
VOT 71903

Moment-based Extraction on Handwritten Digits

Project Leader
Jumail Taliba

Researcher

Assoc. Prof. Dr Siti Mariyam Hj. Shamsuddin

Research Assistant
Tan Shuen Chuan

RESEARCH MANAGEMENT CENTER
UNIVERSITI TEKNOLOGI MALAYSIA

2005

 2

Moment-based Extraction on Handwritten Digits

PROJECT REPORT

Authors
Jumail Taliba

RESEARCH MANAGEMENT CENTER
UNIVERSITI TEKNOLOGI MALAYSIA

2005

 i

Acknowledgement

We would like to express our sincere gratitude to Research Management Center (RMC),

Universiti Teknologi Malaysia for their approval on our project the Moment-based

Extraction on Handwritten Digits under the Short-term Research program. Also, we

would like to thank the management and staff of RMC who contribute directly and

indirectly to the success of this project.

 ii

Abstract

 Handwritten digits recognition software have become a highly demand applications to the

market. Manufacturing industries as well as post offices are among the users of these

applications. In the past few years, several approaches have been used in development of

handwritten recognition applications. However, the accuracy of recognition varies between one

and another. In this study, the approach of moment-based techniques are employed on

handwritten characters.. These include geometric moments, Zernike moments and contour

sequence moments. Classification and recognition results are analyzed to determine the necessity

of operation thinning when dealing with the moment functions. A Simple Block Segmentation

with Moore Tracing Algorithm (SBS & MNTA) is used in image segmentation while Safe-point

Thinning Algorithm (SPTA) is applied in image thinning process. Results obtained have shown

that operation thinning should be excluded as its deteriorates the recognition accuracy. Contour

sequence moments exhibited the highest recognition rate compared to Geometric moments and

Zernike moments.

 iii

Abstrak

Perisian pengecaman nombor tulisan tangan telah menjadi aplikasi yang mempunyai

permintaan yang tinggi di pasaran. Industri pemprosesan dan pejabat pos adalah antara

golongan pengguna bagi aplikasi ini. Bebebrapa tahun kebelakangan ini, beberapa

pendekatan telah digunakan dalam pembangunan aplikasi pengecaman nombor tulisan tangan.

Walau bagaimanapun, ketepatan pengecaman adalah berbeza diantara satu dengan yang lain.

Dalam kajian ini teknik berasaskan momen telah digunakan dalam proses pengecaman tulisan

tangan. Ini termasuklah momen geometri, momen Zernike dan momen kontur berjujukan.

Keputusan pengecaman dianalisa untuk menentukan keperluan perlaksanaan operasi

penipisan apabila fungsi momen yang berlainan digunakan. Simple Block Segmentation with

Moore Tracing Algorithm (SBS & MNTA) digunakan dalam operasi segmentasi imej, proses

penipisan imej. Keputusan yang diperolehi menunjukkan bahawa operasi penipisan tidak

perlu digunakan kerana ia mengurangkan ketepatan pengecaman. Momen kontor berjujukan

menghasilkan keputusan pengecaman yang terbaik berbanding momen geometri dan momen

Zernike.

 iv

Table of Content

Acknoledgement ……………………………………………………………...…
Abstract ………………………………………………………………………….
Abstrak …………………………………………………………………………..
Table of Content …..……………………………………………………………..

i
ii

iii
iv

Chapter 1: Introduction …..……………………………………………………
1.1 Research Objectives ..…………………………………………………….
1.2 Research Scope ..………………………………………………………….
1.3 Report Organization ..…………………………………………………….

1
1
1
1

Chapter 2: Research Methodology ..………………………………………….
2.1 Introduction ..……………………………………………………………...
2.2 Image Pre-processing ..……………………………………………………

2.2.1 Simple Block Segmentation with Moore Neighbor Tracing
Algorithm (SBS & MNTA) ..……………………………………

2.2.2 Safe-point Thinning Algorithm (SPTA) ………………………….
2.3 Feature Extraction ..……………………………………………………….

2.4.1 Geometric Moments Computation ………………………………..
2.4.2 Zernike Moments Computation …………………………………..
2.4.3 Contour Sequence Moments Computation …………………….…

2.4 Neuro-fuzzy Classification ……………………………………………….
2.4.1 Framework of Neuro-fuzzy Classification ……………………..…

2
2
2

3
7
8
8

11
13
15
18

Chapter 3: Algorithm & Implementation ……………………………………..
3.1 Image Pre-processing ……………………………….………………….....

3.2.1 Algorithm image thresholding ………………………………...….
3.2.2 Simple Block Segmentation with Moore Neighbor Tracing

Algorithm (SBS & MNTA) ……………………………………....
3.2.3 Safe-point Thinning Algorithm (SPTA) ………………………….

3.2 Feature Extraction with Moment Functions ………………………………
3.2.1 Computation of Geometry Moment Invariants …………………
3.2.2 Computation of Zernike Moment Invariants ……………………
3.2.3 Computation of Contour Sequence Moments ……………………

19
19
19

19
22
24
24
26
28

 v

Chapter 4: Experiment & Results ……………………………………………
4.1 Neuro-fuzzy Classification ……………………………….………………

4.1.1 Feature Extraction of Digit Images ……………………………….
4.1.2 Intraclass Invariants ……………………………….…………..….
4.1.3 Interclass Invariants ………………………………………………

4.2 Classification and Experimental Results ………………………………….
4.2.1 Network Training ……………………………….……………...…
4.2.2 Weight Initialization with Triangular Membership Function …….
4.2.3 Normalization of Input Features …………………….……………
4.2.4 Recognition Results between Moment Functions ……………...…
4.2.5 Recognition Results between Thinned and Unthinned Images …..

30
30
30
33
35
37
37
38
39
39
41

Chapter 5: Discussion & Conclusion …………………………………………
5.1 Introduction ……………………………….………………………….…...
5.2 Discussion of Results ……………………………………………….…….
5.3 Recommendation of Future Works ……………………………………….
5.4 Conclusion ………………………………………………………….…….

43
43
43
44
45

Appendices ……………………………….…………………………………….
A. Sample of Isolated Thinned and Unthinned Handwritten Digits

(Classification) ………………………………………………………………
B. Features Extracted using Moment Functions ……………………………….
C. Intraclass and Interclass Invariants between Moment Functions ………...…
D. Interface of Prototype System …………………………………………..….

46

46
48
52
58

1

Chapter 1
Introduction

1.1 Research Objectives

i. Develop and apply image segmentation (SBS & MNTA algorithm) and thinning

(SPTA algorithm) in evaluation of handwritten digits recognition.

ii. Study the feasibility of operation thinning for different moment functions used.

iii. Evaluate the use of Geometric Moments, Zernike Moments and Contour Sequence

Moments in feature extractions of handwritten digits.

iv. Present the result of handwritten digits classification using feature extracted from

moment functions afore mentioned with neuro-fuzzy classifier.

v. Generalize an evaluation of moment invariant functions used and present a reference

for future research when cope with image moment computation.

vi. Develop a tentative application showing the result (table, graph, chart, etc) of moment

feature extraction using Borland Delphi 7.0.

1.2 Research Scope

i. Techniques pre-processing (thinning and segmentation) is implemented and is applied

if necessary using Safe-point Thinning Algorithm (SPTA) and Simple Block

Segmentation with Moore Neighbor Tracing Algorithm (SBS & MNTA).

ii. Digit images used in evaluations and experiments are 28x28 pixel in *.raw format.

iii. Digit images used are disconnected and unbroken, range between 0 and 9.

iv. Moment functions utilized include Geometric Moments, Zernike Moments and

Contour Sequence Moments.

1.3 Report Organization

Chapter 1: Introduction to the project Moment.

Chapter 2: Methodologies used in computation of Geometric Moments, Zernike

Moments and Contour Sequence Moments.

Chapter 3: Algorithms and implementation for image pre-processing, feature extraction

using moment functions and neuro-fuzzy classification.

Chapter 4: Experiments and result of feature extraction and neuro-fuzzy classification.

Chapter 5: Discussion and Conclusion.

2

Chapter 2
Research Methodology

2.1 Introduction

 The framework of our neuro-fuzzy classification using isolated handwritten digits

is presented in Figure 2.1. The intermediate operations involved are summarized as below:

image pre-processing, feature extraction using moment functions and neuro-fuzzy training

and also classification (recognition).

Figure 2.1: A framework of Neuro-fuzzy Classification System.

2.2 Image Pre-processing

 In this stage, noise removal, segmentation and thinning are carried out in order to

supply a noiseless data for subsequent stage. Median filter is used to smooth the data while

keeping the small and sharp details. In this stage, a median value of a set of pixels with

N N× dimension is used to substitute the target processed pixel. Meanwhile, image

thresholding is also applied to convert the gray level image into bi-level (black & white)

image using threshold value, θ = 128. Safe-point Thinning Algorithm (SPTA) is used in

Handwritten Digits

Image preprocessing

Geometric Moments

Zernike Moments

Contour Sequence
Moments

Feature Extraction

Training

Testing

Neuro-fuzzy
Classifier

Classification

Recognition
Results

3

image thinning while new character segmentation is proposed here called Simple Block

Segmentation with Moore Neighbor Tracing Algorithm (SBS & MNTA).

2.2.1 Simple Block Segmentation with Moore Neighbor Tracing Algorithm (SBS &

MNTA)

SBS & MNTA is utilized in extracting each single character image from a block of

image that contains multiple images. The input images is digitized and stored in a matrix

denominated original-pixel. Segmentation process of a gray level image that constitutes of

5 steps is described as follows (Gray boundary lines in Figure 2.2.1.1-2.2.1.5 are

intentionally added by author to give a better understanding):

Step 1: Block Image Segmentation

This step aims to determine the minimum image area that contain of black pixel for

the sake of minimizing the target process boundary. Firstly, scan the input gray level

image original-pixels from left to right and from top to bottom, search for the left most

coordinate-x, right most coordinates-x, upper most coordinate-y and lower most

coordinate-y value of the image that contained black pixel. These 4 values denominate as

minX, maxX, minY and maxY. Figure 2.2.1.1 illustrates the result of a sample image after

go through Step 1.

Figure 2.2.1.1: Image produced after Block Image Segmentation.

Step 2: Row Image Segmentation

At this stage, the image boundary that delimited in Step 1 is analyzed again to

separate the block image that possible of containing multiple row of digit image. Scan the

image original-pixels from left to right and from top to bottom within the range of minX,

maxX and minY, maxY, search for the first horizontal line with black pixel (which is the

upper most coordinate-y) and also last horizontal line with black pixel (which is the lower

4

most coordinate-y) for each row of character image. Figure 2.2.1.2 illustrates the result of

a sample image after go through Step 2.

Figure 2.2.1.2: Image produced after Row Image Segmentation.

Step 3 & 4: Single Character Image Segmentation

In Step 3, the width for each digit image is determined by testing and verifying

area minimum that contained of black pixels. For each row of character image and within

the upper most coordinate-y and lower most coordinate-y, scan the image original-pixels

from top to bottom and from left to right, search for the first vertical line with black pixel

(denominates as character_minX) and also last vertical line with black pixel (denominates

as character_maxX) for each single character image. Figure 2.2.1.3 illustrates the result of

a sample image after go through first stage in Single Character Image Segmentation.

Figure 2.2.1.3: Image produced after first stage in Single Character Image Segmentation.

After the width for each digit image is obtained, Step 4 is carried out with the

objective to find out the height for each digit image. For each single character image and

within the range of character_minX, character_maxX and upper most coordinate-y, lower

most coordinate-y, scan the image original-pixels from left to right and from top to

bottom, look for the first upper most coordinate-y that contain black pixel (denominates as

characater_minY) and lower most coordinate-y that contain black pixel (denominates as

character_maxY). This step is repeated until the entire character row is processed. Figure

2.2.1.4 illustrates the result of a sample image after go through Step 4.

5

Figure 2.2.1.4: Image produced after second stage in Character Image Segmentation.

Step 5: Image Comparison using Moore Neighbor Tracing Algorithm

Subsequently, Step 5 is conducted in order to separate the image that possible of

still containing more than 1 digit. Each character image extracted is contour traced using

Moore Neighbor Tracing Algorithm. The image produced is compared with the width and

height of the extracted image. If the image produced after operation of contour tracing is

same with the extracted image, this mean that the extracted image only contain single

character image. Otherwise, the extracted image contains more than one character image

and need to be extracted again using Moore Neighbor Tracing Algorithm. Generally,

images that are boundary-overlapped need to go through Step 5 as they most probably

contain more than one character image. Figure 2.2.1.5 illustrates a sample of boundary-

overlapped character image.

Figure 2.2.1.5: Sample of boundary-overlapped numerical characters image.

 Simple Block Segmentation that combines with Moore Neighbor Tracing

Algorithm terminates after completely processing and verifying the entire character

images contain only single digit image. Figure 2.2.1.6 illustrates the operation involve in

each step.

6

Yes

Yes No

Yes

Start

Scan an input gray level image and
store the pixels’ value into an array
of matrixes, denominates as
original-matrix.

Block Image Segmentation

Every row image has
been segmented?

No

Row Image Segmentation

Every character
image has been

segmented?

No

Character Image Segmentation

a) Character Minimum Width Segmentation
b) Character Minimum Height Segmentation

Moore Neighbor Tracing Operation

Every character
image contains

single digit image?

Filtering
Remove noise from the image
using Median Filter technique.

Thresholding
Threshold the image into black and
white (bi-level) image using
Threshold Value (T = 128).

Print the image into
output file (format
*.raw).

End

Figure 2.2.1.6: Segmentation operation using Simple Block Segmentation combines with

Moore Neighbor Tracing Algorithm (SBS & MNTA).

7

2.2.2 Safe-point Thinning Algorithm (SPTA)

Safe-point Thinning Algorithm (SPTA) is used in image thinning process.

Algorithm SPTA involved two scanning in each execution for each pixel. In first scanning,

the entire right edge-point and left edge-point that are not safe-point is marked for later

deletion. The same process is repeated for each top edge-point and bottom edge-point in

the second scanning. Operation deletion is carried out until there isn’t marking point.

The steps involved in Safe Point Thinning Algorithm (SPTA) are described as below:

1) Read the image from left to right and from top to bottom.

2) Store the pixel value into a variable, P.

3) Execute the following steps for all pixels in row and column.

4) Verify whether point P is black dot and is not marked. If point P is black dots and is

not marked, the following steps wouldn’t be continued.

5) Check whether p is edge-point. SPTA verify edge-point according to 4 types stated as

below:

P is left edge point, if the neighbour of x4 is white dot.

P is right edge point, if the neighbour of x0 is white dot.

P is top edge point, if the neighbour of x2 is white dot.

P is bottom edge point, if the neighbour of x6 is white dot.

6) Verify whether point P is safe-point. Boolean operation to determine the safe-point are

listed as below:

Left safe-point, S4 = x1 * (x2+x3+x7+x8) * (x3+!x4) * (x7+!x6) == 0,

Right safe-point, S0 = x5 * (x6+x7+x3+x4) * (x7+!x8) * (x3+!x2) == 0,

Top safe-point, S2 = x7 * (x8+x1+x5+x6) * (x1+!x2) * (x5+!x4) == 0,

Bottom safe-point, S6 = x3 * (x4+x5+x1+x2) * (x5+!x6) * (x1+!x8) == 0.

8

7) Each edge-point that is not safe-point (point that failed to meet the rule of Boolean

operation) will be marked and deleted. Else, point P is labeled as one (1).

8) Step 2) to Step 3) is repeated for the entire image pixel.

2.3 Feature Extraction

Three type of afore mentioned moment functions are described in this research;

they are geometric moments, Zernike moments and contour sequence moments.

Geometric moments are computed using conventional method and this involved

translation, scale and rotation invariants. Meanwhile, Zernike moments are computed in

corresponding with geometric moments’ expression to achieve translation and scale

invariants. Besides, contour sequence moments is also applied in this project in image

moments calculation. The computation of these moment functions are detailed here.

2.3.1 Geometric Moments Computation

The computation steps of geometric moments are described as below:

1) Read an input image data from left to right and from top to bottom.

2) Threshold the image data to extract the target process area.

3) Compute the image moment value, pqm until third order with formula:

' (') (') '(', ') ' ' ; , 0,1, 2,...p q
pqm x y f x y dx dy p q

δ

θ θ= =∫∫

4) Compute the intensity moment, 0 0(,)x y of image with formula:

0 10 00/x m m= ; 0 01 00/ .y m m=

5) Compute the central moments, pqµ with formula :

0 0() () (,) ; , 0,1, 2,...p q
pq x x y y f x y dxdy p q

δ

µ θ θ= − − =∫∫

6) Compute normalized central moment, pqη to be used in image scaling until third order

with formula:

9

() / 2
00

2 / 2, ,00 00 3.
()

pq
pqp q p qγ

µ
γ η

µ
= + + = + ≤

7) Compute geometric moments, 1 40to0ϕ ϕ with respect to translation, scale and rotation

(geometric moment invariants) invariants with formula below:

1 20 02ϕ η η= +

()2 2
2 20 02 114ϕ η η η= − +

() ()2 2
3 30 12 21 033 3ϕ η η η η= − + −

() ()2 2
4 30 12 21 03ϕ η η η η= + + + (2.3.1.1)

The computed numerical values of 1 70to0ϕ ϕ are very small, thus the logarithms of

the absolute values of the functions are used as features representing the image. The

computation steps of geometric moments are summarized in Figure 2.3.1.2.

10

2.3.1.1 Framework of Geometric Moments Computation

Start

Scan an input gray level image and store
the pixels’ value into an array of matrixes,
denominates as original-matrix.

Thresholding
Threshold the image into black and white
(bi-level) image using Threshold Value (T
= 128).

Compute the intensity moment, 0 0(,)x y of image with formula:

0 10 00/x m m= ; 0 01 00/ .y m m=

Display the result of
geometric moment
invariants. End

Computate the moment value, pqm until third order with formula:
 ' (') (') '(', ') ' ' ; , 0,1, 2,...p q

pqm x y f x y dx dy p q
δ

θ θ= =∫∫

Compute the central moments, pqµ with formula :

0 0() () (,) ; , 0,1, 2,...p q
pq x x y y f x y dxdy p q

δ

µ θ θ= − − =∫∫

Compute and0 0 pqγ η until third order with formula:

() / 2
00

2 / 2, ,00 00 3.
()

pq
pqp q p qγ

µ
γ η

µ
= + + = + ≤

Compute 1 70to0ϕ ϕ value with formula 2.3.3.1.

Figure 2.3.1.2: Flow chart above illustrates how the Geometric
Moment Invariants are computed.

11

2.3.2 Zernike Moments Computation

The computation steps of Zernike moments are described as below:

1) Read an input image data from left to right and from top to bottom.

2) Threshold the image data to extract the target process area.

3) Compute the image moment value, pqm until third order with formula:

' (') (') '(', ') ' ' ; , 0,1, 2,...p q
pqm x y f x y dx dy p q

δ

θ θ= =∫∫

4) Compute the intensity moment, 0 0(,)x y of image with formula:

0 10 00/x m m= ; 0 01 00/ .y m m=

5) Compute the central moments, pqµ with formula :

0 0() () (,) ; , 0,1, 2,...p q
pq x x y y f x y dxdy p q

δ

µ θ θ= − − =∫∫

6) Compute normalized central moment, pqη to be used in image scaling until third order

with formula:

() / 2
00

2 / 2, ,00 00 3.
()

pq
pqp q p qγ

µ
γ η

µ
= + + = + ≤

7) Compute Zernike moment invariants to rotation, translation and scale correspond to

geometric moments with formula below:

() []2
20 20 02 00

2| 3 2()Z m m mπ= + −

()2 2 2 2
22 20 02 113 () 4Z m m mπ  = − + 

()2 2 2 2
31 30 12 03 2112 () ()Z m m m mπ  = + + + 

()2 2 2 2
33 30 12 03 214 (3) (3)Z m m m mπ  = − + −  (3.2)

12

Zernike moments of order 3 are utilized because results proved that moments of order 3

are already adequate for feature representation. The calculated Zernike moments are small,

thus 10log Z is also applied in representing the image. The computation steps of Zernike

moments are summarized in Figure 2.3.2.1.

2.3.2.1 Framework of Zernike Moments Computation

Figure 2.3.2.1: Flow chart of Zernike moments computation.

Start

Scan an input gray level image and store
the pixels’ value into an array of matrixes,
denominates as original-matrix.

Thresholding
Threshold the image into black and white
(bi-level) image using Threshold Value (T
= 128).

Compute the intensity moment, 0 0(,)x y of image with formula:

0 10 00/x m m= ; 0 01 00/ .y m m=

Display the result of
Zernike moment
invariants.

End

Computate the moment value, pqm until third order with formula:
 ' (') (') '(', ') ' ' ; , 0,1, 2,...p q

pqm x y f x y dx dy p q
δ

θ θ= =∫∫

Compute the central moments, pqµ with formula :

0 0() () (,) ; , 0,1,2,...p q
pq x x y y f x y dxdy p q

δ

µ θ θ= − − =∫∫

Compute the central moments, pqµ until third order with

formula : () / 2
00

2 / 2, ,00 00 3.
()

pq
pqp q p qγ

µ
γ η

µ
= + + = + ≤

Compute Zernike moments with respect to translation, scale
and rotation invariants with formula 3.2.

13

2.3.3 Contour Sequence Moments Computation

The computation steps of contour sequence moments are described as below:

1) Read an input image data from left to right and from top to bottom.

2) Threshold the image data to extract the target process area.

3) Compute the Euclidean Distance z(i), i = 1, 2, 3,…,N of the vector connecting the

centroid.

4) Compute the rth moment value, rm until fifth order with formula:

[]
1

1 ()
N

r
r

i
m z i

N =

= ∑

5) Compute the rth central moment with formula:

[]1
1

1 ()
N

r
r

i
M z i m

N =

= −∑

6) Compute the four lower order moments with formula:

()
1
2

2
1

1

;
M

F
m

=
()

4
3 2

2

;MF
M

=

()
3

2 3
2

2

;MF
M

=
()

5
4 5

2
2

;MF
M

=

As mentioned before, higher order moments are more sensitive to noise and the

resulting classifier will be less tolerant to noise. Thus, only these four low order moments

which are stable are used as input to be fed into the neuro-fuzzy classification system. The

computation steps of contour sequence moments are summarized in Figure 2.3.3.1.

14

2.3.3.1 Framework of Contour Sequence Moments Computation

Start

Scan an input gray level image and store
the pixels’ value into an array of matrixes,
denominates as original-matrix.

Thresholding
Threshold the image into black and white
(bi-level) image using Threshold Value (T
= 128).

Compute the rth central moment with formula:

[]1
1

1 ()
N

r
r

i
M z i m

N =

= −∑

Display the result of
Contour Sequence
Moments. End

Compute the rth moment value, rm until fifth order with formula:

[]
1

1 ()
N

r
r

i
m z i

N =

= ∑

Compute the four lower order moments with formula:
()

1
2

2
1

1

;
M

F
m

=
()

4
3 2

2

;MF
M

=

()
3

2 3
2

2

;MF
M

=
()

5
4 5

2
2

;MF
M

=

Figure 2.3.3.1: A framework of contour sequence moments
computation

Compute the Euclidean Distance,
z(i), i = 1, 2, 3,…, N of the vector

connecting the centroid.

15

2.4 Neuro-fuzzy Classification

The extracted features from moment functions are used in training and

classification using neuro-fuzzy classifier. Results of classification using these features are

compared in terms of accuracy with and without applying thinning operation. Feed

forward neural network with back propagation learning algorithm and sigmoid activation

function are utilized in classification and recognition stage. The network weights are

initialized using triangular membership functions

The steps of neuro-fuzzy classification are explained as below:

1) Feed the neuro-fuzzy system with n input patterns. In our case, four geometric

moments feature, four Zernike moments feature and four contour sequence moments

feature are utilized respectively in each case.

2) Setup the neural network model: one input layer with n neurons, M hidden layer with N

neurons and one output layer with P neuron. n is the number of input features used. In

our case, we set the M to 2 and an appropriate N is determined using try and error

approach. P is set to 10 as our output is a combination of 10 features.

3) Set the learning rate, η and momentum rate, α .

4) Initialize the connection weights and node threshold (bias, θ) of hidden and output

layer to small random values, range between [-0.5, 0.5] using triangular fuzzy

membership function.

a) Generate a random values, x.

b) Pass x into the triangular membership function.

16

0000000000, if x0
2
ba≤ −

() 2
1 ,if00

2
00

2
ix a b bx a x a
b

µ
−

= − − ≤ < +

0000000000, if x0
2
ba≥ +

c) Assign the generated value to initial network weights for each node.

5) Set the maximum allowed network error, Emax.

6) Activate the back-propagation neural network by applying inputs x1(p), x2(p),…, xn(p)

and desired outputs yd,1(p), yd,2(p),…, yd,n(p).

a) Calculate the actual outputs of the neurons in the hidden layer:

() () ()
1

 ,
n

j i ij j
i

y p sigmoid x p w p θ
=

 
= × −  

∑

where n is the number of inputs of neuron j in the hidden layer, and sigmoid is the

sigmoid activation function.

b) Calculate the actual outputs of the neurons in the output layer:

() () ()
1

 ,
m

k jk jk k
j

y p sigmoid x p w p θ
=

 
= × − 

 
∑

 where m is the number of inputs of neuron k in the output layer.

7) Update the weights in the back-propagation network propagating backward the errors

associated with output neurons.

a) Calculate the error gradient for the neurons in the output layer:

() () () ()1k k k kp y p y p e pδ = × − ×  

where

() () (),k d k ke p y p y p= −

17

b) Calculate the weight corrections:

() () ()jk j kw p y p pα δ∆ = × ×

Update the weights at the output neurons:

() () ()1jk jk jkw p w p w p+ = + ∆

8) Update the weights in the back-propagation network propagating backward the errors

associated with hidden neurons.

a) Calculate the error gradient for the neurons in the hidden layer:

() () () () ()
1

1
l

j j j k jk
k

p y p y p p w pδ δ
=

 = × − × ×  ∑

b) Calculate the weight corrections:

() () ()ij i jw p x p pα δ∆ = × ×

Update the weights at the hidden neurons:

() () ()1ij ij ijw p w p w p+ = + ∆

9) Compute the network squared error, Error at the output layer:

()21
2 kp kp

p k
E t o= −∑∑

where kpt and kpo are the target and actual outputs of neuron ‘k’ for pattern ‘p’.

If Error > Emax, then repeat step 6 – 9. Else, terminate the network training. In our case,

we set the number of maximum epoch for network training. Therefore, our training will

terminate when the Error < Emax or the network fails to converge within a specific epoch

size. A framework of the neuro-fuzzy training and classification system is illustrated in

Figure 2.4.1.

18

2.4.1 Framework of Neuro-fuzzy Classification

Recognition
Results

No Yes

Yes

Geometric Moments

Zernike Moments

Contour Sequence
Moments

Feature Extraction

Sample isolated
handwritten digit

images

Weight Initialization with
Fuzzy Triangular

Membership Function

Network Model Setup
• Number of input nodes and features
• Number of hidden layer and hidden nodes
• Number of output nodes

No

Classification

Network error
< maximum
allow error ?

Weight Adaptation

Feedforward neural network with
back-propagation learning using

sigmoid activation function

Training ?

Output Generation

End

Start

19

Chapter 3
Algorithm and Implementation

In this section, the approaches used afore mentioned is translated into algorithm in order

be incorporated and executed in the prototype (program) developed. They included

algorithm for: image thresholding, segmentation and thinning, feature extraction with

three moment functions and also the structure of the neuro-fuzzy classifier.

3.1 Image Pre-processing

3.1.1 Algorithm image thresholding

The gray level images are converted into bi-level (black and white) images. Algorithm

used is presented in Figure 3.1.1.

Figure 3.1.1: Algorithm image thresholding

3.1.2 Simple Block Segmentation with Moore Neighbor Tracing Algorithm (SBS &

MNTA)

SBS & MNTA is a newly implemented segmentation technique based on assumption that

an image file only contains multiple disconnected and unbroken numeral characters. Four

sub-modules are implemented to find the left-most, right-most, upper-most and lower-

most black pixel resides in an image area with height and width image is specified. The

summary of algorithm exploited is presented in Figure 3.1.2.1, Figure 3.1.2.2, Figure

3.1.2.3 and Figure 3.1.2.4.

for i:=0 to imageHeight-1 do
begin
 for j:=0 to imageWidth-1 do
 begin
 if(pixelValue[i,j] >= 128)then pixelValue[i,j] := 255 //white
 else if(pixelValue[i,j] < 128)then pixelValue[i,j] := 0; //black
 end;
end;

20

Figure 3.1.2.1: Algorithm to find the left most black pixel resides in a specific image area

Figure 3.1.2.2: Algorithm to find the right most black pixel resides in a specific image area

for i:=upper to lower-1 do
 for j:= left to right-1 do
 if(pixelValue[i,j]=0)then
 begin

 //find the left most black pixel coordinate
 if(foundLeftMostPixelCoord = false)then
 begin
 leftMostPixelCoord := j;
 foundLeftMostPixelCoord := true;
 end

//verify whether there is other pixels' coordinate that is left most
//then the previous found pixel

 else if(foundLeftMostPixelCoord = true)then
 begin

//assign the new left most pixel coordinate value
 if(j<leftMostPixelCoord)then
 leftMostPixelCoord := j;
 end;
 end;

for i:=upper to lower-1 do
 for j:= left to right-1 do
 if(pixelValue[i,j]=0)then

 begin
 //find the right most black pixel coordinate
 if(foundRightMostPixelCoord = false)then
 begin
 rightMostPixelCoord := j;
 foundRightMostPixelCoord := true;
 end

//verify whether there is other pixels' coordinate that is right most
//then the previous found pixel

 else if(foundRightMostPixelCoord = true)then
 begin

//assign the new right most pixel coordinate value
 if(j>rightMostPixelCoord)then
 rightMostPixelCoord := j;
 end;
 end;

21

Figure 3.1.2.3: Algorithm to find the upper most black pixel resides in a specific image

area

Figure 3.1.2.4: Algorithm to find the lower most black pixel resides in a specific image

area

for j:= left to right-1 do
 for i:=upper to lower-1 do
 if(pixelValue[i,j]=0)then

 //find the upperMostPixel coordinate
 if(foundUpperMostPixelCoord = false)then
 begin
 upperMostPixelCoord := i;
 foundUpperMostPixelCoord := true;
 end

//verify whether there is other pixels' coordinate that are upper
//most than the previous found pixel

 else if(foundUpperMostPixelCoord = true)then
 begin

//assign the new upper most pixel coordinate value
 if(i<upperMostPixelCoord)then
 upperMostPixelCoord := i;
 end;

for j:= left to right-1 do
 for i:=upper to lower-1 do
 if(pixelValue[i,j]=0)then

 //find the lowerMostPixel coordinate
 if(foundLowerMostPixelCoord = false)then
 begin
 lowerMostPixelCoord := i;
 foundLowerMostPixelCoord := true;
 end

//verify whether there is other pixels' coordinate that are lower
//most than the previous found pixel

 else if(foundLowerMostPixelCoord = true)then
 begin

//assign the new lower most pixel coordinate value
 if(i>lowerMostPixelCoord)then
 lowerMostPixelCoord := i;
 end;

22

3.1.3 Safe-point Thinning Algorithm (SPTA)

Safe-point Thinning Algorithm (SPTA) used is presented in Figure 3.1.3.1.

turn := 0;
finishProcessAllPixel := false;
while(finishProcessAllPixel = false) do
begin
 finishProcessAllPixel := true; turn := (turn+1) mod 2;

 for y:=1 to height-2 do //initialize the pixelOnFlag to false
 begin
 for x:=1 to width-2 do
 pixelOnFlag[y,x] := 0;

end;

 for y:=1 to height-2 do
 begin
 for x:=1 to width-2 do

 begin
 if(pixelValue[y,x] = 0)then //black pixel
 begin
 blackPixel := 0;
 for j:=-1 to 1 do begin

for i:=-1 to 1 do begin
 if(pixelValue[y+j,x+i] = 0) then
 blackPixel:= blackPixel + 1;
 end;
 end;

 if((blackPixel > 2) and (blackPixel < 8))then
 begin
 kernelValue[0] := pixelValue[y-1,x-1]; kernelValue[5] := pixelValue[y+1,x];
 kernelValue[1] := pixelValue[y-1,x]; kernelValue[6] := pixelValue[y+1,x-1];
 kernelValue[2] := pixelValue[y-1,x+1]; kernelValue[7] := pixelValue[y ,x-1];
 kernelValue[3] := pixelValue[y ,x+1]; kernelValue[8] := pixelValue[y-1,x-1];
 kernelValue[4] := pixelValue[y+1,x+1];

 whitePixel := 0;
 for z:=0 to 7 do
 if((kernelValue[z] = 255) and (kernelValue[z+1] = 0))then
 whitePixel := whitePixel + 1;

23

Figure 3.1.3.1: Safe-point Thinning Algorithm (SPTA)

 if(whitePixel = 1)then
 begin

 if((turn=0) and ((kernelValue[3]=255) or (kernelValue[5]=255)

 or (kernelValue[1]=255) and (kernelValue[7]=255))) then
 begin
 pixelOnFlag[y,x] := 1; finishProcessAllPixel := false;
 end
 else if ((turn=1) and ((kernelValue[1]=255) or

(kernelValue[7]=255) or
 (kernelValue[3]=255) and (kernelValue[5]=255))) then
begin

 pixelOnFlag[y,x] := 1; finishProcessAllPixel := false;
 end;
 end;

 end;
 end;
 end;
 end;

 for y:=1 to height-2 do
 for x:=1 to width-2 do
 if(pixelOnFlag[y,x] = 1) then
 pixelValue[y,x] := 255; //delete the pixel

 end;

24

3.2 Feature Extraction with Moment Functions

3.2.1 Computation of Geometry Moment Invariants

Algorithm of geometric moments computation is presented in Figure 3.2.1.1.

// Compute the moment value, pqm until third order.
for p:=0 to 3 do
 for q:=0 to 3 do
 begin
 moment[p,q] := 0.0;

 for i:=0 to height-1 do
 for j:=0 to width-1 do
 begin
 if (p=0) and (q=0) then
 moment[p,q] := moment[p,q] + 1

 else if (p=0) then
 moment[p,q] := moment[p,q] + Power(j, q)

 else if (q=0) then
 moment[p,q] := moment[p,q] + Power(i, p)

 else
 moment[p,q] := moment[p,q] + Power(i, p)* Power(j, q);
 end;
 end;

// Compute the intensity moment, 0 0(,)x y about the x-axis and y-axis of image.

xCenter := moment[1,0]/moment[0,0];
yCenter := moment[0,1]/moment[0,0];

// Compute the central moments, pqµ (with respect to the intensity centroid).
for p:=0 to 3 do
 for q:=0 to 3 do
 begin
 miu[p,q] := 0.0;

 if((p+q) <=3)then

25

Figure 3.2.1.1: Algorithm of geometric moments computation

 for i:=0 to height-1 do
 for j:=0 to width-1 do
 begin
 if(p=0) then

 begin
 if(q=0) then miu[p,q] := moment[p,q]
 else if(q<>0) then miu[p,q] := miu[p,q] + Power(j - yCenter, q);
 end
 else if(p<>0)then
 begin

 if(q=0) then miu[p,q] := Power(i - xCenter, p)
 else if (q<>0)then
 miu[p,q] := miu[p,q] + Power(i-xCenter,p) * Power(j - yCenter,q);
 end;
 end;
 end;

// Compute and0 0 pqγ η , then calculate the moment invariants in respect to
//translation, scale and rotation of an image.

for p:=0 to 3 do
 for q:=0 to 3 do

if((p+q<4) and (p+q>=2)) then
 begin
 gamma := (p+q)/2.0 + 1.0;
 norm[p,q] := miu[p,q]/Power(miu[0,0],gamma)
 end;

phi1 := norm[2,0] + norm[0,2];

phi2 := Power(norm[2,0] - norm[0,2], 2) + 4* Power(norm[1,1], 2);

phi3 := Power(norm[3,0] - 3*norm[1,2], 2) + Power(3*norm[2,1] - norm[0,3], 2);

phi4 := Power(norm[3,0] + norm[1,2], 2) + Power(norm[2,1] + norm[0,3], 2);

26

3.2.2 Computation of Zernike Moment Invariants

Algorithm of Zernike moments computation is presented in Figure 3.2.2.1.

Figure 3.2.2.1: Algorithm of Zernike moments computation

// Compute the moment value, pqm until third order.
for p:=0 to 3 do
 for q:=0 to 3 do
 begin
 moment[p,q] := 0.0;

 for i:=0 to height-1 do
 for j:=0 to width-1 do
 begin
 if (p=0) and (q=0) then
 moment[p,q] := moment[p,q] + 1

 else if (p=0) then
 moment[p,q] := moment[p,q] + Power(j, q)

 else if (q=0) then
 moment[p,q] := moment[p,q] + Power(i, p)

 else
 moment[p,q] := moment[p,q] + Power(i, p)* Power(j, q);
 end;
 end;

// Compute the intensity moment, 0 0(,)x y about the x-axis and y-axis of image.

xCenter := moment[1,0]/moment[0,0];
yCenter := moment[0,1]/moment[0,0];

// Compute the central moments, pqµ (with respect to the intensity centroid).
for p:=0 to 3 do
 for q:=0 to 3 do
 begin
 miu[p,q] := 0.0;

 if((p+q) <=3)then

27

for i:=0 to height-1 do
 for j:=0 to width-1 do
 begin
 if(p=0) then

 begin
 if(q=0) then miu[p,q] := moment[p,q]
 else if(q<>0) then miu[p,q] := miu[p,q] + Power(j - yCenter, q);
 end
 else if(p<>0)then
 begin

 if(q=0) then miu[p,q] := Power(i - xCenter, p)
 else if (q<>0)then
 miu[p,q] := miu[p,q] + Power(i-xCenter,p) * Power(j - yCenter,q);
 end;
 end;
 end;

// Compute and0 0 pqγ η , then calculate the moment invariants in respect to
//translation, scale and rotation of an image.

for p:=0 to 3 do
 for q:=0 to 3 do

if((p+q<4) and (p+q>=2)) then
 begin
 gamma := (p+q)/2.0 + 1.0;
 norm[p,q] := miu[p,q]/Power(miu[0,0],gamma)
 end;

//computation of Zernike Moment Invariants until order 3

ZMI[2,0] := (3/pi) * (2 * (norm[2,0]+norm[0,2]) - norm[0,0]);

ZMI[2,2] := Power(3/pi, 2.0) * (Power((norm[2,0] - norm[0,2]),2.0)

+ 4 * Power(norm[1,1],2.0));

ZMI[3,1] := Power(12/pi,2.0)*(Power(norm[3,0]+norm[1,2],2.0)
+Power(norm[0,3]+norm[2,1],2.0));

ZMI[3,3] := Power(4/pi,2.0) * (Power((norm[3,0]-3*norm[1,2]),2.0) +

Power((norm[0,3] - 3*norm[2,1]),2.0));

 ZMI[2,0]:= (Log10(Abs(ZMI[2,0])));

 ZMI[2,2]:= (Log10(Abs(ZMI[2,2])));

 ZMI[3,1]:= (Log10(Abs(ZMI[3,1])));

 ZMI[3,3]:= (Log10(Abs(ZMI[3,3])));

28

3.2.3 Computation of Contour Sequence Moments

Algorithm of contour sequence moments computation is presented Figure 3.2.3.1.

Figure 3.2.3.1: Algorithm of contour sequence moments computation

// Compute the moment value, pqm until third order.
for p:=0 to 3 do
 for q:=0 to 3 do
 begin
 moment[p,q] := 0.0;

 for i:=0 to height-1 do
 for j:=0 to width-1 do
 begin
 if (p=0) and (q=0) then
 moment[p,q] := moment[p,q] + 1

 else if (p=0) then
 moment[p,q] := moment[p,q] + Power(j, q)

 else if (q=0) then
 moment[p,q] := moment[p,q] + Power(i, p)

 else
 moment[p,q] := moment[p,q] + Power(i, p)* Power(j, q);
 nContour := nContour + 1;
 end;
 end;

// Compute the intensity moment, 0 0(,)x y about the x-axis and y-axis of image.

xCenter := moment[1,0]/moment[0,0];
yCenter := moment[0,1]/moment[0,0];

//calculate euclidean distance
 for n:=0 to totalMoment-1 do
 begin
 sum := 0.0;
 begin
 for y:=0 to height-1 do
 for x:=0 to width-1 do
 begin
 ed[y,x] := Sqrt(Power(x - xCenter, 2.0) + Power(y - yCenter, 2.0));
 end;
 end;
 end;

29

//calculate the rth moment
for n:=0 to totalMoment-1 do
 begin
 sum := 0.0;

 for y:=0 to height-1 do
 for x:=0 to width-1 do
 begin
 sum := sum + Power(ed[y,x], n);
 end;
 rMoment[n] := 1 / nContour * sum;

end;

 //calculate the rth central moment

for n:=0 to totalMoment-1 do
 begin
 sum := 0.0;
 begin
 for y:=0 to height-1 do
 for x:=0 to width-1 do
 begin
 sum := sum + Power(ed[y,x] - rMoment[0], n);
 end;
 end;
 rCentralMoment[n] := 1 / nContour * sum;
 end;

// Normalized amplitude variation
F[1] := Power(rCentralMoment[1], 0.5) / rMoment[0];

// Coefficient of skewness
F[2] := rCentralMoment[2] / Power(rCentralMoment[1], 1.5);

// Coefficient of kurtosis
F[3] := rCentralMoment[3] / Power(rCentralMoment[1],2);

// For the 4th feature
F[4] := rCentralMoment[4] / Power(rCentralMoment[1],2.5)

30

Chapter 4
Experiment and Results

4.1 Neuro-fuzzy Classification

4.1.1 Feature Extraction of Digit Images

Four set of feature extracted from each moment functions is used as the inputs and fed into

the neuro-fuzzy network for training and testing purpose. Four set of geometric moments

are used and Zernike moments until third order, 2 2
20 22 31, , andZ Z Z 2

33Z are used to

represent the features of digits. A total of four lower order moments in contour sequence

moments are used as network input features. The calculated value of geometric moments

and Zernike moments, F are insignificant, thus 10log F is applied to represent the images.

Table 4.1, Table 4.2 and Table 4.3 illustrated features of 10 digits 0 extracted using

geometric moments, Zernike moments and contour sequence moments.

Table 4.1: Extracted features of 10 digits 0 with geometric moments

1ϕ 2ϕ 3ϕ 4ϕ

-0.70740 -1.35606 -3.01467 -3.77361
-0.73260 -1.22780 -2.54807 -3.24797
-0.71731 -1.18102 -2.72851 -3.93310
-1.06623 -1.73776 -4.76563 -4.64301
-0.93278 -1.52876 -3.81407 -4.24388
-0.81164 -1.47272 -3.57920 -4.13660
-0.78394 -1.60268 -3.12202 -3.43368
-0.86787 -1.52239 -2.81233 -3.66443
-0.40384 -0.83744 -2.44235 -2.67630
-1.06337 -2.11614 -3.80914 -4.25853

Table 4.2: Extracted features of 10 digits 0 with Zernike moments

20Z 2

22Z 2

31Z 2

33Z
-0.42639 -1.39612 -2.60955 -2.80485
-0.45160 -1.26785 -2.08391 -2.33825
-0.43630 -1.22108 -2.76904 -2.51869
-0.78523 -1.77782 -3.47895 -4.55581
-0.65178 -1.56882 -3.07982 -3.60425
-0.53064 -1.51277 -2.97254 -3.36938
-0.50294 -1.64273 -2.26962 -2.91220
-0.58687 -1.56244 -2.50036 -2.60251
-0.12284 -0.87749 -1.51224 -2.23253
-0.78236 -2.15620 -3.09447 -3.59932

31

Table 4.3: Extracted features of 10 digits 0 with contour sequence moments

F1 F2 F3 F4
30.05362 6.47126 45.25373 333.90161
32.71818 5.95364 38.32488 260.43063
31.69769 6.13232 40.62963 283.97861
31.05886 6.29241 42.85799 308.45520
29.86565 6.52130 45.97804 342.18240
27.97482 6.96417 52.44178 416.88776
28.06775 6.94976 52.24658 414.80444
27.20984 7.17573 55.71798 457.03427
36.38897 5.34856 30.92183 188.66597
28.23771 6.91055 51.66535 407.97510

 The numerical values of Table 4.1, Table 4.2 and Table 4.3 are plotted in Figure

4.1, Figure 4.2 and Figure 4.3 to show the deviation of values for the sample with respect

to different size, style and orientations. From the listed figure, it can be observed that the

higher the moments’ order, the sign of deviation is more evident. This is because higher

order moments contain finer details about the image and are often more sensitive to

variation of style, orientations and image noise.

Figure 4.1: Features of digit 0 extracted using geometric moments

32

Figure 4.2: Features of digit 0 extracted using Zernike moments

Figure 4.3: Features of digit 0 extracted using contour sequence moments

33

4.1.2 Intraclass Invariants

 Several studies review that good features are those features with small intraclass

invariance and larger interclass separation where features from difference classes should

exhibit dissimilarities numerically. From Figure 4.1 to Figure 4.6, it can be seen that

features extracted from contour sequence moments show better intraclass representation

with close similarity compared with geometric moments and contour sequence moments.

As illustrated in Figure 4.1 to Figure 4.6, both geometric moments and Zernike moments

have possess dissimilarity features values. The purpose of classifications is to differentiate

between classes; therefore, contour sequence moments in this case better in representing

isolated handwritten digits from same class.

Figure 4.4: Intraclass invariance for features of digit 1 extracted using geometric moments

34

Figure 4.5: Intraclass invariance for features of digit 1 extracted using Zernike moments

Figure 4.6: Intraclass invariance for features of digit 1 extracted using contour sequence

moments

35

4.1.3 Interclass Invariants

 Features extracted from different classes supposed to show variation in order to be

used in classification and recognition purpose. The features used should be typical and

unique in symbolizing a particular class of digits. In relation to that, a small deviation

between features should be considered for a better differentiation rate. Figure 4.7, Figure

4.8 and Figure 4.9 illustrated the interclass invariance for features of digit 0 to 9 using

geometric moments, Zernike moments and contour sequence moments. From these

figures, it can be observed that Zernike moments performed better in representing the digit

images as it exhibited greater divergences compared with geometric moments and contour

sequence moments.

Figure 4.7: Interclass invariance for features of digit 0 to 4 extracted using geometric

moments

36

Figure 4.8: Interclass invariance for features of digit 0 to 4 extracted using Zernike

moments

Figure 4.9: Interclass invariance for features of digit 0 to 4 extracted using contour

sequence moments

37

4.2 Classification and Experimental Results

4.2.1 Network Training

 In this project, standard back-propagation model with sigmoid logistic activation

function is used in the training and classification phases. Sigmoid logistic function is

utilized in both input-to-hidden layer and hidden-to-output layer.

 The input data for the model are numerical values extracted from isolated digit

images using geometric moments, Zernike moments and contour sequence moments. Five

hundreds samples of isolated handwritten digit images are used in network training. Two

samples digit with each sample contains 50 set digits image are applied in testing and

classification phases. The network weights are initialized with Triangular Membership

function and its efficiency of improving convergence rate is verified.

 The learning rate, α is set to 0.05 while momentum rate, η is set to 0.3. The target

outputs for each digit images are set to zero except for those that correspond to the class

accordingly as shown in Table 4.4. For example, for digit 0, all output are set to zero

except for the first output node while for digit 9, only the last output node is set to one.

Figure 4.10 illustrates a sample of isolated handwritten digits used in network training.

Figure 4.10: Sample of isolated handwritten digits for network training

38

Table 4.4: Target output for network input data

Digit Target Network Output
0 1 0 0 0 0 0 0 0 0 0

1 0 1 0 0 0 0 0 0 0 0

2 0 0 1 0 0 0 0 0 0 0

3 0 0 0 1 0 0 0 0 0 0

4 0 0 0 0 1 0 0 0 0 0

5 0 0 0 0 0 1 0 0 0 0

6 0 0 0 0 0 0 1 0 0 0

7 0 0 0 0 0 0 0 1 0 0

8 0 0 0 0 0 0 0 0 1 0

9 0 0 0 0 0 0 0 0 0 1

 4.2.2 Weight Initialization with Triangular Membership Function

 Network weights are initialized using Triangular Membership function to verify its

feasibility in enhancing the network convergence rate. From Table 4.5, it can be observed

that network weights can be initialized with appropriate parameters using Triangular

Membership Function, and in particular case decrease the iteration number required to

converge to the solution.

Table 4.5: Weight initialization with Triangular Membership Function

Moment Functions Triangular Membership
(iteration)

Random Number
(iteration)

Geometric 14569 14636

Zernike 11129 8985

Contour Sequence 4666 6514

39

4.2.3 Normalization of Input Features

 Normalization is a transformation applied uniformly to each element in a set of

data so that the set has some specific statistical property. In this project, normalization is

conducted on features extracted from moment functions into range of [0, 1]. According to

several studies, normalization of input features has shown to speed up convergence and

recognition rate. In this project, the min-max normalization technique is applied using

formula below:

Normalized value,

()min _ max _ min _ min
max min

oldX ValnewX new Val new Val new Val
Val Val

−
= − +

−

Where

newX is the new normalized value,

oldX is the original value,

minVal is the smallest value of the sample,

maxVal is the largest value of the sample,

new_maxVal is the new largest value,

new_minVal is the new smallest value.

For example, in Table 4.6, Original value, oldX = and

The new normalized value, newX = -.42639 and minVal = -6.08105,

maxVal = 0.30229, new_maxVal = 1, new_minVal = 0.

The new normalized value,

()0.42639 (6.08105) 1 0 0 0.88585
0.30229 (6.08105)

newX − − −
= − + =

− −

40

Table 4.6: Normalized Zernike moments value of sample digit images

Digit 20Z 2

22Z 2

31Z 2

33Z Digit 20Z 2

22Z 2

31Z 2

33Z

0
0.88585
0.88190
0.88429
0.82963
0.85054

0.73393
0.75403
0.76135
0.67413
0.70688

0.54384
0.62618
0.51885
0.40764
0.47017

0.51324
0.58634
0.55807
0.23894
0.38801

5
0.91561
0.86971
0.86738
0.94300
0.92626

0.80988
0.73597
0.74657
0.91644
0.89612

0.78045
0.59548
0.71267
0.90204
0.62105

0.82952
0.58186
0.66990
0.80185
0.59219

1
0.82799
0.87979
0.78933
0.80135
0.80950

0.77657
0.86077
0.70310
0.62445
0.63759

0.68736
0.73867
0.61896
0.75167
0.78412

0.68436
0.71495
0.42296
0.60907
0.65494

6
0.85611
0.85400
0.88991
0.87209
0.81078

0.65027
0.67850
0.69566
0.68076
0.58814

0.70948
0.57877
0.81864
0.68888
0.58526

0.56921
0.48279
0.78576
0.59731
0.51893

2
0.84262
0.88260
0.88615
0.84970
0.85702

0.68290
0.73467
0.74325
0.66431
0.69726

0.61545
0.72755
0.72803
0.55055
0.67331

0.55951
0.70875
0.72091
0.51113
0.62884

7
0.87377
0.88286
0.88850
0.89573
0.86706

0.70605
0.75406
0.78149
0.74698
0.54720

0.77898
0.67184
0.72241
0.73471
0.74945

0.76604
0.71084
0.74834
0.64611
0.78970

3
0.82778
0.85311
0.82332
0.86402
0.84550

0.59188
0.73466
0.64362
0.72157
0.66364

0.63666
0.70027
0.72892
0.74364
0.68873

0.61061
0.60999
0.65093
0.67344
0.59072

8
0.84640
0.85241
0.86212
0.83666
0.85123

0.64069
0.76285
0.78463
0.71045
0.63596

0.29756
0.39483
0.51179
0.32753
0.56458

0.49776
0.57343
0.56568
0.46923
0.64083

4
0.87101
0.95006
0.89286
0.89972
0.87560

0.73092
0.84950
0.80254
0.76729
0.63537

0.62293
0.84079
0.77954
0.65735
0.50357

0.66241
0.88790
0.76524
0.68573
0.78738

9
0.88966
0.86065
0.86080
0.87720
0.88966

0.75260
0.63413
0.78236
0.78852
0.75260

0.67923
0.65928
0.80102
0.68773
0.67923

0.76581
0.74641
0.78369
0.69496
0.76581

 Table 4.6 above is the normalized values for Zernike moments for digit images

used in training. These normalized values are fed into network training and classification

phases.

41

4.2.4 Recognition Results between Moment Functions

Five hundreds digit images are trained and the weights adapted are tested with two

samples digits with each sample consists 50 digit images. The classification and

recognition results are summarized in tables below.

Table 4.7: Recognition rates of unthinned isolated digits (0 – 9) using geometric moments,

Zernike moments and contour sequence moments in feature extraction

Recognition Accuracy (%)
Moment Functions

Group 1 Group 2 Average

Geometric 36 40 38

Zernike 38 43 40.5

Contour Sequence 51 60 55.5

 From the results obtained from Table 4.7, it can be concluded that contour

sequence moments are superior compare with geometric moments and Zernike moments

in representing the features of a digit image.

4.2.5 Recognition Results between Thinned and Unthinned Digit Image

 In general, image thinning operation is proved tend to improve the accuracy of

image especially character image. Thus, the necessity of this preprocessing technique is

validated its efficiency when moment functions are used in feature extraction. Unthinned

digit images are used in training stages while thinned and unthinned digit images are

tested in classification to validate its effectiveness. The classification and recognition

results of thinned and unthinned digit images are summarized in tables below.

42

Table 4.8: Recognition rates of thinned and unthinned digit 0 to 9 using geometric

moments in feature extraction

Recognition Accuracy Geometric
Moments Group 1 Group 2 Average (%)

Thinned Image 32 36 34

Unthinned Image 36 40 38

Table 4.9: Recognition rates of thinned and unthinned digit 0 to 9 using Zernike moments

in feature extraction

Recognition Accuracy
Zernike Moments

Group 1 Group 2 Average (%)

Thinned Image 21 20 20.5

Unthinned Image 38 43 40.5

Table 4.10: Recognition rates of thinned and unthinned digit 0 to 9 using contour sequence

moments in feature extraction

Recognition Accuracy Contour Sequence
Moments Group 1 Group 2 Average (%)

Thinned Image 40 49 44.5

Unthinned Image 51 60 55.5

The features extracted from moment functions are then feed into the network

established for network training. Fuzzy triangular membership function is used to deduce

an initial network weights for faster network convergence purpose. The results of

recognition and classification of unthinned isolated handwritten digits are unsatisfactory of

having around 40% accuracy rate for Zernike moments, 38% accuracy rate for geometric

moments and 55.5% using contour sequence moments. The unthinned images possessed

higher recognition rates compare with thinned images by 20% for Zernike moments.

43

Chapter 5
Discussion and Conclusion

5.1 Introduction

 The main objective of this research is to implement a neuro-fuzzy classifier on

isolated handwritten digits using feature extracted from geometric moments, Zernike

moments and contour sequence moment. The strengths of these three moment functions

are further verified and tested to see which moment functions suitably represents an image

and thus would provide a promising classification rate. Operation thinning is also

validated and justified to determine its requirement in enhancing the recognition rates.

 Fuzzy weight initialization is applied in the neural network with Triangular

membership function and the result obtained shown that the network convergence rates is

shortened. In our network established, sigmoid activation function is used in both input-to-

hidden layer and hidden-to-output layer. With the implementation of image preprocessing

stage, feature extraction using moment functions and neuro-fuzzy classification on isolated

handwritten digits as described in Section 4, the objectives of the research has been

fulfilled.

5.2 Discussion of Results

 Experimentations from Section 4 has shown that Zernike moment invariants are

superior to geometric moments and contour sequence moments in representing features of

isolated handwritten digits with obvious interclass invariants. In terms of intraclass

invariants, contour sequence moments exhibited better result with small deviation. Our

network suffers from low recognition rates may due to the network is trained

inappropriately resulting with high network error. However, from Table 4.8, Table 4.9 and

Table 4.10, it can be observe that contour sequence moments possess higher recognition

rates even though Zernike moments shown higher intraclass invariants. From these 3

tables, we also can conclude that thinning operation should be excluded as it brings down

the recognition rate of isolated handwritten digits.

44

 Triangular membership function is applied to generate initial weights for the

network. Experiments results showed the improvement of this method to the convergence

rate of network training compared to random method. But in most of the case, the

parameter used should be appropriately set. The recognition accuracy should be higher and

the network convergence will rise in theory but in our case, it deteriorates the recognition

rate with introduction of ambiguity. Thus, in our case normalization operation is excluded.

Our neuro-fuzzy network suffered from low recognition rate may be due to the following

reasons:

o The network architecture (2 hidden layers, with 150 neurons in the first layer and 75

neurons in the second layer) may be improperly set up.

o The maximum allow network error is high, around 0.04.

o 500 set training data is inadequate for network training.

o Standard back-propagation instinctly suffered from slow convergence, thus the number

of epoch used (20000) should be increased.

5.3 Recommendation for Future Works

 Below are some suggestions that could lead to the improvement of the recognition

of isolate handwritten digits and some possible points that could lead to future research.

o Utilization of other neural network model for comparison

Recurrent neural network or Radial Basis function can be applied in network training

and classification to compare with the neuro-fuzzy classification implemented in this

study.

o Implementation in other realm where applicable

The methodologies used in feature extraction with moment functions and neuro-fuzzy

classification may be extended to other objects such as recognition of primitives shape,

handwritten character or biometric identification.

45

o Utilization of others moment functions

There are several others moment functions could be used in feature extraction of an

image. For example, weighted central moments and cross-weighted moments which

can be applied in image analysis application.

5.4 Conclusion

 This project presents a comparison of effectiveness between geometric moments,

Zernike moments and contour sequence moments in representing the description of an

image. Network training and testing (classification) is conducted using standard back-

propagation with sigmoid activation where the network weights are initialized using

Triangular Membership function.

In this project, operations below are conducted:

o Apply feature extraction methodologies using geometric moments, Zernike moments

and contour sequence moments.

o Apply fuzzy triangular membership function in network weights initializations.

o Present comparison between geometric moments, Zernike moments and contour

sequence moments in terms of image representation efficiency.

o Justify the requirement of operation thinning when geometric moments, Zernike

moments and contour sequence moments are used in feature extractions.

Based on the experimentations performed, it can be concluded that:

o Operation thinning conducted to a digit image will decrease the classification and

recognition accuracy rate and thus can be neglected.

o Fuzzy Triangular membership function reduces neural network training duration with

appropriate parameters being set correctly.

o Contour sequence moments are better in representing an image description compare

with geometric moments and Zernike moments.

Future study is suggested in order to improve the recognition accuracy of isolated

handwritten digits and to seek for any improvement in feature extraction where applicable.

46

Appendix A

Samples of Unthinned Isolated Handwritten Digits (Classification)

Group 1: 50 samples of unthinned isolated handwritten digits

Group 2: 50 samples of unthinned isolated handwritten digits

47

Samples of Thinned Isolated Handwritten Digits (Classification)

Group 1: 50 samples of thinned isolated handwritten digits

Group 2: 50 samples of thinned isolated handwritten digits

48

Appendix B

Features Extracted using Moment Functions

49

Digit Digit
-0.7074 -1.3561 -3.0147 -3.7736 -0.8104 -1.3431 -2.5766 -3.4440
-0.7074 -1.3561 -3.0147 -3.7736 -0.8253 -1.2754 -2.0147 -2.6959
-0.7326 -1.2278 -2.5481 -3.2480 -0.3426 -0.1910 -1.1724 -1.4871
-0.7173 -1.1810 -2.7285 -3.9331 -0.4494 -0.3208 -2.5107 -3.2808

0 -1.0662 -1.7378 -4.7656 -4.6430 5 -0.6012 -0.6077 -1.5816 -2.0327
-0.8116 -1.4727 -3.5792 -4.1366 -0.4007 -0.3747 -1.3362 -1.8049
-0.7839 -1.6027 -3.1220 -3.4337 -0.8523 -1.8275 -1.0881 -1.9997
-0.8679 -1.5224 -2.8123 -3.6644 -1.1743 -2.0665 -1.7006 -2.3456
-0.4038 -0.8374 -2.4424 -2.6763 -0.8444 -1.5766 -2.2075 -3.2327
-1.0634 -2.1161 -3.8091 -4.2585 -0.4847 -0.6053 -1.1801 -1.5840
-1.0767 -1.0839 -1.9223 -2.8574 -0.8972 -1.8901 -2.6574 -2.7163
-1.0767 -1.0839 -1.9223 -2.8574 -0.9107 -1.7099 -3.2090 -3.5506
-0.7461 -0.5464 -1.7271 -2.5299 -0.6815 -1.6003 -1.2751 -2.0195
-1.3235 -1.5528 -3.5910 -3.2941 -0.7952 -1.6955 -2.4781 -2.8477

1 -1.2468 -2.0549 -2.4030 -2.4470 6 -1.1865 -2.2867 -2.9783 -3.5092
-0.7198 -0.5531 -2.7115 -3.1067 -1.0085 -2.1359 -2.8904 -4.0043
-0.8483 -1.6137 -1.7445 -2.5214 -1.0774 -2.0855 -2.6740 -3.4141
-1.3332 -1.8785 -2.8153 -2.9025 -0.9532 -1.7364 -2.5517 -3.3932
-0.7787 -0.5663 -2.4411 -3.3238 -0.9655 -1.7362 -2.9911 -3.5867
-0.9224 -0.9766 -1.7752 -3.1600 -0.8658 -1.6349 -2.8125 -3.5998
-0.9833 -1.6818 -2.7193 -3.3165 -0.7845 -1.5340 -1.4010 -2.2726
-0.7281 -1.3514 -1.7667 -2.6009 -0.7264 -1.2276 -1.7534 -2.9565
-0.7054 -1.2966 -1.6890 -2.5979 -0.6905 -1.0525 -1.5139 -2.6337
-0.9833 -1.6818 -2.7193 -3.3165 -0.6443 -1.2727 -2.1665 -2.5552

2 -0.9382 -1.8005 -3.0281 -3.7308 7 -0.8273 -2.5480 -1.2499 -2.4611
-0.7625 -1.3089 -2.4396 -2.9206 -0.7397 -1.5523 -1.4712 -2.3406
-0.9647 -1.9641 -2.5168 -3.3547 -0.6632 -0.9113 -1.1291 -1.9779
-0.5837 -1.0801 -1.3713 -2.1161 -0.7589 -0.9915 -1.5373 -2.3580
-0.8220 -1.6659 -2.9032 -3.7233 -0.6230 -1.1436 -0.8042 -1.5836
-0.8510 -1.5571 -2.1264 -2.7043 -0.6692 -1.1075 -1.4586 -2.1260
-1.0781 -2.2628 -2.3932 -3.1811 -0.9592 -1.9512 -3.1135 -5.3457
-0.9164 -1.3514 -2.3971 -2.7751 -0.9209 -1.1714 -2.6305 -4.7248
-1.1065 -1.9325 -2.1358 -2.5921 -0.8588 -1.0324 -2.6799 -3.9782
-0.8467 -1.4350 -1.9921 -2.4982 -1.0214 -1.5059 -3.2956 -5.1544

3 -0.8467 -1.4350 -1.9921 -2.4982 8 -0.9283 -1.9814 -2.2003 -3.6412
-0.6658 -0.9387 -2.1779 -2.6216 -0.9333 -1.2610 -2.4577 -4.2577
-0.7734 -1.0848 -1.4636 -2.2368 -0.8656 -1.1317 -2.1415 -3.0203
-0.9450 -1.3895 -2.1868 -2.6822 -0.9964 -1.4573 -2.4366 -4.7163
-0.8150 -1.7917 -1.5044 -2.1742 -0.9366 -1.3047 -2.4743 -5.2764
-1.0657 -2.0714 -2.0661 -2.8969 -1.0444 -1.4320 -3.1417 -3.9903
-0.8021 -1.3753 -2.0625 -3.2688 -0.6830 -1.2369 -1.4024 -2.9094
-0.2975 -0.6184 -0.6231 -1.8780 -0.8682 -1.9931 -1.5263 -3.0367
-0.6626 -0.9181 -1.4061 -2.2690 -0.8673 -1.0469 -1.2883 -2.1319
-0.6188 -1.1431 -1.9137 -3.0491 -0.7626 -1.0076 -1.8547 -2.8551

4 -0.7728 -1.9852 -1.2647 -4.0306 9 -0.7772 -0.8557 -1.0954 -1.7664
-0.7665 -1.2882 -1.2513 -2.1662 -0.9665 -1.3864 -1.6519 -2.5869
-0.8767 -1.7289 -1.9645 -4.1572 -0.8962 -1.7532 -2.2395 -4.1992
-0.4719 -0.9602 -2.4697 -3.2661 -0.9702 -1.2856 -2.2504 -2.8114
-0.7388 -0.9386 -1.9348 -3.7228 -0.6692 -1.4856 -1.3002 -2.7051
-0.6369 -1.2926 -2.0324 -3.1878 -0.8848 -1.4078 -1.8993 -2.9066

Sample of Features Extracted using Geometric Moments

1ϕ 2ϕ 3ϕ 3ϕ2ϕ1ϕ4ϕ 4ϕ

50

Digit Digit
-0.4264 -1.3961 -2.6096 -2.8049 -0.5294 -1.3831 -2.2799 -2.3668
-0.4264 -1.3961 -2.6096 -2.8049 -0.5443 -1.3155 -1.5318 -1.8048
-0.4516 -1.2679 -2.0839 -2.3383 -0.0616 -0.2311 -0.3230 -0.9626
-0.4363 -1.2211 -2.7690 -2.5187 -0.1684 -0.3608 -2.1167 -2.3009

0 -0.7852 -1.7778 -3.4790 -4.5558 5 -0.3202 -0.6478 -0.8687 -1.3718
-0.5306 -1.5128 -2.9725 -3.3694 -0.1197 -0.4148 -0.6408 -1.1263
-0.5029 -1.6427 -2.2696 -2.9122 -0.5713 -1.8676 -0.8356 -0.8783
-0.5869 -1.5624 -2.5004 -2.6025 -0.8933 -2.1065 -1.1815 -1.4908
-0.1228 -0.8775 -1.5122 -2.2325 -0.5634 -1.6167 -2.0687 -1.9977
-0.7824 -2.1562 -3.0945 -3.5993 -0.2037 -0.6454 -0.4199 -0.9702
-1.0425 -1.5929 -2.1300 -3.3812 -0.6162 -1.9302 -1.5522 -2.4476
-0.7957 -1.1240 -1.6934 -1.7125 -0.6297 -1.7499 -2.3866 -2.9992
-0.4651 -0.5865 -1.3659 -1.5173 -0.4005 -1.6404 -0.8554 -1.0653
-1.0425 -1.5929 -2.1300 -3.3812 -0.5142 -1.7355 -1.6837 -2.2682

1 -0.9658 -2.0950 -1.2829 -2.1932 6 -0.9055 -2.3267 -2.3451 -2.7685
-0.4388 -0.5931 -1.9426 -2.5016 -0.7275 -2.1759 -2.8402 -2.6806
-0.5672 -1.6537 -1.3574 -1.5347 -0.7964 -2.1255 -2.2501 -2.4642
-1.0522 -1.9186 -1.7384 -2.6054 -0.6722 -1.7765 -2.2292 -2.3419
-0.4977 -0.6064 -2.1597 -2.2313 -0.6845 -1.7762 -2.4227 -2.7813
-0.6414 -1.0166 -1.9959 -1.5654 -0.5848 -1.6749 -2.4358 -2.6026
-0.7023 -1.7219 -2.1524 -2.5095 -0.5035 -1.5741 -1.1086 -1.1912
-0.4471 -1.3914 -1.4369 -1.5568 -0.4454 -1.2676 -1.7925 -1.5435
-0.4244 -1.3366 -1.4338 -1.4792 -0.4094 -1.0925 -1.4697 -1.3041
-0.7023 -1.7219 -2.1524 -2.5095 -0.3633 -1.3128 -1.3911 -1.9567

2 -0.6572 -1.8406 -2.5667 -2.8183 7 -0.5463 -2.5881 -1.2971 -1.0401
-0.4815 -1.3490 -1.7566 -2.2298 -0.4587 -1.5924 -1.1766 -1.2614
-0.6837 -2.0042 -2.1906 -2.3070 -0.3822 -0.9514 -0.8138 -0.9193
-0.3027 -1.1202 -0.9520 -1.1614 -0.4779 -1.0316 -1.1939 -1.3275
-0.5410 -1.7060 -2.5592 -2.6933 -0.3420 -1.1836 -0.4196 -0.5944
-0.5700 -1.5972 -1.5402 -1.9165 -0.3882 -1.1475 -0.9619 -1.2487
-0.7971 -2.3029 -2.0170 -2.1833 -0.6782 -1.9913 -4.1816 -2.9037
-0.6354 -1.3915 -1.6110 -2.1873 -0.6399 -1.2115 -3.5607 -2.4207
-0.8255 -1.9726 -1.4281 -1.9260 -0.5778 -1.0725 -2.8141 -2.4701
-0.5657 -1.4750 -1.3342 -1.7823 -0.7404 -1.5460 -3.9903 -3.0858

3 -0.5657 -1.4750 -1.3342 -1.7823 8 -0.6473 -2.0215 -2.4771 -1.9904
-0.3848 -0.9787 -1.4575 -1.9681 -0.6523 -1.3011 -3.0936 -2.2479
-0.4924 -1.1249 -1.0728 -1.2538 -0.5846 -1.1718 -1.8562 -1.9317
-0.6640 -1.4296 -1.5181 -1.9769 -0.7154 -1.4973 -3.5523 -2.2267
-0.5340 -1.8317 -1.0102 -1.2945 -0.6556 -1.3448 -4.1124 -2.2645
-0.7847 -2.1114 -1.7328 -1.8563 -0.7633 -1.4720 -2.8262 -2.9318
-0.5211 -1.4153 -2.1047 -1.8527 -0.4020 -1.2769 -1.7453 -1.1926
-0.0165 -0.6584 -0.7140 -0.4133 -0.5872 -2.0332 -1.8727 -1.3164
-0.3816 -0.9582 -1.1050 -1.1963 -0.5863 -1.0870 -0.9679 -1.0785
-0.3378 -1.1832 -1.8850 -1.7038 -0.4816 -1.0477 -1.6910 -1.6449

4 -0.4918 -2.0253 -2.8666 -1.0549 9 -0.4962 -0.8957 -0.6024 -0.8855
-0.4855 -1.3283 -1.0022 -1.0415 -0.6855 -1.4265 -1.4228 -1.4421
-0.5957 -1.7689 -2.9931 -1.7546 -0.6152 -1.7932 -3.0351 -2.0297
-0.1909 -1.0003 -2.1021 -2.2598 -0.6892 -1.3256 -1.6474 -2.0406
-0.4578 -0.9787 -2.5588 -1.7249 -0.3882 -1.5256 -1.5410 -1.0904
-0.3559 -1.3327 -2.0238 -1.8226 -0.6038 -1.4478 -1.7425 -1.6895

Sample of Features Extracted using Zernike Moments

20Z 2

22Z 2

31Z 2

33Z 20Z 2

22Z 2

31Z 2

33Z

51

Digit F 1 F 2 F 3 F 4 Digit F 1 F 2 F 3 F 4

50.2167 3.8718 16.1974 71.4888 36.2630 5.3922 31.4780 194.2048
32.7182 5.9536 38.3249 260.4306 34.7145 5.6083 34.0012 217.5718
31.6977 6.1323 40.6296 283.9786 47.6684 4.0988 18.1830 85.2292
31.0589 6.2924 42.8580 308.4552 44.6780 4.3563 20.5125 101.9353

0 29.8657 6.5213 45.9780 342.1824 5 36.8113 5.3132 30.5652 185.8412
27.9748 6.9642 52.4418 416.8878 44.3675 4.3929 20.8691 104.6745
28.0678 6.9498 52.2466 414.8044 43.7432 4.4601 21.5202 109.6651
27.2098 7.1757 55.7180 457.0343 43.0862 4.5132 22.0100 113.2482
36.3890 5.3486 30.9218 188.6660 34.9214 5.6003 33.9567 217.6072
28.2377 6.9106 51.6654 407.9751 42.5045 4.5763 22.6326 118.1067
47.2617 4.1319 18.4748 87.2680 45.0185 4.3244 20.2147 99.7348
45.1121 4.3441 20.4452 101.7592 34.3768 5.6480 34.4519 221.6177
44.7041 4.3619 20.5790 102.5231 51.2294 3.8040 15.6481 67.9602
54.6110 3.5838 13.9087 57.0631 43.7343 4.4581 21.4958 109.4442

1 57.1824 3.4168 12.6354 49.3708 6 32.4959 6.0158 39.1760 269.6055
45.7394 4.2631 19.6566 95.7066 35.2245 5.5427 33.2431 210.6178
39.4226 4.9323 26.2862 147.8011 33.0096 5.9162 37.8774 256.1920
47.6489 4.0952 18.1433 84.8985 33.5264 5.8065 36.4460 241.4431
44.0236 4.4203 21.1194 106.4844 35.8625 5.4283 31.8524 197.2657
49.7931 3.9155 16.5815 74.1468 33.6820 5.7874 36.2226 239.3785
32.0893 6.0743 39.9025 276.7614 41.9646 4.6435 23.3163 123.6040
34.3992 5.6565 34.5807 223.0917 36.7353 5.2893 30.2222 182.1493
36.0624 5.4107 31.6710 195.7990 48.0012 4.0498 17.7208 81.8023
29.2992 6.6570 47.9353 364.5183 40.8594 4.7530 24.4011 132.1143

2 28.7609 6.7885 49.8657 386.9464 7 50.7548 3.8445 15.9904 70.2448
36.9143 5.2598 29.8798 179.0006 35.5788 5.4991 32.7447 206.0997
29.3973 6.6374 47.6605 361.4563 39.6699 4.9078 26.0377 145.8020
38.9633 4.9866 26.8622 152.6314 38.1145 5.1010 28.1153 163.4865
28.8922 6.7220 48.8050 373.7141 42.4988 4.5752 22.6177 117.9658
29.4886 6.6141 47.3190 357.5067 36.5995 5.3312 30.7484 187.3071
35.7312 5.4676 32.3541 202.2851 34.0218 5.7567 35.8969 236.6769
30.5943 6.3701 43.8806 319.1389 34.8529 5.5763 33.5942 213.4949
34.8568 5.5777 33.6155 213.7359 32.3283 6.0229 39.2160 269.5122
30.4797 6.3886 44.1232 321.6571 33.8005 5.7535 35.7700 234.6381

3 27.2030 7.1719 55.6432 455.9419 8 38.9541 4.9839 26.8263 152.2684
35.6907 5.4540 32.1545 200.0724 31.9914 6.1079 40.3795 282.0665
43.7070 4.4522 21.4245 108.7969 35.5108 5.4761 32.4047 202.3144
32.9829 5.9057 37.7101 254.1864 35.5157 5.4778 32.4292 202.5867
42.2291 4.6096 22.9680 120.7817 34.3958 5.6552 34.5617 222.8731
35.8475 5.4232 31.7782 196.4486 35.6687 5.4466 32.0458 198.8678
36.9260 5.2636 29.9335 179.5740 34.0949 5.7046 35.1669 228.7455
40.6442 4.7925 24.8329 135.8336 38.3245 5.0736 27.8142 160.8754
39.2642 4.9797 26.8460 152.9527 43.7346 4.4582 21.4971 109.4558
31.9330 6.0834 39.9766 277.0798 47.2262 4.1252 18.4001 86.6410

4 48.0582 4.0604 17.8362 82.7533 9 40.4371 4.8328 25.2811 139.7422
44.7382 4.3692 20.6644 103.2793 43.3915 4.4822 21.7106 110.9565
31.5944 6.1620 41.0451 288.5620 36.9289 5.2646 29.9473 179.7212
33.5127 5.8013 36.3648 240.4851 45.0354 4.3279 20.2561 100.0986
43.4204 4.4887 21.7896 111.6767 38.3274 5.0745 27.8263 160.9994
36.2546 5.3895 31.4383 193.7707 39.9174 4.8820 25.7731 143.6511

Sample of Features Extracted using Contour Sequence Moments

52

Appendix C

Intraclass and Interclass Invariants between Moment Functions

53

Interclass invariants between digits 0, 1, 2 and 3 using geometric moments’ features.

Interclass invariants between digits 6, 7, 8 and 9 using geometric moments’ features.

54

Interclass invariants between digits 0, 1, 2 and 3 using Zernike moments’ features.

Interclass invariants between digits 6, 7, 8 and 9 using Zernike moments’ features.

55

Interclass invariants between digits 0, 1, 2 and 3 using contour sequence moments’

features.

Interclass invariants between digits 6, 7, 8 and 9 using contour sequence moments’

features.

56

Intraclass invariants for 4 samples of digit 3 using geometric moments’ features.

Intraclass invariants for 4 samples of digit 3 using Zernike moments’ features.

57

Intraclass invariants for 4 samples of digit 3 using contour sequence moments’ features.

58

Appendix D

Interface of Prototype System

59

User interface for digit recognition prototype

User interface for computation of geometric moments and graph viewing

60

User interface for computation of Zernike moments and graph viewing

User interface for computation of contour sequence moments and graph viewing

