peers, that in JADE are called agents, that

appear and disappear in the system according to the needs and the requirements of the

application environment. Communication between the peers, regardless of whether they

are running in the wireless or wireline network, is completely symmetric with each peer

being able to play both the initiator and the responder role.

 32

JADE is fully developed in Java and is based on the following driving principles:

 Interoperability – JADE is compliant with the FIPA specifications. As a

consequence, JADE agents can interoperate with other agents, provided

that they comply with the same standard.

 Uniformity and portability – JADE provides a homogenous set of API’s

that are independent from the underlying network and Java version. More

in details, the JADE run-time provides the same APIs both for J2EE, J2SE

and J2ME environment. In theory, application developers could decide the

Java run-time environment at deploy-time.

 Easy to use – The complexity of the middleware is hidden behind a simple

and intuitive set of APIs.

 Pay-as-you-go philosophy – Programmers do not need to use all the

features provided by the middleware. Features that are not used do not

require programmers to know anything about them, neither add any

computational overhead.

Figure 2.11: Jade platform

 33

2.6.2 CMU Sphinx4 Speech Recognition Engine Framework

The Sphinx-4 framework has been designed with a high degree of flexibility and

modularity. Figure 2.12 shows the overall architecture of the system. Each labeled

element in Figure 2.12 represents a module that can be easily replaced, allowing

researchers to experiment with different module implementations without needing to

modify other portions of the system.

Figure 2.12: Sphinx4 Framework

There are three primary modules in the Sphinx-4 framework: the FrontEnd, the

Decoder, and the Linguist. The FrontEnd takes one or more input signals and

parameterizes them into a sequence of Features. The Linguist translates any type of

standard language model, along with pronunciation information from the Dictionary and

structural information from one or more sets of AcousticModels, into a SearchGraph. The

SearchManager in the Decoder uses the Features from the FrontEnd and the SearchGraph

from the Linguist to perform the actual decoding, generating Results. At any time prior to

 34

or during the recognition process, the application can issue Controls to each of the

modules, effectively becoming a partner in the recognition process.

CHAPTER III

METHODOLOGY

3.1 Introduction

Defining the project’s methodology is an important task, as it can give guidelines

about activities that need to be performed in order to successfully develop a system.

Moreover it helps to achieve the project’s objectives and vision, as well as solving the

background problems. This chapter discusses the methodology of the research project:

Development of an Intelligent Agent for Speech Recognition and Translation. This

chapter will gives a clear view on the methodology used by describing the framework of

mobile agent technology and sphinx4 speech recognition engine which implemented

agent-based distributed speech recognition and translation. This chapter attempts to

provide clear guidelines on how the project goal and objectives are accomplished.

 36

3.2 Research Framework

This framework is used as a guideline through out the research for studying the

appropriate system to manage agent-based distributed speech recognition and translation

system environment. This framework provides a solution roadmap that goes through all

the necessary phases in achieving the research goal. Figure 3.1 below represents the

framework that mapped to the research scope. It provides an overview of the key

initiatives taken in achieving Development of an Intelligent Agent for Speech

Recognition and Translation objectives. There are four main stages involves in this

research framework; Planning and Selection, Design, Operation & Implementation, and

the last phase; Validation. Figure 3.1 shows the research framework for development of

an intelligent agent for speech recognition and translation.

 37

Figure 3.1: Research framework for intelligent agent for speech recognition and

translation.

3.2.1 Planning and Selection Phase

Before any technical or analytical processes are performed, firstly, the system

needs to be sketched down. In Planning and Selection stage, the needs are prioritizes and

translates into a written plan. The planning includes making up hypothesis, defining

objectives and scope, generating possible solutions, and determining how the research

 38

should be executed. Generally, it summed up to a manageable groundwork towards the

research goal.

 In this stage, a broad view of the current situation within intelligent agent, mobile

agent, distributed speech recognition and word translation is examined. Request for a new

system springs from desire for enhancement in current system which still has large rooms

for improvements are extracted. From the extracted information, possible candidates of

solutions and improvements are gathered and clustered by their weakness and

advantages. The best cluster of possible solutions is carried out to the next stage for

analysis. The next task in this process is investigating the current of mobile agent,

distributed speech recognition, and word translation system and the proposed solutions.

Furthermore, the investigation leads out to the requirements of justifications and

specifications for the research study.

In this phase also, research planning must be clarified. Careful planning at the

beginning of the project is perhaps the single most important factor that distinguishes

success from failure. From the available model and approach comparison, mobile agent

technology approach is chosen for agent development while Sphinx4 speech recognition

engine for recognition performances.

3.2.2 Design Phase

In the design phase, there are two stages; analysis and design. Each of the stages

has their own responsibility in process to develop the system. In the analysis stage, the

requirements of the proposed system are determined. Candidate solutions are discussed

and compared in selecting the best alternative which meets the system needs. The best

solution selected is then studied detailed down to its structure before implemented within

the research study.

 39

 Before developing a working model of the research, a design is created. This is to

ease development process forward in this stage. A design based on Multiagent System

Engineering (MaSE) methodology is being used. MaSE methodology is similar to

traditional software engineering methodologies is but specialized for use in the

distributed agent paradigm (Deloach, 1998). MaSE methodology takes an initial system

specification, and produces a set of formal design documents in a graphically cased style.

The MaSE will guide a designer through the software lifecycle from a prose specification

to an implement agent system. The MaSE will chart out and organized the proposed

prototype model which is easy to developed and maintained. The next step is the

development process of the model designed.

3.2.2.1 Analysis Stage

In the analysis stage, the requirements of the proposed system are determined.

Candidate solutions are discussed and compared in selecting the best alternative which

meets the systems needs. The best solution selected is then studied detailed down to its

structure before implemented within the research study.

The analysis process does not end with the selection of the solution. The analysis

is the continuing by exploring the environments of the current both mobile agent and

distributed speech recognition systems. The environment are analyzed in determining the

others contributions factors that has effects to the distributed speech recognition

performance either positively or negatively. Fundamentals of mobile agent are then

analyzed bottom up from the architectures and mobile agent models towards the policies

used in distributed speech recognition and translation placement strategies. Exploration

and analysis done in this stage are the essential acquaintance for the success of the next

stage of this research; operation & implement.

 40

3.2.2.2 Design Stage

At this level, design stage will define (or reuse) the agent architectures for each

individual agent type. The agent architecture defines the components within each agent

and how they interact. The agent level is documented. At this stage also, some of the

process must be defined such as mapping actions identified in agent conversations to

internal components, defining data structures identified in agent conversations and

defining additional data structures, internal to the agent. At this stage also the overall of

system design is specified using an AgML deployment diagram. To ease the process of

the design, some steps should be followed. Those steps are: i) selecting the agent types

that are needed, ii) determining the number of agents required of each type and defining.

The output of this design stage will be use for system development at the next phase.

3.2.3 Operation & Implement Phase

Operation defined here as a process which the functions are defined and

developed. As this stage is based on prototyping approach in software development, the

prototyping process will lead out from this point though out to the end of the stage.

3.2.3.1 Develop Prototype

Based on the MaSE designed in the early phase, a working model prototype will

be developed. The MaSE design will be the master plan of the development of Intelligent

Agent for Speech Recognition and Translation. The interfaces defined within the AgML,

 41

the expect inputs and outputs, the modules functions, and general design are then being

developed accordingly.

3.2.3.2 Implement and Prototype Testing

The developed model is then implemented to a real system. There are two types

of implementation done to test the developed model. There are alpha and beta testing.

The alpha testing will be testing among team development (organization) where the

outputs are the results of input generated within the team development.

 The mistakes and errors found within these testing phases will be addressed in the

next stage Result & Discussion for process evaluation.

3.2.3.3 Result & Discussion

After Implement & Prototype Testing stage has been done, the result will be

addressed to Result & Discussion stage. This stage is a process to ensure all the result has

match and fulfill all the system objectives and also to ensure the prototype is ready to

work in a real environment. This stage also, the result will be discussed. The outcomes of

the discussion, solid or poor result will be addressed to Revise & Enhance stage for revise

and enhancement process until the prototype system ready to work in a real environment.

i.System Performance

This section is responsibility to measure system performance of Intelligent Agent

for Speech Recognition and Translation. System performance can be divided into

several measurement processes such as accuracy of word translation, system

stability, agent communication stability and agent parallel processing accuracy.

 42

ii.Malay acoustics model for speech recognition

This section is a process to ensure the accuracy of Malay acoustic model for speech

recognition performance is ready to be implemented in a real environment.

Intelligent Agent for Speech Recognition and Translation used Malay acoustic

model based on phoneme acoustic model unit. Once this phoneme accuracy is

higher that 95%, the Malay acoustic model ready to use. However, if the phoneme

accuracy for Malay acoustic model is below than 95%, some modification or

parameters setup in training process for acoustic model should be done to ensure the

accuracy must higher than 95%.

iii.Objective Verification

After making the final conclusions on the findings from the analysis, the objectives

of this project are verified to make sure that research has fully accomplished the

vision of this project. All the objectives have to be met in order to clarify that this

research project is success. The purpose of this section is to ensure all objectives,

vision can be achieved and all the problems that stated earlier are solved at the end

of research.

3.2.3.4 Revise & Enhance

The revise & enhance stage will ensure that all the errors and mistakes found

within the working model is taken care and corrected. A suitable patch for each error will

be produced if error occurred in previous phase. It is a continuing loop for the Revise and

Enhance stage with Design phase and Developed Prototype stage in the Operation &

Implementation phase until there are no more errors found within the working model.

If the major mistakes or errors are found within the module which needs

restructuring within the MaSE designed, necessary action will be taken either involving

certain changes with the initial MaSE designed or just have a changes in implementation

 43

process. As a research study and a new adapt technology, the Intelligent Agent for

Speech Recognition and Translation cannot run away from these changes as it is

involving exploring new areas of solutions.

3.2.3.5 Wrapping Modules

After the two previous phases has been done, the working prototype model is then

being wrapped up as a library for the use in the validation process. The module is an

interactive module which it has inputs and outputs. The module structures are still

designed accordingly to the MaSE designed.

At this stage, it is a wrap for the development of the Intelligent Agent for Speech

Recognition and Translation prototype. The working prototype then passed from

Operation & Implementation phase to the Validation phase.

3.2.4 Validation Phase

The validation phase requires implementation on a remote site where a real

environment involves in the validation scene. Implementation involves the use of

previous techniques and the current Intelligent Agent for Speech Recognition and

Translation. This phase is similar to the beta testing used before, except no errors are

expected from the execution of the prototype. Data that show performance from previous

techniques and the new Intelligent Agent for Speech Recognition and Translation are

collected and analyzed. Comparison is done to validate the new proposed Intelligent

Agent for Speech Recognition and Translation technique. This phase is a sum of all

works done in previous phases and stages. Result of the validation stage will be the

benchmark that defines the advantages of the Intelligent Agent for Speech Recognition

and Translation in speech recognition and translation area and also for distributed

application.

 44

3.3 Research Methodology

Intelligent Agent for Speech Recognition and Translation prototype has been

developed based on research methodology that been produced. This methodology

contains the process from the beginning of the executed system to the end or until

prototype was shut down. Figure 3.2 shows the research methodology for developing

Intelligent Agent for Speech Recognition and Translation.

Figure 3.2: Research Methodology for Intelligent Agent for Speech Recognition and

Translation.

This research methodology can be divided into two main parts, client side

processing and server side processing. The important process for both parts is to create

agents, ClientAgent (client side), SpeechAgent and TranslationAgent (both at the server

side). These three agents have their own tasks and responsibility. The process by each

part will be described separately.

At the client side, there is ClientAgent that control and handling processes at the

client side. Once ClientAgent has been run, it will create three components, Client

 45

Interface, Request/Response management and Receive/Transmit Data. Client Interface

responsible for interacting between user and system, while Request/Response

management responsible for request and response any process either from server side or

itself. Receive/Transmit Data responsible to handle any kind of data that will send from

client to server and also received data from server to client.

Client Interface will be act like connection between user and system. In

distributed speech recognition system, front-end processing will be executed at the client

side. Therefore, Client Interface will performs this tasks and will be guided and monitor

by ClientAgent. Two processes can be described here in front-end processing which are

recording voice and feature extraction. User voice will be recorded using Sphinx4

recording component and will save as wav files. This file will be an input for this system.

Once user voice has been recorded, the feature extraction will be done. In feature

extraction, the wav file will be converted from analog signal to digital signal. It’s

important because computer just process digital signal not analog signal. This digital

signal then will be process to be a file of features using some kind of technique like

Linear Predictive Coding (LPC), Fast Fourier Transform (FFT) and Filter Bank. This

process is important because feature voice that been accepted will be use to represent

reference pole and pole that want to be recognized at the recognition stage.

These components all at the client side, which these components responsible just

at the client side only. On the other hand, at the server side, there also a number of

components that integrated together to perform a number of tasks at the server side. At

the server side, the important process still the same as at the client side, create agents.

However, the numbers of agents are differences. At the server side, there are

SpeechAgent and TranslationAgent. Both of them perform different responsibility.

SpeechAgent performs a tasks related with speech recognition process, while

TranslationAgent performs related with English-Malay word translation process. Beside

that, there still some other components

 46

At the server side, there are some components that have the same responsibility as

components at the client side. Components like Request/Response and Receive/Transmit

still needed at the server side. Both components will be used by both agents, SpeechAgent

and TranslationAgent. However, at the server side, there still another components at the

server side such as Create Agent Slave, Recognition, Training, Testing and Word

Translation.

When SpeechAgent and TranslationAgent have been created, there is another

component that can create slave agent, called SpeechSlave and TranslationSlave. This

component called Create Agent Slave. This component will create new agent for both

agents, SpeechAgent and TranslationAgent when needed. The purpose of this component

is to perform concept of master/slave agent in design agent pattern techniques.

SpeechAgent related with several components such as Create Agent Slave,

Receive/Transmit, Request/Response. One more components is Recognition. Recognition

component is responsibility to recognize the feature file that it got from client side (front-

end processing). To develop Recognition component, it consists of two processes,

Training and Testing. Both processes contain data in wav files. These data were collected

from a number of speakers. In this prototype, 50 speakers voice have been collected.

They consist of 25 male speakers and 25 female speakers. For each speaker, they will

speak 10 times of each word. There are 10 confusable technical terms in the Information

Technology domain. Generally, for 50 speakers, total of collected voice is 5000 wav

files. These 5000 wav files will be used for training and testing. The recognition process

will used the result from these two processes. Further information will be described in the

next section.

For TranslationAgent, there is component called Word Translation. This

component is responsible to translate English word to Malay word. The English word is

an input from the result of Recognition process. For each feature file that been

recognized, the result is in English word and in text format. Therefore, the responsibility

of Word Translation components is to translate that English word to Malay word in text

 47

format. The ease this process, this prototype use MySQL 4.1 database to keep all the

translate words. Once Word Translation components got a task to translate a word, it will

search a number of data from this database. When, the translated word has been found,

the result will be send back to the client side for user’s view.

3.4 General Framework of Intelligent Agent for Speech Recognition and

Translation.

This is the general framework for Intelligent Agent for Speech Recognition and

Translation that present the working ground of mobile agent application, speech

recognition engine and word translation. This framework shows where mobile agent

interacted with speech recognition components and word translation engine in distributed

application environment.

Figure 3.3: Framework of Intelligent Agent for Speech Recognition and Translation.

 48

There are two sides of processing, server-side and client-side. At the client-side,

voice will be recorded and also front-end processing will be done. The output from front-

end processing is a feature file. Once the feature files ready, it will be transmitted to the

server-side for recognition performance. All this process at the client-side will be handle

together with agent. Agent acts like manager, manage the conversation among agent in

one purpose to complete the given task.

At the server-side, recognition process and translation will be performed. The

recognition process will be used the feature files that been transmitted to do that. The

outcome of the recognition process is text in English word. Then, the English text will be

addressed to English-Malay word translation engine by agent. Lastly, the English word

will be translated to Malay word before the end result is send to the client-side.

3.5 Data Source

For data source section, it can represent as a used data for prototype development.

Data source can be described as training and testing data. Further information about this

data will be described below.

3.5.1 Training and Testing Data

Environment data is a raw data that can be divided into two types, raw data for speech

recognition engine and a number of data for translation process. Raw data for speech

recognition engine process that represents human voice in format wav files. These kinds

of data will be used in training and testing phase in speech recognition engine life cycle.

To create this raw data of human voice, a number of speakers had been chosen. A total of

20 speakers were used for training. 20 speakers consist of 10 male speakers and 10

female speakers. Each speaker said 10 confusable technical terms in the Information

Technology domain and each word will be repeated 10 times. Therefore, there will be

 49

2000 wav files will be collected after all speakers finish their jobs. Table 3.1 shows the

list of words that speakers will speak. Data was collected by using GoldWave with data

format, sampling rate: 16000 and mode: mono.

However, raw data for translation process is a data that consists of a number of

words and put aside in a database. There are two columns, Malay word and English word.

The database that been chose in this prototype is MySQL 4.1. Table shows the English

and Malay words that keep in MySQL database.

Table 3.1 : English and Malay words in MySQL database.

No Utterance (English) Utterance (Malay)

1. Access Time Masa Capaian

2. Access Right Hak Capaian

3. Download Muat Turun

4. Upgrade Tatar

5. Upload Muat Naik

6. Artificial Intelligent Kepintaran Buatan

7. Central Processing Unit Unit Pemprosesan Berpusat

8. File Transfer Protocol Protokol Pemindahan Fail

9. Local Area Network Rangkaian Kawasan Setempat

10. Wide Area Network Rangkaian Kawasan Luas

 50

3.6 Analyze Requirement

To develop a prototype of Intelligent Agent for Speech Recognition and

Translation, this prototype needs two requirements, software and hardware to achieve the

process development.

3.6.1 Software Requirement

There are several types of software involved in this research prototype.

i. Java Development Kit (JDK)

The development of this prototype used JDK 1.5.2 that been provided by Java

developer. To execute this prototype, the system needs JDK 1.5.2.

ii. JADE 3.3 (Java Agent DEvelopment)

JADE is written in Java language and is made of various Java packages,

giving application programmers both ready-made pieces of functionality and

abstract interfaces for custom application dependant tasks. Java was the

programming language choices because of its many attractive features,

particularly geared towards object-oriented programming in distributed

heterogeneous environment. JADE is an enabling technology, a middleware

for the development and run-time execution of peer-to-peer applications

which are based on the agent paradigm and which can seamless work and

interoperate both in wired and wireless environment (A. Fuggeta et al, 2004).

JADE also provide the control agent platform includes FIFA specified

mandatory agents (ACC, AMS and DF). All agent communication is

performed through message transfer. Message representation is based on the

Agent Communication Language (ACL) (V.Gyurjyan, 2003).

 51

iii. NetBean 4.0

This software is provided by Sun Microsystem’s Netbean to support developer

who works in Java language. It also provides an interface programming, so

that the interface can be a middleware between user and system.

iv. CMU Sphinx4 Speech Recognition Engine

This is the main engine that been used in Intelligent Agent for Speech

Recognition and Translation. The prototype speech function and agent

functions will interact with this engine. Process recording function also related

with this engine where the developer used it class function to record the voice.

v. MySQL 4.1

The development of this prototype used MySQL 4.1 version for database

purpose. For word translation function, the prototype will save and search the

exact word that want to be translate in MySQL database.

3.6.2 Hardware Requirement

Hardware also is a main component parts in prototype development. Generally,

there are two computers (server and client) applied in prototype development. This

hardware specification is as below:

i. Personal Computer 1 (Server)

a. Pentium IV 1.8 GHz Processor

b. 40 GB Hard Disk

c. 512 Mb RAM

d. Keyboard and Mouse

e. Monitor 17”

f. Sound Card

ii. Personal Computer 2 (Client)

 52

a. Pentium IV 1.6 GHz processor

b. 35 GB Hard Disk

c. 512 Mb RAM

d. Keyboard and Mouse

e. Monitor 17”

f. Sound Card and Microphone

iii. Minimum requirement for Computer Client

a. Pentium 800 MHz processor

b. 128 Mb RAM

c. Keyboard and Mouse

d. Monitor

e. Sound Card and Microphone

3.7 Summary

A well designed and robust methodology is needed to run such an intensive

research as the Intelligent Agent for Distributed Speech Recognition and Word

Translation. The methodology designed and followed is shown to be the best fit for this

research study. The next chapter will discuss the detail data and discussion about this

prototype.

CHAPTER IV

DATA & DISCUSSION

4.1 Introduction

This chapter describes about two topics, the data and discussion. The data will be

explained in two parts, data for DSR and agent development, and data for prototype

testing. A discussion about the whole prototype system including the result also will be

explained in detailed.

4.2 Data

There are two types of data that has been used in development of an Intelligent

Agent for Speech Recognition and Translation. First, the data is for DSR and agent

development purpose and the second one is for prototype testing. The detail description

will be explained in the next section.

 55

4.2.1 DSR & Agent Development Data

Data is one of the most important parts in this prototype development. This

prototype has been building based on two main parts, DSR and agent development. Both

of them need a data to ensure the development process is going well. DSR need a data to

ensure the recognition engine can recognize the input voice, while a data for agent

development is based on when the agent prototype system is running.

4.2.1.1 DSR Data

The data for DSR will be found in database which it called speech database.

(Claudio Becchetti and Lucio Prina Ricottu, 2002) say that speech databases are essential

to allow the ASR to grow on performance. The speech data may come from databases (in

training step) or from a microphone. Since these data comply with different standards, the

database/signal interface processes data to supply the successive blocks with a consistent

input.

The speech database is a collection of recorded speech accessible on a computer

and supported with the necessary annotations and transcriptions. The speech database

will record different voice (data) from different people. It’s important to provide the

database with all possible documentation about the recorded material. The documentation

produced during the database design and realization should describe recording

techniques, number and type of speakers, linguistic content, etc. in the most detailed

manner, to help in subsequent use by other interested people.

 To develop this speech database, we collected a number of speakers to record

their voice. There are several types of speech database such as Databases with few

speakers, Databases of less than 50 speakers and Databases of more than 50 speakers.

Based on Intelligent Agent for Speech Recognition and Translation prototype, this

 56

prototype is a speaker-independent and continuous word. To support this speaker-

independent and continuous word, Database of more than 50 speakers is suitable for that

purpose. In this case, a large variability in speech styles and in recording quality,

resulting from a proper distribution of speaker age and sex, is required.

Development of speech database, 50 speakers are collected. This number of

speakers has been divided into several groups. These groups are based on age and male.

One group consists of 25 male, and other one 25 female. This process also divided those

speakers into different age groups because this process is preferable in developing a

database. For instance, the age groups divide into two sub-groups, speakers under 20

years and adult from 20 to 30 years.

A total of 50 speakers were used for training to develop speech database which

called Database of more than 50 speakers. 50 speakers consist of 25 male speakers and 25

male speakers. Each speaker said 10 confusable technical terms in the Information

Technology domain. Table 2.2 in the previous chapter shows the list of the technical

terms. Data was collected by using GoldWave with data format, sampling rate: 16000

and mode: mono. For each technical term, they will say 10 times.

At the end of this process, a small vocabulary speech database is developed. This

small vocabulary database contains 5000 wav files which that enough to develop small

vocabulary of Intelligent Agent for Speech Recognition and Translation prototype.

4.2.1.2 Agent Development Data

For agent development prototype, almost of the data will be develop when the

prototype is running. Each agent will have their own memory of data. However, they also

have permission to retrieve a data contain in JADE service such as Agent Management

System (AMS) or Directory Facilitator (DF). This data is called environment data.

 57

 Those data usually help agents to ease the process of agent development and

when the system is running. The data can help agent to know about other agent detail,

other services that provide by other agents.

4.2.2 Prototype Data

This prototype, Intelligent Agent for Speech Recognition and Translation is a

distributed applications and run on LAN or internet environment. There is a server that

receives a request from multiple computers or clients that that request this recognition

and translation services. For this prototype, data is use to execute the testing process. The

data is a wav files contains human voice. The process just like how the training data are

collected. However, the numbers of files are different from the training data.

4.3 Data Format

For every voice that been recorded, there are a format for name it. Figure 4.1

show the example of transcripts and naming files that been applied in speech database for

Intelligent Agent for Speech Recognition and Translation.

 58

<s> ARTIFICIAL INTELLIGENCE </s> (11AM4TR)
<s> ARTIFICIAL INTELLIGENCE </s> (11BM4TR)
<s> ARTIFICIAL INTELLIGENCE </s> (11AM1TS)
<s> ARTIFICIAL INTELLIGENCE </s> (11BM1TS)

<s> CENTRAL PROCESSING UNIT </s> (12AM4TR)
<s> CENTRAL PROCESSING UNIT </s> (12BM4TR)
<s> CENTRAL PROCESSING UNIT </s> (12AM1TS)
<s> CENTRAL PROCESSING UNIT </s> (12BM1TS)

<s> FILE TRANSFER PROTOCOL </s> (13AF4TS)
<s> FILE TRANSFER PROTOCOL </s> (13BF4TS)
<s> FILE TRANSFER PROTOCOL </s> (13AF2TR)
<s> FILE TRANSFER PROTOCOL </s> (13BF2TR)

Figure 4.1: Example of transcripts and format naming files

<S> CENTRAL PROCESSING UNIT <S> tells the transcripts of the line while

(12AM4TR) is the name of the wav files. Each file has different name. For example, let

see the four naming files at figure 4.2.

<s> CENTRAL PROCESSING UNIT </s> (12AM4TR)
<s> CENTRAL PROCESSING UNIT </s> (12BM4TR)
<s> CENTRAL PROCESSING UNIT </s> (12CM4TR)
<s> CENTRAL PROCESSING UNIT </s> (12DM4TR)

Figure 4.2: Example of naming file

There are 4 transcript files with different name files. 12AM4TR can be divided

into 5 integrated sub-groups. 12 represent a number of technical terms that want to

recognize. There are 15 words will be covered in this prototype. A, B, C, D is the letters

that represent a number of repeated voices. Each speaker will say 10 times of technical

terms. So, ‘A’ will represent number 1, ‘B’ will represent number 2, and so on until letter

‘J’. A letter ‘M’ represent a speaker gender. ‘M’ is for Male, while ‘F’ is for Female.

Number 4 represent a number of speakers that recorded their voice. There were 50

speakers collected for this speech database. Both letter ‘TR’ represented the word

TRAINING. So that, this wav file is for data training. There are two types of data that

were collected, data for training and data for testing.

 59

4.4 Discussion

This sub-topic will discuss achievement of designing process, implementation

process, testing process and the result. General outcome from this sub-topic will be a

guide for this prototype to be improved.

4.4.1 Design Process

This prototype execute in LAN environment which it has 1 server and multiple

client working together. The design of this prototype was based on distributed

application. Some criteria must be consider in design development, such as network

traffic, agent communication, mobility of agent, separated speech recognition engine and

the way to record a voice.

Figure 4.3 : Applying Intelligent agent for Speech Recognition and Translation

Framework

 60

Based on figure 4.3, the user will speak a word in English and record the voice

into the interface layer. Interface layer is responsible to record and receive voice from

user and transmit speech data to the speech encoder after voice is recorded. Speech

encoder is responsible to extract the features of the voice at the client-side and the extract

data will be transmits to the recognizer that need the information for decoding process at

server-side. S-Agent is responsible to carry the speech information over internet and give

the information to speech decoder. Speech decoder will recognize the speech and send

back the result in English text to S-Agent. These are the general internet-based speech

recognition process. After this, the system will go on with translation process. When S-

Agent gets back the recognized speech, S-Agent will give the English in text to T-Agent,

which responsible to translate the text from English to Malay. After T-Agent finish his

job to translate the English word to Malay, T-Agent will give the result back to S-Agent

and S-Agent will transmit the result to interface layer to show to the end user.

Figure 4.4 : Block diagram of the client-side for speech recognition system.

Figure 4.4 show block diagram of the client-side for speech recognition system. In

the client-side, a microphone is needed to record speech. The speech recognition program

is develop using Java language and will be embedded in browser. A local process is

responsible for recording the speech voice using and transmitting the speech data to the

sphinx program. Sphinx will process the wav file to feature extraction file, this feature

file will be using for recognition process at server side and will be carried by S-Agent via

network or internet.

 61

Figure 4.5: The architecture of an intelligent agent for speech recognition and translation

prototype

The figure 4.5 shows the high - level of the Speech Recognition and Translation

Agent Architecture Design prototype. The users will record theirs voice using the

interface layer. The basic task for the interface layer is record user voice and sends to the

speech decoder. After the users recorded theirs voice, they can submit their voice from

the interface layer. The speech recognition will be separated into three parts, the speech

encoder, speech decoder and the S – Agent. The responsibility of speech encoder is to

extract data from voice recorded. The speech encoder contains feature extractions, and

acoustic processing. The S – Agent is a agent that facilitate for transmitting the speech

data via internet or network. The S – AGENT is acting as a data transmit control to

ensure the transmitted speech data will secure delivered. The speech decoder contains a

speech recognizer. The output from the speech decoder is a text in English word and will

send to the T – Agent. The Translation has the T – Agent. The T – Agent will translate the

word from English to Malay and save all the word on its memory for future purpose. The

 62

dictionary database is a dictionary that contains all word in English and Malay for

translating purpose.

Figure 4.6 show the Master-Slave Agent Architecture for Speech Recognition &

Translation in Network. It describes the communication, action and responsibility for

each components to perform the given tasks. Below are the descriptions of the

components based on figure 4.6.

i. MasterAgent (Application)
- Manage application request (Recognition, Training @ Translation).
- Make a conversation with correspondent agents based on application

requirement.
- Controlling SlaveAgent (Application) life-cycle

ii. SlaveAgent (Application)

- 3 kind of application, Speech Recognition, Speech Data Collection and
Malay-English Word Translation.

- Request service from MasterAgent (Application)

iii. MasterAgent (Recognizer)
- Create SlaveAgent (Recognizer) based on application requirement.
- Manage queuing for Recognition Service.
- Choose appropriate acoustic model and grammar model based on

application request.
- Controlling SlaveAgent (Recognition) life-cycle

iv. SlaveAgent (Recognizer)
- Perform recognition to a given feature file and reply a result as a recognize

string.

v. MasterAgent (Translator)
- Create SlaveAgent (Translator) based on application requirement.
- Make a conversation with correspondent agents based on application

requirement.
- Controlling SlaveAgent (Translator) life-cycle

vi. SlaveAgent (Translator)

- Searching for the recognized word in database.
- Create MobileAgent if no translated word available

 63

MasterAgent
(Grammar)

MasterAgent
(Trainer)

MasterAgent
(Application)

MasterAgent
(Recognizer)

Database

MasterAgent
(Translation) n

 1
 SlaveAgent 0

(Translation)

Database
Database

Database

MobileAgent
(Translation)

 n
 1

 SlaveAgent 0
(Grammar)

 n
 1

 SlaveAgent 0
(Recognizer)

 n
 1

 SlaveAgent 0
(Trainer)

 n
 1

 SlaveAgent 0
(Application)

Figure 4.6: Master-Slave Agent Architecture for Speech Recognition & Translation in
Network

 64

vii. MobileAgent (Translator)
- Moving from one container to another and carry out the searching process.
- Use DataStore to storing temporary data for reference.

viii. MasterAgent (Trainer)
- Create SlaveAgent (Trainer) based on application requirement.
- Gather all the speech training data and the transcription
- Generate Transcript file, control file, dictionary and phonelist for training

process.

ix. SlaveAgent (Trainer)
- Set configuration parameter for SphinxTrain based on model requirement.
- Produce continues acoustic model for recognition process.

x. MasterAgent (Grammar)
- Create SlaveAgent (Grammar) based on application requirement.
- Controlling SlaveAgent (Grammar) life-cycle
- Preparing transcription for N-gram language modeling.

xi. SlaveAgent (Grammar)
- produce language model in ARPA @ binary format.

Distributed Speech recognition processing will be divided into two parts, front-

end (speech encoder) and Recognizer (Speech Decoder).

i. Decoder

Each time the search arrives at the next state in the graph, a token is

created. A token points to the previous token, as well as the next state. The active

list keeps track of all the current active paths through the search graph by storing

the last token of each path. A token has the score of the path at that particular

point in the search. To perform pruning, we simply prune the tokens in the active

list.

When the application asks the recognizer to perform recognition, the

search manager will ask the scorer to score each token in the active list against the

 65

next feature vector obtained from the front end. This gives a new score for each of

the active paths. The pruner will then prune the tokens (i.e., active paths) using

RECOGNIZER (SPEECH DECODER)FRONT-END (SPEECH
ENCODER)

AudioSource

Premphasizer

Windower

Spectrum Analyzer

Mel Filter Bank

Mel Cepstrum Filter

Cepstral Mean Normalizer

Feature Extractor

AudioSource

Audio files
Audio files

Audio files

Feature files
Feature files

Feature files

KNOWLEDGE
BASE

Lexicon

Language Model

Acoustic Model

DECODER

 Search Manager

Linguist

Acoustic Scorer

Pronunciation

Probabilities

Transition State
Info

Unit Info

Scores States

Nodes

RESULT
In text format

S-Agent

Figure 4.7 : Detailed architecture of distributed speech recognition system

certain heuristics. Each surviving paths will then be expanded to the next states,

where a new token will be created for each next state. The process repeats itself

until no more feature vectors can be obtained from the front end for scoring. This

usually means that there is no more input speech data. At that point, we look at all

 66

paths that have reached the final exit state, and return the highest scoring path as

the result.

ii. Front-end

The components of front-end are shown below. Each component has task and

responsibility that they must perform.

Preemphasizer

• Implements a high-pass filter that compensates for attenuation (a decrease in

intensity of a signal) in the audio data

Windower

• Slices up a Data object into a number of overlapping windows (usually refer to as

"frames" in the speech world).

• Minimize the signal discontinuities at the boundaries of each frame

Spectrum Analyzer

• Computes the Discrete Fourier Transform (FT) of an input sequence, using Fast

Fourier Transform (FFT).

• Fourier Transform is the process of analyzing a signal into its frequency

components

Mel Filter Bank

• Filters an input power spectrum through a bank of number of mel-filters

Mel Cepstrum Filter

• Applies a Discrete Cosine Transform (DCT) to the input data

 67

Cepstral Mean Normalizer

• Applies cepstral mean normalization (CMN), sometimes called channel mean

normalization, to incoming cepstral data

• reduce the distortion caused by the transmission channel

Feature Extractor

• Computes the delta and double delta of input cepstrum

4.4.2 Implementation Process

This prototype has been developed using several tools and platforms. For

prototype development, there are a number of tools that provide an ability to develop this

prototype, such as Net Bean 4.0 and JBuilder Enterprise. However, Net Bean 4.0 has

been used in this prototype development. Net Bean provided an easiest ways to develop a

system based on Java language programming. This tool will integrate those functions,

speech recognition engine, agent platform and word translation engine together. Net Bean

4.0 also provided graphical user interface which ease communication between user and

systems.

For agent development process, JADE framework has been used for that

purposed. JADE is the platform to develop agent functions. JADE platform has been

developed using Java language programming. It provides several types of agent abilities

that can be applied in this prototype. Agent Management Service (AMS), Directory

Facilatator (DF), agent communication, cloning, mobility, ontology and services are the

example that JADE provided to develop an agent functions. JADE platform will

integrated with Net Bean 4.0 tools to complete the prototype and those functions.

Differ from agent development process, CMU Sphinx4 Speech Recognition

Engine has been used to develop English – Malay speech recognition engine. The process

 68

of recording a speaker voice while system running also will used CMU Sphinx4

framework. Training process to develop English – Malay acoustic model also will be

covered by CMU Sphinx4. Almost parts in speech recognition engine process will be

done by CMU Sphinx4 speech recognition engine such as feature extraction part, training

part, language model and recognition part.

Prototype development based on agents and several components that been defined

at chapter 3 in research methodology. Agents like SpeechAgent, Translation Agent,

ClientAgent and components like Register Agent, Receive/Transmit Data,

Request/Response, Word Translation, Recognition, Feature Extraction have been

developed using Jade and Sphinx4 speech recognition programming. Each function has it

own responsibility and tasks.

SpeechAgent responsible to handling and performs a tasks that related with speech

function while TranslationAgent working on word translation area. Figure 4.8 and figure

4.9 show the sample code from both of the agents.

 69

Figure 4.8: Sample code for SpeechAgent

This sample code described a request from other agents that need a service from

SpeechAgent. Then SpeechAgent created new agent based on agent requested

specifications. SpeechAgent get the request from message method that provided in Jade

framework.

 70

Figure 4.9: Sample code for TranslationAgent

This is a sample code for TranslationAgent. It will received a English word from

SphinxAgentSlave (recognition agent), then send the English word to TranslationAgent

slave to perform this task. Finally, it will get the result from it agent slave and send back

the final result to the ClientAgent.

Figure 4.10 show sample code for ClientAgent. ClientAgent responsible to handle

and monitor any tasks that been assigned at the client side. It also provided GUI for user

purpose, such to record voice and view result.

 71

Figure 4.10: Sample code for ClientAgent

However, before they can perform the assigned tasks, several actions must be

done. First, agents need to register their services and existence, so other agent can use the

service that they provided and communicate with them easily. Figure 4.11 show the

sample code for register the service. By each service, it can be applied by other agents

suitable for their purposed.

 72

Figure 4.11: Sample code for register the service

To execute this system and enabled user to communicate with this system, several

Graphic User Interface (GUI) are provided. There are two main interface, user interface

and server interface. Figure 4.12 show the user interface at the client side while figure

4.13 shows the interface at the server side.

Figure 4.12: User interface at the client side

 73

Figure 4.13: Server side interface

4.4.3 Testing Process and Result

This prototype executed in LAN environment where there is one server and

multiple computer clients connected with the server. The server can be connected either

with it IP address or a special name that JADE can recognize when computer client want

to make a connection. For every computer clients that want to make a connection with the

server, they should have JDK 1.4.2 above to run Java language and JADE platform. The

prototype has been tested based on certain performances metrics, which include CPU

efficiency of engine server, number of jobs (threads), response time of each request

(user), amount of processed data, communication throughput and memory requirement.

There are two ways to execute and testing this prototype in LAN environment,

live mode and batch mode. Live mode is a way that used human voice to represent the

 74

raw data. The human voice will be collected while the system is running. While, batch

mode is a way that system accepted input from the raw data that already inside the system

at the client side. By batch mode, the human voices are collected before the system

running. The human voice data save in wav file and keep in data storage system. All

these files will be identified by using listing file and this file save as text file. Those files

that been used for this test can be view at APPENDIX A.

The server has been tested using one server and a number of computer clients. A

number of computer clients have been divided into several groups. Table 4.1 shows the

number of each group and how this testing will be done. This testing also based on batch

mode testing.

Table 4.1: Grouping of computer clients

Groups Server Number of Clients

1 1 2

2 1 4

3 1 6

The purpose of different value of computer clients of each group is to test

efficiency of this prototype for each given tasks (threads) and response time of each

request which based on agent platform. With this different number of clients, the

efficiency of the prototype will be known, decrease, increase or static. The outcome of

the testing shows that the prototype gave an interesting result. Table 4.2 shows the result

for each given task to be completed by agent. The number of clients that connected with

the server has been defined. The result will be taken in time measurement and in second

unit.

Table 4.2, 4.3 and 4.4 shows the result that been figure out from the testing

process, while table 4.4 and 4.5 shows the average time taken for each tasks to be

completed and the number of tasks will be different. Those tasks will be assigned to 5 to

 75

80 tasks for each session. Those testing have been measure in time unit (second).

Generally, those testing were based on time processing for each given task to be

performed from beginning of the process until the result send back to the clients.

Table 4.2 : Speech recognition time processing for 2 clients.

Server 1

PC 01 PC 02
Tasks

Time (second)

05 3.76 3.94

10 6.79 6.39

15 9.30 9.28

20 12.05 10.97

25 14.40 14.02

30 16.76 15.47

35 19.24 18.89

40 21.81 20.67

45 25.34 23.97

50 28.64 28.30

55 30.67 29.45

60 33.11 32.98

65 35.85 35.19

70 37.98 37.66

75 40.67 40.14

80 43.12 41.91

 76

Table 4.3 : Speech recognition time processing for 4 clients.

Server 1

PC 01 PC 02 PC 03 PC 04
Tasks

Time (second)

05 4.21 4.41 4.25 4.44

10 9.63 10.20 9.94 8.31

15 16.23 15.61 16.34 16.09

20 19.86 19.92 20.11 19.19

25 25.08 24.80 24.44 24.78

30 29.23 29.23 29.74 28.38

35 33.98 34.08 33.58 34.27

40 38.01 35.56 37.19 38.22

45 44.47 44.53 43.72 42.99

50 47.14 44.00 48.17 48.09

55 50.84 51.10 51.52 51.49

60 57.97 56.44 57.78 57.27

65 62.28 61.84 62.16 61.55

70 67.99 65.88 65.77 63.94

75 68.87 70.06 69.63 65.72

80 74.32 70.00 71.77 73.67

 77

Table 4.4 : Speech recognition time processing for 6 clients.

Server 1

PC 01 PC 02 PC 03 PC 04 PC 05 PC 06
Tasks

Time (second)

05 8.86 9.33 8.77 8.86 9.33 9.39

10 14.13 15.94 15.20 15.94 14.95 15.86

15 21.72 20.91 21.63 20.17 19.81 22.11

20 28.04 28.55 27.39 26.50 27.08 28.09

25 35.28 34.16 33.08 33.34 34.14 34.56

30 42.40 43.55 43.53 43.30 40.49 42.56

35 45.80 46.16 45.98 45.47 46.20 46.16

40 52.44 52.89 53..48 49.61 53.27 53.09

45 60.15 57.13 59.36 58.80 57.89 59.91

50 65.73 62.45 64.13 62.73 65.22 64.39

55 71.11 71.59 71.55 72.81 69.84 73.86

60 76.49 76.67 75.02 76.80 76.17 76.45

65 80.87 82.19 81.21 81.50 82.14 81.34

70 86.10 86.47 86.92 85.30 86.72 85.61

75 91.49 90.59 90.70 91.10 90.2 91.72

80 106.60 105.06 106.38 100.94 104.39 104.72

Table 4.2, 4.3 and 4.4 shows the result from Intelligent Agent for Speech

Recognition and Translation prototype executed in LAN environments. This prototype

testing has been tested in three different situations. First, the server connected with 2 PC

clients and performed the given tasks. Second, the server connected with 4 PC clients and

performed the given tasks and lastly, the server connected with 6 PC clients and

performed the given tasks. For each number of clients, they were assigned a number of

tasks (feature file) to be performed by the speech recognition server and the number of

tasks was 05, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 0, 75 and 80 tasks for each

session. Figure 4.14, 4.15, and 4.16 shows the performance of intelligent agent for speech

 78

recognition and word translation prototype. Axis-x refers to number of assigned tasks

while axis-y refers to time processing (second).

0

5

10

15

20

25

30

35

40

45

50

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80

Tasks

Ti
m

e
(S

ec
on

d)

PC 01
PC 02

Figure 4.14: Time Processing of Speech Recognition Engine Server and Word

Translation for 2 clients

This prototype, Intelligent Agent for Speech Recognition and Translation has

been tested in LAN environment where there is a server and a number of computer

clients connected to the server to request a recognition tasks. Generally, the result is

based on certain performance metrics, such as time processes. Time processes can be

grouping into several group like speech recognition server processing, client time request

processing, and also result time processing.

 79

0

10

20

30

40

50

60

80

70

Figure 4.15: Time Processing of Speech Recognition Engine Server and Word

Translation for 4 clients

Based on table 4.2, 4.3, 4.4, 4.5 and 4.6 shows the result from testing process.

From those tables, it described the performance of the prototype based on time

processing. Time processing has been measured in time unit. Each testing will performs a

number of tasks (wav file) to be recognized and the result must translate from English

word to Malay word and the full detailed of the testing process was included at

APPENDIX B and APPENDIX C.

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80

Tasks

T
im

e
(s

ec
on

d) PC 01
PC 02
PC 03
PC 04

 80

0

10

20

30

40

50

60

70

80

90

100

110

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80
Tasks

Ti
m

e
(s

ec
on

d)

PC 01
PC 02
PC 03
PC 04
PC 05
PC 06

Figure 4.16: Time Processing of Speech Recognition Engine Server and Word

Translation for 6 clients

Table 4.2 show time taken for each given task or wav file that must be recognize

and translate. There are 2 clients connected to a server and each client assigned 05 to 80

tasks (feature files) to the server to perform, while table 4.3 shows 4 clients connected

with the server and table 4.4 shows 6 clients connected with the server. The processing

has been measured in time unit. For each tasks, the time were take for whole each time

processing. Table 4.5 shows the average time processing for each number of tasks. Table

4.6 shows the average speech recognition engine and word translation time processing for

each assigned tasks per total tasks.

 81

Table 4.5 : Average speech recognition engine time processing for each tasks per total

assigned tasks.

 2 Clients 4 Clients 6 Client
Tasks Time Average (Second)

05 3.85 4.33 9.09
10 6.59 9.52 15.34
15 9.29 16.07 21.06
20 11.51 19.77 27.61
25 14.21 24.77 34.09
30 16.11 29.14 42.64
35 19.07 33.97 45.96
40 21.24 37.24 52.46
45 24.65 43.93 58.87
50 28.47 46.85 64.11
55 30.06 51.24 71.79
60 33.05 57.36 76.27
65 35.52 61.96 81.54
70 37.82 65.89 86.19
75 40.41 68.60 90.98
80 42.52 72.44 104.68

From table 4.6, it shows the performance of the intelligent agent for speech

recognition and translation in different number of clients connected with 1 server. For

group 1, a server connected with 2 clients, it shows the time processing is still static or

±0.05 sec for each number of assigned tasks. The result shows that for group 1, the

number of tasks did not effect too much to the time processing. It shows this prototype

can handle many assigned tasks but still in the same time processing.

 82

0

10

20

30

40

50

60

70

80

90

100

110

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80

Tasks

Ti
m

e
(s

ec
on

d)

2 Clients
4 Clients
6 Clients

Figure 4.17: Average Task Time Processing of Speech Recognition Engine time

performance

Figure 4.17 and 4.18 shows linear and static graphs produced from the prototype

experiments that been done in LAN environments. They are a number of task has been

assigned to the speech recognition engine server and word translation engine that

responsible to perform the assigned feature files. Those feature files were been

transmitted from the PC clients. Figure 4.17 show the average result from 3 set of

experiments, a server connected with 2, 4 and 6 computer clients in the network. Figure

4.17 show, for each experiments show a different graph but still in a linear graph. It show

that this prototype can support many computer client with many assigned tasks but

overall time processing still depend on how many tasks that computer client assigned to

the prototype server to perform.

 83

0

0.25

0.5

0.75

1

1.25

1.5

1.75

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80

Tasks

Av
er

ag
e

Ti
m

e
P

ro
ce

ss
in

g
(s

ec
on

d)

2

2 Clients
4 Clients
6 Clients

Figure 4.18: Average Speech Recognition Time Processing for every one task

From the data that been produced from the experiments, an average time

processing for each assigned task has been calculate. Table 4.6 show the average data for

prototype time processing for each assigned tasks per total tasks.

Average one task processing = Average time processing

 Total Tasks

From the data that been calculated, figure 4.18 has been produced. From that graph, it

show that for each experiments, a server connected with 2, 4 and 6 clients, the prototype

 84

time processing still in static graph with ± 0.05 second increasing and decreasing.

However, based on three types of experiments, the graph show that the number of

assigned tasks didn’t effect the prototype performance because the prototype still can

performed each tasks simultaneously and comparatively. However, in the other hand,

some situation, the prototype can performed the number of assigned tasks efficiently

from one task to another and so on. It’s learned how to perform the assigned task more

faster than before as show from the graph for experiment 3 while a server connected with

6 computer clients.

Table 4.6: Average time processing for 2, 4 and 6 clients.

 2 Clients 4 Clients 6 Client
Tasks Time Average (Second)

05 0.77 0.87 1.82
10 0.66 0.95 1.53
15 0.66 1.07 1.40
20 0.58 0.99 1.38
25 0.57 0.99 1.36
30 0.54 0.97 1.42
35 0.55 0.97 1.31
40 0.53 0.93 1.31
45 0.55 0.98 1.31
50 0.57 0.94 1.28
55 0.55 0.93 1.31
60 0.56 0.96 1.27
65 0.55 0.95 1.25
70 0.54 0.94 1.23
75 0.53 0.91 1.21
80 0.53 0.91 1.31

4.5 Summary

Generally, to develop Intelligent Agent for Speech Recognition and Translation

prototype, it needs an amount of data either for pre-development or current development.

 85

There are two types of data, data training and data testing. Data training used for

developed sample feature for speech recognition engine while data testing was used to

measure the accuracy of speech recognition engine. Both of the data were collected as the

same way and format but different speakers. Speakers for data training must be different

from speakers for data testing. Testing phase has been done to measure the prototype

efficiency based on several type of measurement such as time processes. Testing process

will defined time processing in speech recognition server processing, client time request

processing and result time processing. From the experiments that been done and graph

that been produced, those experiments and graph shows that the speech recognition and

word translation prototype can perform the assigned task simultaneously. This prototype

performed parallel processing to support speech recognition engine server. So, this server

can served and performed the assigned tasks precisely.

CHAPTER V

CONCLUSION AND SUGGESTION

5.1 Introduction

Agent-based speech recognition and translation is a prototype that integrated

speech process and translation process in one system. This prototype is able to get an

input from user’s voice in English and send back the result in Malay word in text. In

other word it is a word translation application. However, this prototype differs from other

word translation application because the input is a voice not a text like other translation

application. This prototype also involved mobile agent technology in prototype

development. Agent is responsible to control and manage the process between speech

function and word translation function.

Therefore, to ensure this prototype can give an excellent result to the user, several

testing has been made. The purpose is to get system performance based on it accuracy on

both speech recognition rate and translation rate. This is important to ensure the system

can complete the user requirement and to make sure the system is comfortable and

robust.

 87

5.2 Advantages

This agent-based speech recognition and translation is a system that recognized a

human voice and then translates the recognized text from English to Malay word but it’s

more than recognition and translation system. This system prototype has several

advantages either in system performance or education values.

This prototype describes several advantages using this agent-based speech

recognition and translation application. The advantages are lists below:

i. With this prototype of an intelligent agent for speech recognition and

translation, a user has an opportunity to translate a language from English

to Malay. The input is in spoken English and the result is in Malay word in

text.

ii. This prototype is able to support multiple users at the same time. Using

mobile agent paradigm, the host architecture exactly had been design to

achieve that purpose.

iii. There is an interesting part where the input for this prototype is a voice not

an input from a keyboard as usual. User just record their voice through an

application (interface) that been developed for that purposed.

iv. In translation part, this prototype used an intelligent agent to translate a

source word to a target word. We have applied an intelligent agent method

to achieve that purpose not just a matching technique.

5.3 Contribution

Development of an intelligent agent for speech recognition and translation, it

involved three types of area, mobile agent paradigm, speech recognition and word

translation. Each area has it own way to produce a result. The architecture design that

 88

been used in this prototype development is a new approach to integrating intelligent agent

with both speech engine and word translation area. The prototype executed in LAN

environment so that the speech functions will be separated into two parts, front-end

processing and back-end processing. This prototype comes out with several contributions

in speech and intelligent agent area.

i. This prototype involved intelligent agent technology in prototype

development. The used of this technology is useful in managing and

controlling processes in both speech functions and word translation functions.

This technology processed the tasks in parallel and executed in real-time. So

many requests from the clients can be handled by server which support by

agent.

ii. This prototype proposed the new architecture and framework for speech

recognition engine and word translation with mobile agent technology.

iii. This is a distributed application and executed in LAN environment which

many users can use this applications since their computer connected with the

server.

iv. This prototype also produced a language model for English – Malay

vocabulary. This vocabulary suitable for Sphinx4 speech recognition engine

and another developer who wants to develop a system that involve English –

Malay vocabulary can used the vocabulary that been produced in this

 However, in this research project focus on mobile agent paradigm to develop a

system prototype. On the other hand, both accuracy for speech engine and word

translation engine has been improved. Agent-based methodology has been applied in

system prototype development. However, for speech recognition engine development,

CMU Sphinx4 methodology has been chosen because it is the most suitable to achieve

the best recognition result. Even though in speech recognition engine development,

different methodologies are selected, but to integrate all of the subsystem, agent-based

methodology is the best.

 89

5.4 Suggestion & Future Work

After system development process has been completed, the prototype still can be

improved. This prototype covered several processes between agent, speech recognition

function and word translation function. Here are several suggestions or ideas to make the

system prototype more flexible, useful, robust and more commercialize. These

suggestions can be divided into two groups of suggestions: academic values and

commercial values.

5.4.1 Academic Values

Intelligent agent for speech recognition and word translation prototype has been

developed to integrate both functions speech and word translation with mobile agent

technology. The method used in this prototype focus on communication between agent

and speech functions. Beside that, this prototype also focus on perform the processing

tasks as parallel, especially for speech recognition server at the server side. This

prototype also just provided English – Malay word translation. Acoustic and language

model are based on English word for recognition.

Therefore, there is still some spaces this prototype can be improve. So, for this

prototype future works, there are some improvement can be done. The lists of future

works are shown below:

i. This prototype should provide more than two languages (English and Malay).

Language like Chinese, Japanese, Philippines, Thai’s should be included in

this prototype. Therefore, the contribution of this prototype can be wider and

more useful. However, that needed more works and efforts to build language

and acoustic model for those languages. Data must be collected again and use

local speakers for each language. Speech data should be train again to

 90

produce language model. Finally, this prototype will have their own language

model that consists of several languages.

ii. Intelligent agent for speech recognition and word translation developed to

execute well in LAN environment but not in internet environment. Even this

prototype also can be executed in internet environment but this platform of

agent not integrated with web pages yet. Therefore, this system can be

improved to execute the system in internet environment. First, mobile agent

platform should be communicate well with the web server. Then, the agent

must integrate well with web pages.

5.4.2 Commercial Values

Intelligent Agent for Speech Recognition and Translation prototype can give a

number of contributions on several areas, such as education and tourism. For education

contribution, this prototype can be applied for primary school students especially for

those students who want to learn quickly and fast. For example, by using this prototype,

they can speak a word such as ‘duck’, then the picture of duck will appear at the screen.

So, this is the way they learn. Beside that, they also can speak a word or letter, so this

prototype will process and send the result to the screen.

5.5 Summary

Intelligent Agent for Speech Recognition and Translation prototype has been

developed where, human voice was an input and the final result is Malay word in text

format. Two main area integrated in this prototype, speech recognition area and word

translation area. Both areas were integrated using mobile agent technology as an

approach. For agent development, Java Agent Development (Jade) framework was used

 91

to ease the process, while CMU Sphinx4 speech recognition engine was a framework for

speech recognition process. Beside that, by using mobile agent technology, this prototype

was applied master/slave agent technique to support parallel processing for both side

client side and server side (speech recognition engine server and translation server).

Finally, this prototype executed in LAN environment which one server connected with a

number of clients through network where many users can use this prototype to achieve on

what kind their purposed.

REFERENCES

Abd. Manan Bin Ahmad, Mohamad Ashari Alias, Ag.Noorajis bin Ag.Nordin, Emrul

Hamide Md. Saaim, Den Fairol bin Samaon, Mohd Danial Bin Ibrahim, (2005), “ An

Architecture Design of the Intelligent Agent for Speech Recognition and

Translation”. IEEE Region 10 Technical Conference (TENCON), 21-24 Nov 2004.

Aldebaro Klautau, (2000). Server-assisted speech recognition over the internet. The 2000

IEEE International Conference on Acoustics, Speech and Signal Processing.

A. Fuggeta, G.P. Picco, and G. Vigna. “Understanding code mobility”. In IEEE

Transactions on Software Engineering, Volume 24, May 1998.

Antonio Cardenal-Lopez, Laura Docia-Fernandez and Carmen Garcia-Mateo. (2004).

Soft decoding strategies for distributed speech recognition over IP networks.

(IEEE).

Brian Brewington and Robert Gray and Katsuhiro Moizumi and David Kotz and George

Cybenko and Daniela Rus, “Mobile Agents for Distributed Information

Retrieval,” In Matthias Klusch, editor, Intelligent Information Agents, chapter 15,

Springer-Verlag, 1999.

 93

Claudio Becchetti and Lucio Prina Ricottu. (1999). Speech Recognition: Theory and C++

Implementation. John Wiley and Sons Ltd, Baffins Lane, Chichester, West Sussex

PO19 1UD, England.

Danny B. Lange and Mitsuru Oshima. (1998). Programming and Deploying JavaTM

Mobile Agent with Aglets. Corporate, Government and Special Sales Group,

Addison Wesley Longman, Inc.

Danny B. Lange and Mitsuru Oshima. (1999). Seven Good Reason using Mobile Agent.

Communication of the ACM, Vol. 42, No. 3.

Danny B. Lange and Mitsuru Oshima, “Mobile Agent with Java: The Aglet API,” World

Wide Web Journal, 1998.

David Kotz and Robert S. Gray. “Mobile Code: The Future of the Internet.” In

Proceedings of the Workshop ``Mobile Agents in the Context of Competition and

Cooperation (MAC3)'' at Autonomous Agents '99, pages 6-12, May, 1999.

David Pearce. (2000). Enabling New Speech Driven Services for Mobile Devices: An

overview of the ETSI standards activities for Distributed Speech Recognition

Front-ends. AVIOS 2000: The Speech Applications Conference, San Jose, CA,

USA

David Reilly and Michael Reilly, (2002). Java Network Programming and Distributed

Computing. Pearson Education Corporate Sales Division, 201 W. 103rd Street,

Indianapolis, IN 46290: Addison-Wesley. 2002.

D.B Lange and M. Oshima. “Programming and Deploying Java Mobile Agents”.

Communications of the ACM, March 1999.

 94

Delbert Hart, Mihail Tudoreanu, and Eileen Kraemer. “Mobile agent fo monitoring

distributed systems”. Proceeding on AGENTS’01, May 28 – June 1, 2001

Domonic Vaufreydaz et. al. (1999). A network architecture for building applications that

use speech recognition and/or synthesis. European Conference an speech

Communication and Technology, pages 2159-62.

Emerson Ferreira de Araújo Lima, Patrícia Duarte de Lima Machado, Jorge César

Abrantes de Figueiredo, Flávio Ronison Sampaio. (2003). Implementing Mobile

Agent Design Pattern in the Jade Framework. TILAB "EXP in search of

innovation" Journal.

Emerson F. A. Lima, Patrica D. L. Machado, Flavio R. Sampaio and Jorge C. A.

Figueiredo, “An Approach to Modelling and Applying Mobile Agent Design

Patterns”, ACM SIGSOFT Software Engineering Notes, Volume 29 , Issue 3,

Pages: 1 - 8, (May 2004).

Emrul Hamide Md Saaim, Abdul Manan Ahmad, Mohamad Ashari Alias, Jamal Nasir

Ahmad. (2005), “Applying mobile agent technology in distributed speech

Recognition”. Postgraduate Annual Research Seminar PARS'05, 17-18 Mei 2005.

Emrul Hamide Md Saaim, Mohamad Ashari Alias, Abdul Manan Ahmad, Jamal Nasir

Ahmad. (2005) “Applying Mobile Agent for Internet-based Distributed Speech

Recognition”. ICCAS 2005. International Conference on Control, Automation and

System, June 2-5 in Kintex, Gyeong Gi, Korea.

Herve Paulino. (2002). A Mobile Agent System Overview. Departamento de

Informatica, Faculdade de Ciencios e Tecnologia, Universidade Nova de Lisboa.

Imre Kiss, Ari Lakaniemi, Cao Yang and Olli Viikki. (2003). Review of AMR Speech

Codec and Distributed Speech Recognition Based Speech Enabled Services.

 95

Automatic Speech Recognition and Understanding, 2003. ASRU '03. 2003 IEEE

Workshop.30 Nov.-3 Dec. 2003 Page(s):613 – 618

John Kirriemuir. (2003). Speech Recognition Technologies.

L. Ismail and D. Hagimont. “A performance evaluation of the mobile agent paradigm”.

Michael D. Coen. “SodaBot: A software agent environment and construction system”. In

Yannis Labrou and Tim Finin, editors, Proceeding of the CIKM Workshop on

intelligent Information Agents, Third International Conference in Information and

Knowledge Management, Gaitherburg, Maryland, December 1994.

Michael Wooldridge. “An Introduction to MultiAgent Systems”. John Wiley & Sons,

LTD, 2001

Sonera Plaza Ltd MediaLab. (2001). Voice Portals White Paper.

Ravi Jain, Farooq Anjum and Amjad Umar, (2000), “A comparison of mobile agent and

client-server paradigms for information retrieval tasks in virtual enterprises”.

Applied Research, Telcordia Technologies, Inc.

Robert S. Gray, David Kotz, Ronald A. Peterson, Joyce Barton, Daria Chacon, Peter

Gerken, Martin Hofmann, Jeffrey Bradshaw, Maggie Breedy, Renia Jeffers and

Niranjan Suri. (2001). Mobile-Agent versus client/server performance: Scalability

in an information-retrieval task. In proceeding of Mobile Agent 2001. Copyright

Springer-Verlag.

Stefan Fünfrocken and Friedemann Mattern. (1999). “Mobile Agents as an Architectural

Concept for Internet-based Distributed Applications - The WASP Project

Approach,” In: Steinmetz (Ed.): Proc. KiVS'99, pp. 32-43, Springer-Verlag.

http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=9212
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=9212

 96

V.Gyurjyan, D. Abbott, G. Heyes, E. Jastrzembski, C. Timmer, and E. Wolin. (2003).

“FIFA agent based network distributed control system”. Computing in High

Energy and Nuclear Physics, 24 – 28 March 2003.

Wei Qi Zhang, Liang He, Yen-Lu Chow, Rong Zhen Yang and Ye Ping Su. (2000). The

Study on Distributed Speech Recognition Systems. Acoustic, Speech, and Signal

Processing. ICASSP’00. Proceedings. 2000 IEEE International Conference,

Volume 3, Page: 1431 – 1434 vol.3

Willie Walker et al, (2004). Sphinx-4: A Flexible Open Source Framework for

Speech Recognition. Sun Microsystem Inc.

Yariv Aridor and Danny B. Lange. (1998). Agent Design Patterns: Elements of Agent

Application Design. In Proceedings of Autonomous Agents '98, ACM Press, USA.

Zhemin Tu, and Philipos C. Loizou. (1999). Speech Recognition over the internet using

JAVA. Acoustic, Speech and Signal Processing, 1999. ICASSP’99. Proceedings,

1999 IEEE International Conference. Volume 4, Pages: 2367 – 2370 vol.4.

 97

APPENDIX A: List of feature files transmit to speech recognition server.

