
EXPERIMENTAL EVALUATION OF HYBRID SOFTWARE ENGINEERING

METHODOLOGY FOR EMBEDDED FIRMWARE DEVELOPMENT ON

INTELLIGENT MOBILE ROBOT

by

Dayang Norhayati Abang Jawawi, Safaai Bin Deris, Rosbi Bin Mamat, Radziah

Mohamed, Mohd Ridzuan Bin Ahmad, Ahmad Zariman Bin Abdul Majid and Ahmad

Ruzaimee Bin Abdul Rashid

Faculty of Computer Science and Information System

Universiti Teknologi Malaysia

2004

Hyperlink to the report contents, please click in the hyperlink to open the report.

CONTENTS HYPERLINK
BORANG PENGESAHAN LAPORAN Borang pengesahan
TITLE
ABSTRACT
ABSTRAK
ACKNOLEDGMENT
CONTENTS

preface

CHAPTER 1 - Introduction Chapter1
CHAPTER 2 - A Hybrid Software Engineering Methodology
For Small-Scale Embedded Firmware Development

Chapter2

CHAPTER 3 - User Requirements Definition Phase for
IMR71848 Intelligent Mobile Robot Software

Chapter3

CHAPTER 4 - Software Requirements Specification for
IMR71848 Intelligent Mobile Robot Software

Chapter4

CHAPTER 5 - Evaluation of Hybrid Software Engineering
Methodology for Development of Embedded Firmware For
Intelligent Autonomous Mobile Robot

Chapter5

APPENDIX A - Intelligent Mobile Robot Software Structure
and Behaviour

AppendixA

VOT 71848

EXPERIMENTAL EVALUATION OF HYBRID SOFTWARE ENGINEERING

METHODOLOGY FOR EMBEDDED FIRMWARE DEVELOPMENT ON

INTELLIGENT MOBILE ROBOT

(PENILAIAN SECARA UJIKAJI METADOLOGI KEJURUTERAN PERISIAN

UNTUK PEMBANGUNAN PERISIAN TERBENAM UNTUK ROBOT

BERGERAK PINTAR)

DAYANG NORHAYATI ABANG JAWAWI

SAFAAI BIN DERIS

ROSBI BIN MAMAT

RADZIAH MOHAMED

MOHD RIDZUAN BIN AHMAD

AHMAD ZARIMAN BIN ABDUL MAJID

AHMAD RUZAIMEE BIN ABDUL RASHID

FACULTY OF COMPUTER SCIENCE AND INFORMATION SYSTEM

UNIVERSITI TEKNOLOGI MALAYSIA

2004

 ii

ABSTRACT

Software development for embedded real-time systems is very much different

from the traditional data processing systems due to non-functional requirements such

as dependability and the presence of timing constraints. Special tools and appropriate

methodologies are therefore highly desirable for the development of embedded real-

time software. Previous work on developing control firmware of Universiti

Teknologi Malaysia wall climbing robot, have faced with the problem of adopting a

single software engineering methodology for developing the robot control firmware,

a methodology called hybrid methodology was proposed. This software engineering

methodology was tested on a wall climbing robot system under hardware-in-the-loop

simulation and was found to be effective and the software produced, conformed to

the requirements. However, a few questions are still need to be answered and

measured in order to fully test the effectiveness of the hybrid methodology on actual

embedded system. The main objective of this research is to evaluate the hybrid

software engineering methodology for developing control firmware on actual system.

An intelligence mobile robot was developed to serve as embedded real-time system

platform. Two main outputs of this research is evaluation results on strengths and

weaknesses of the hybrid software engineering methodology and identification of the

phases in the methodology, which require automation and can be automated.

 iii

ABSTRAK

Proses pembangunan perisian bagi sistem terbenam masa-nyata berbeza

dengan pembangunan perisian bagi sistem pemprosesan data traditional, ini

disebabkan oleh keperluan bukan fungsi seperti keboleharapan dan kekangan

pemasaan. Oleh itu, peralatan istimewa dan metodologi yang bersesuaian sangat

diperlukan untuk pembangunan perisian terbenam masa-nyata. Berdasarkan kerja

pembangunan perisian kawalan bagi satu robot memanjat dinding, yang dibangunkan

di Universiti Teknologi Malaysia, menghadapi masalah menggunakan hanya satu

metodologi pembangunan perisian. Berdasarkan kajian tersebut, satu metodologi

hibrid telah dicadangkan. Metodologi kejuruteraan perisian ini diuji ke atas robot

memanjat dinding dengan menggunakan penyelakuan perkakasan-dalam-gelung dan

hasil daripada pengujian menunjukkan keberkesanan penggunaan metodologi hibrid

yang dapat menghasilkan satu perisian yang menepati keperluan. Walau

bagaimanapun, beberapa persoalan masih perlu dijawab dan pengukuran lanjutan

perlu dibuat untuk menguji keberkesanan metodologi hybrid tersebut, pada sistem

terbenam yang sebenarnya. Sebuah robot bergerak pintar telah dibangunkan untuk

dijadikan dasar kepada sistem masa-nyata terbenam. Dua output utama penyelidikan

ini ialah keputusan penilaian kekuatan dan kelemahan metodologi kejuruteraan

perisian tersebut dan fasa dalam metodologi yang telah dikenalpasti untuk

diautomasikan.

 iv

ACKNOWLEDGEMENTS

We would like to extend our appreciation to Research Management Center,

Universiti Teknologi Malaysia for funding this project

 v

CONTENTS

TITLE i

ABSTRACT ii

ABSTRAK iii

ACKNOWLEDGEMENTS iv

CONTENTS v

1. INTRODUCTION

Overview

General Problem Statement

Objectives

Scope of the Study

Report Outline

1

1

2

3

4

4

2.

A HYBRID SOFTWARE ENGINEERING

METHODOLOGY FOR SMALL-SCALE EMBEDDED

FIRMWARE DEVELOPMENT

Title

6

6

 vi

Abstract

Introduction

Specification of Wall-Climbing Robot Systems

The Hybrid Methodology

WCR Requirement Analysis

The WCR Control Firmware Design

Conclusion

References

6

6

7

8

9

11

13

13

3.

USER REQUIREMENTS DEFINITION PHASE FOR

IMR71848 INTELLIGENT MOBILE ROBOT SOFTWARE

Title

Table of Contents

Introduction

General Description

Specific Requirements

List of User Requirements

List of User Requirements to be Confirmed

14

15

16

16

19

25

32

33

4.

SOFTWARE REQUIREMENTS SPECIFICATION FOR

IMR71848 INTELLIGENT MOBILE ROBOT SOFTWARE

Title

Table of Contents

Introduction

General Description

Specific Requirements

34

34

35

36

39

44

 vii

5. EVALUATION OF HYBRID SOFTWARE ENGINEERING

METHODOLOGY FOR DEVELOPMENT OF EMBEDDED

FIRMWARE FOR INTELLIGENT AUTONOMOUS

MOBILE ROBOT

Title

Abstract

Introduction

Intelligent Mobile Robot Specification

Hybrid Software Engineering Methodology

Evaluation of The Hybrid Se Methodology For IMR71848

Firmware Analysis And Design

Conclusion

References

58

58

58

58

59

60

61

65

66

APPENDIX A 67

CHAPTER I

INTRODUCTION

1.1 Overview

A mobile robot is an autonomous system capable of traversing a terrain, performs its

designated tasks, senses its environment and intelligently reacts to it. As the

complexity and functionality of the robot is increased, such as adding more sensors

to the robot so as to increase its reactivity and intelligence, designing and developing

control software for this type of robot can be very difficult and a challenging task.

Issues related to real-time control, embedded system and artificial intelligence are

involved in the mobile robot software development process. This type of software

must be developed with proper software methodology or well-defined development

process. Typically, the software or firmware is embedded in the onboard controller.

To provide intelligence and reactive action, the robot firmware must sense its

environment with multiple sensors and process the information and taking actions in

real-time.

In a real-time system such as a mobile robot, the correctness of the system depends

not only on the logical results, but also on the time at which the results are produce.

A mobile robot software system is inherently concurrent and multitasking since it has

to react to and process numerous events simultaneously. Embedded system is a

system, which contains microcomputer as a component to do the processing and

control of its environment, but the user does not see the system as a computer. Most

2

embedded systems are real-time systems, in this repost such systems are called

Embedded Real-Time Systems (ERTS). Software development for ERT systems is

very much different from the traditional data processing systems due to non-

functional requirements such as dependability and the presence of hard timing

constraints.

In order to increase the software productivity, maintainability and flexibility in

developing ERT robot software, a proper software engineering needs to be

considered. Proper Software Engineering (SE) methodology ensures the software

development process is manageable, and that reliable and correct program is

constructed.

The purpose of software engineering methodology is to promote a certain approach

to solve software problems. A number of software engineering methodologies

already exist, which targeted toward real-time systems such as Modular Approach to

Software Construction (MASCOT), Design Approach for Real-Time Systems

(DARTS), Structured Analysis and Design for Real-Time Systems (SDRTS), Unified

Modeling Language for Real-Time (UML for Real-time) and Hard Real-Time

Hierarchical Object Oriented Design (HRT-HOOD). Not all of these software

engineering methodologies will support the software development for small-scale

embedded system.

1.2 General Problem Statement

Our previous work on developing control firmware for UTM Wall Climbing Robot

(WCR) have found that adopting of a single complete methodology for ERT

firmware development is not beneficial to the designers due to the some deficiencies

such as inadequately for presenting hard timing constraints, lacking in capability to

represent control oriented systems, methodology complexity and the requirement of

special support tool to implement a methodology. Faced with the problem of

adopting a single methodology for developing small-scale ERT systems, a

methodology called hybrid methodology was developed.

3

A hybrid methodology is proposed for the WCR control firmware development. In

the proposed hybrid methodology, several suitable notations and diagrams taken

from Ward-Mellor Structured Development for Real-Time Systems (Ward-Mellor),

Unified Modeling Language for Real-Time (UML-RT) and Hard Real-Time

Hierarchical Object Oriented Design (HRT-HOOD) methodologies were used to

specify and design the robot control firmware. The idea of combining several

notation and tools from different software engineering methodologies for developing

real-time system is not new. The main advantage of adopting the hybrid method is

that any appropriate notation and diagram can be chosen from different

methodologies for functional and non-functional specification and design. The main

disadvantage is that no CASE tool support is available to assist the use of the hybrid

method. However, due to the scale of WCR project this can be handled manually.

This methodology was tested on UTM-WCR under hardware-in-the-loop

simulation. From the test results it was found that by following the proposed

hybrid method for developing the control firmware, a firmware that conformed to

the requirements set could be developed successfully. The quality of the WCR

control firmware reflects the effectiveness of the hybrid software engineering

methodology and the software tools used in the methodology. However, a few

questions are still need to be answered in the real-robot environment. In order to

fully test the effectiveness of the hybrid methodology on actual system,

measurement and experimental evaluation need to be performed to the outputs of

the methodology.

1.3 Objectives

1. To test the previously developed Hybrid Software Engineering (SE)

methodology for developing control firmware on real system.

2. To reveal the strengths and weaknesses of the hybrid SE methodology.

3. To suggest improvement and modification on the hybrid SE methodology.

4

1.4 Scope of the Study

The scope of this research was limited to the following;

1. The work on this project will be mainly on software engineering aspect of

intelligence mobile robot. Robot building is not part of this project.

2. Software development process will be based on previously developed

Hybrid SE methodology. Other methodology will not be evaluated in this

study.

1.5 Report Outline

Chapter II discusses the hybrid software engineering methodology that was proposed

for developing the WCR control firmware. In this Chapter, the modeling and the

design of the WCR firmware using the hybrid real-time software methodology will

be presented.

Chapter III describes the specification of the intelligent mobile robot used as the

platform of the methodology evaluation. This specification was prepared based on a

study on performed by the 71848 group members and documented as a research

group’s technical report titled “Intelligent Mobile Robot Software Structure and

Behaviour”. The report is enclosed in Appendix A. In order to define and describe

the internal and external behaviour of the robot firmware, a User Requirements

Definition Phase for IMR71848 Intelligent Mobile Robot Software (URD-

IMR71848) document was prepared. The user requirement document follows the

guidelines and format produced by the European Space Agency which relevant to

IEEE/ANSI 830-1984 Standard. This requirement document is part of the output

from the hybrid methodology.

5

In Chapter IV, the models and techniques used in the hybrid analysis were used to

produce a detailed specification document for the IMR71848 robot firmware

requirement analysis. This document, called Software Requirements Specification for

IMR71848 Intelligent Mobile Robot Software (SRS-IMR71848). The specification

document provides the analysis results of software requirements for the IMR71848

robot firmware. The software requirement document follows the guidelines and

format produced by the European Space Agency which relevant to IEEE/ANSI 830-

1984 Standard.

Finally in Chapter V will discuss the evaluation results of the hybrid software

engineering methodology. There are two levels of evaluation, at analysis and design

phase and at the implementation phase.

A HYBRID SOFTWARE ENGINEERING METHODOLOGY FOR
SMALL-SCALE EMBEDDED FIRMWARE DEVELOPMENT

Dayang Norhayati Abang Jawawi,a Radziah Mohamada, Safaai Derisa, Rosbi Mamatb

aFaculty of Computer Science and Information System, Universiti Teknologi Malaysia,
81310 Johor Bahru, Malaysia

bDepartment of Mechatronics and Robotics Engineering, Faculty of Electrical Engineering, Universiti

Teknologi Malaysia, 81310 Johor Bahru, Malaysia.

Abstract

Embedded real-time (ERT) systems require rather sophisticated software development, as
the software is in a tight coupling with its physical environment and it must respond to
real-time events under strict timing constraints. Special tools and appropriate software
engineering methodologies are therefore highly desirable for the development of ERT
software, in order to produce software that is not only satisfied the functional and
performance requirements, but also reliable, easy to maintain, completed within the
specified time frame and at a reasonable cost. A software engineering methodology
provides notations, methods and tools to assist a software developer. Adoption of a single
complete methodology for small-scale ERT firmware development is not beneficial to the
designers due to the some deficiencies such as inadequately for presenting timing
constraints, methodology complexity and the requirement of special support tool to
implement a methodology. Faced with the problem of adopting a single methodology for
developing small-scale ERT systems, a methodology called hybrid method is developed.
A wall-climbing robot (WCR) system under development at Universiti Teknologi
Malaysia (UTM) is an example of small-scale ERT system. This paper discussed the use
of a hybrid software engineering methodology in developing firmware for the WCR
control firmware.

Keywords: software engineering methodology, embedded systems and real-time system.

Introduction

Embedded real-time (ERT) system is a system, which contains microcomputer as a
component to do the processing and control of its environment, but the user does not see
the system as a computer. Software development for ERT systems is very much different
from the traditional data processing systems due to non-functional requirements such as
dependability and the presence of hard timing constraints. Therefore, special software
tools and appropriate software engineering methodologies are therefore highly desirable
for the development of ERT software.

The purpose of software engineering methodology is to promote a certain approach to
solve software problems. A number of software engineering methodologies already exist,
which targeted toward real-time systems such as Modular Approach to Software
Construction (MASCOT), Design Approach for Real-Time Systems (DARTS),

Advanced Technology Congress, May 20-21, 2003, Putrajaya 7

Structured Analysis and Design for Real-Time Systems (SDRTS), Unified Modeling
Language for Real-Time (UML for Real-time) and Hard Real-Time Hierarchical Object
Oriented Design (HRT-HOOD). Not all of these software engineering methodologies will
support the software development for small-scale embedded system.

Adoption of a single complete methodology for small-scale ERT firmware development
is not beneficial to the designers due to the some deficiencies such as inadequately for
presenting hard timing constraints, lacking in capability to represent control oriented
systems, methodology complexity and the requirement of special support tool to
implement a methodology. Faced with the problem of adopting a single methodology for
developing small-scale ERT systems, a methodology called hybrid methodology is
developed. In the developed hybrid methodology, several suitable notations and diagrams
taken from Ward-Mellor Structured Development for Real-Time Systems [1], Unified
Modeling Language for Real-Time [2] and Hard Real-Time Hierarchical Object Oriented
Design [3] methodologies were used to specify and design a small-scale ERT firmware.

A wall-climbing robot (WCR) system under development at Universiti Teknologi
Malaysia (UTM) is an example of small-scale ERT system. This paper discussed the use
of a hybrid software engineering methodology in developing firmware for the WCR
control firmware. This paper is organised as follows. Next Section presents the
specifications of the WCR controller hardware and firmware. Some issues, which will
influence the firmware development process, will be highlighted in the same Section. The
analysis and the design modeling of the WCR firmware using the hybrid ERT software
methodology will be presented in the following Section in detail. Finally, the paper will
be concluded in Section 5.

Specification of Wall-Climbing Robot Systems

The UTM WCR consists of a body and four similar associated electronics, and others
load. Each leg has three joints, which will give a three-degree of freedom movement for
each leg. Each joint is move by a direct-current (DC) motor and position sensors measure
the angles of movement for each joint. At the tips of each leg there is a suction pad,
which will stick the robot on the wall. Pressure sensors monitor the pressure inside the
suction pads. Proximity sensors and collision sensors detect obstacles around the robot.
The robot can be moved forward and backward by making a sequence of predefined
steps.

The block diagram of the embedded controller for the WCR is shown in Fig. 1. The
embedded controller is based on Intel 801C88XL microcontroller with 64K EPROM and
64K RAM. The main function of the control firmware is to move the four legs of the
robot with a predefined sequence during climbing operation and monitor its environment
and react to it intelligently.

The environment of WCR must be monitored, typically, every half a second to detect the
presence of obstacles using the collision and the proximity sensors during the forward

Advanced Technology Congress, May 20-21, 2003, Putrajaya 8

and reverse movement of the robot. At each sampling period, the control signals to the
DC motors are calculated using the proportional-derivative (PD) control algorithm. The
current position of each leg joint is sensed using the position sensors and fed back to the
embedded controller. The computation of the control signal typically, must be completed
within 100 milliseconds to ensure the correct movement of the legs. The embedded
controller also communicates with a remote PC to receive commands and sending back
information via a serial communication link.

The main functional operation of the control firmware can roughly be divided into four
major tasks: high-level navigation, environment monitoring, motor control and serial
communication with remote PC. To satisfy the multi-tasking requirements for these
major tasks, a real-time kernel is used in the control firmware.

To ensure the quality of WCR control software, the WCR development process should
address the issues targeted toward the WCR system. Some issues, which will influence
the software tools and software development process of the WCR firmware are; small-
scale system limitations, concurrency and multitasking, hard real-time requirement,
evolving nature of the WCR requirement and target hardware system.

The Hybrid Methodology

A hybrid methodology is proposed for the WCR control firmware development. In the
proposed hybrid methodology, several suitable notations and diagrams taken from Ward-
Mellor Structured Development for Real-Time Systems (Ward-Mellor), Unified
Modeling Language for Real-Time (UML-RT) and Hard Real-Time Hierarchical Object
Oriented Design (HRT-HOOD) methodologies were used to specify and design the robot
control firmware. The models and techniques used in the hybrid analysis and design
method are summarised in Table 1. In the specification stage the notations and diagrams

Fig. 1: Block diagram of the WCR controller.

Embedded
 controller

D
/
A
A
/
D

Position
sensor

D
/
A
A
/
D

Position
sensor

D
/
A
A
/
D

Position
sensor

Leg # 1

Leg
2

Leg
 # 4

Leg
3

PC

Serial
comm.

Proximity
sensor

Collision
sensor

Pressure
sensor

motor 1

motor 2

motor 3

Advanced Technology Congress, May 20-21, 2003, Putrajaya 9

from Ward-Mellor and HRT-HOOD were used. In the design stage notations and
diagrams from UML-RT and HRT-HOOD were used.

No. Modeling stage Techniques and tools used Methodology used
1. Environment model Outside-in structuring Ward-Mellor
 Tools

Context diagram
Event list table
Timing estimation table

Ward-Mellor
Ward-Mellor
HRT-HOOD

2. Behavioural model
2.1. First level decomposition Structured-object model HRT-HOOD
 Tools

Data flow diagram
Functional group table

Ward-Mellor
HRT-HOOD

2.2. Detail functions
decomposition

Tools
Data flow diagram

Ward-Mellor

2.3. Non-functional
decomposition

Tools
Event-response table
State transition diagram
Sequence diagram

Ward-Mellor
Ward-Mellor
UML-RT

3. Design
3.1. Tasks decomposition and

task behavioural
Tools

Statechart diagram

UML-RT

3.2. Task communication and
synchronisation

Tools
Task diagram

-

3.3. Timing Performance Tools
Priority table

HRT-HOOD

The idea of combining several notation and tools from different software engineering
methodologies for developing real-time system is not new. The main advantage of
adopting the hybrid method is that any appropriate notation and diagram can be chosen
from different methodologies for functional and non-functional specification and design.
The main disadvantage is that no CASE tool support is available to assist the use of the
hybrid method. However, due to the scale of WCR project this can be handled manually.

The nature of the evolving WCR project make the iterative and incremental process
model is more suitable to be used. Therefore in the development of the robot control
firmware the incremental process model is adopted. Incremental process model combine
elements of linear sequential model with the iterative prototyping, which enable software
engineer to develop increasingly more complete version of the software [4].

WCR Requirement Analysis

The first stage in software development work is to capture the requirements of the WCR
application. The purpose of this requirement capture is to obtain a description of WCR
control system, which implies a transfer of information and expertise of UTM four-
legged WCR from UTM Mobile Robot Research Group (MRRG). Based on the captured

Table 1 : The models and techniques used in the WCR firmware specification analysis and design.

Advanced Technology Congress, May 20-21, 2003, Putrajaya 10

requirement, the analysis of the WCR control firmware will be modeled using
environment model and behavioural model.

The environment model is used to build a clear model of the robot environment in this
specification analysis phase. The notations used in the environment model consist of:

• Context diagram defines the external objects or external devices in the robot
system environment, shown in Fig. 2.

• Event lists table aims to list all the possible objects and functions in the system for
further analysis and in the design stage.

• Object timing estimation table, which the timing specification for each object in
the environment was estimated, shown in Table 2.

Robot Legs
Controlled

System

Operator Collision
Sensors

Infrared (IR)
Sensors

Pressure
Sensors

Motor
Position
Sensors

DC Motors

Remote
PC

Pressure
Pumps

collision
status

obstacle
existence status

 pressure
status

current
legs

position

E/D
target

 legs position
control signal

Direction

system
status

on/off system
status

* There are 3
motor at each
leg *

* There are 4
vacuum pumps ** There are 12

position sensors *

* There are 4
pressure sensors *

* There are 2
IR sensors *

* There are 2
collision sensors *

 Monitor
Environment

1

Monitor Motor
2

Monitor Serial
Communication

3

Sensory Data

High Level
Monitoring

4

Direction

Target Angles

Control
Signals

Current
 Positions

System status

Operator
Console

5

System
status

operator
setting

Environment
status

Direction

Diagnostic Code

Object Min.-max. times
Collision Sensors – reading sensors 0.5 sec – 20 sec
Infrared (IR) Sensors – reading sensors 2 sec – 30 sec
Pressure Sensors – reading sensors 10 sec – 30 sec
Pressure Pumps – activate or deactivate suction pads 20 sec – 1 min
Motor Position Sensors – read sensors 5 millisec - 20 millisec
DC Motors – increase or decrease joint angles 50 millisec – 100 millisec
Remote PC – received or send data 1 sec – 10 sec
Operator – display system status 10-30sec

From the analysis of the environment model, the WCR control firmware can be divided
into five main functional operations: Monitor Environment, Monitor Motor, Monitor
Serial Communication, High-level Monitoring and Operator Console. The behaviour of
the WCR transformation between the functions was presented using the Ward-Mellor
first level data flow diagram (DFD) shown in Fig. 3. For the WCR analysis, data flow
diagram (DFD) was used to make the analysis easier to understand. The software engineer
and the system engineer can easily produce and understand this diagram and the
correctness of this diagram is very important for the specification of the timing constraint
in the next stage. The first level of the system behavior is then detailed by the Ward-
Mellor’s second level decomposition of each module.

Fig. 2: WCR control system context diagram. Fig.3: First levels DFD for the WCR control system.

Table 2 : Minimum and maximum time for each object.

Advanced Technology Congress, May 20-21, 2003, Putrajaya 11

State transition diagram (STD) is used together with sequence diagram to model the
behaviour of the robot system such as the control flow in the robot system. Example of
the STD and the sequence diagram for event “Operator switch ON” with no error
condition from the diagnostic test are shown in Fig. 4 and Fig. 5 respectively.

OFF

SELF DIAGNOSTIC

on
E: scanners
E: self diagnostic

DISPLAY
DIAGNOSTIC

RESULTS

self diagnistic completed

E: display system information
D: self diagnostic

ACTIVATE SUCTION
PADS

self diagnistic without error

E: activate suction pads

self diadgnostic
indecate error

D: scanners

home position completed

E: serial comm.

SET HOME
POSITION

suction pad setting completed

E: motor setting

WAITING FOR PC
COMMANDS

Operator
HLM Serial

Communication
Motors
Control

Operator switch on the robot system.
No error on the diagnostic test

Request START

Self diagnostic
request

wait for PC
command

active control motor request,
 and move Homeposition

Diagnostic results

activate all pads pressure
assign Home home position

active serial comm. request

ON robot

The WCR Control Firmware Design

Based on the robot software requirement analysis, at this stage the robot behaviour and
the robot constraints need to be presented in more detail, so that the design can be
translated directly to coding pattern. The robot firmware was designed according to three
design issues; tasks decomposition and task behavioural, task communication and
synchronization and timing performance.

From the WCR environment and behavioural model, it was clear that concurrent module
or processes presence in the operation of the robot. The five concurrent processes are
operator console, environment monitoring, PC communication, motor control and high
level control. From these concurrent modules, further tasks decomposition need to be
performed in order to divide the processes into smaller and manageable tasks and

Fig. 4: Operator switch “on” STD.

Fig. 5: Operator switch “on” sequence diagram.

Advanced Technology Congress, May 20-21, 2003, Putrajaya 12

functions, consequently transferred to tasks code to be scheduled by a real-time kernel.
Further task decomposition is performed, by detailing the WCR behavioural model using
statechart. The statecharts for the WCR control firmware environment monitoring module
are shown in Fig. 6.

Enable Monitor Environment

Reading
Collusion

Status

Off

enable monitor
environment

disable monitor
environment

Setting Env.
Status

[isDone]

Reading
Obstacle

Status

Waiting
for Delay

tm[Cdelay]

Waiting
for Delay

tm[Odelay]

[isDone]

Waiting
for Delay

[isDone]

tm[Envdelay]

H H

H

Task diagram is used to show the tasks synchronisation, shared data or interfaces between
tasks. From the task diagram Fig. 7, the design was divided based on the five main
function groups derived from requirement analysis stage. In each function module the
inner state are called substate. The basic state types for the climbing robot are cyclic (C),
function (F) and protected (Pr). All states with function and protected type will be called
by other state, the calling process is shown by arrow between the state. Only cyclic tasks
will not be called, this is because after the creation of the cyclic task, they will cycle
forever until the firmware is terminated.

 Motor Control

 Monitor Environment

 Serial Communication

 High Level Control

 Operator Console

C ScanCollision

C ScanObstacle

EnvStatus

Pr ClimbRobot

C MotorCtrl

F WriteDAC

F ReadADC

F SenseLegPosition

Ta
rg

et
A

ng
le

C ScanEnvironment

F MaintainSPPressure

F ReadPressure

F DeactivateSP F ActivateSP

C SerialComm

Pr GetSerialComm

Pr PutSerialComm

diagcode

Pr ReadCollisionSensor

Pr ReadObstacleSensor

Direction

Pr SelfDiagnostic

Pr OperatorDisplay

Pr OperatorSetting

Pr RTKSetting

CollisionStatus

ObstacleStatus

C Shutdown

shutdownstatus

C HLC

Fig. 6: Statechart for environment monitoring module.

Fig. 7: Wall-climbing robot tasks diagram.

Advanced Technology Congress, May 20-21, 2003, Putrajaya 13

Each task is created in different module, dotted arrow shows the module create the task in
other module, for example module High Level Control created cyclic tasks called
MotorCtrl task, ScanEnvironment task and SerialComm task. Shared data between tasks
and modules are shown using data store box and the flow of the data transformation is
shown using double arrow. For example, TargetAngle data is generated by ClimbRobot
function and read by MotorCtrl task.

Seven concurrent tasks were identified from task diagram in Fig. 7. In order to schedule
the execution of the seven tasks using a preemptive real-time kernel, the priority of each
task needs to be assigned. The timing constraints information derived from the WCR
control firmware specification was used in the assigning tasks priority process. The
timing of the seven tasks was analysed using Rate Monotonic Scheduling (RMS)
technique to initialise priorities for each task. Basically, in RMS technique the tasks with
the highest rate of execution are given the highest priority. Based on this, the priority for
each task is assigned the priority.

CONCLUSION

A hybrid software engineering methodology was proposed for the WCR control firmware
development. The WCR firmware hybrid analysis and design flow are presented in detail
in this paper. Software engineering methods, models and techniques used in the WCR
control firmware specification analysis and design were also discussed. Based on the
WCR firmware design, the implementation stage is to gradually develop the firmware
part by part by building more and more functionality and non-functionality of the WCR
control firmware using software tools: Borland C/C++ 3.1 compiler, ROM locator for
generating ROMable code and µC/OS-II real-time kernel. A hardware-in-the-loop
simulation method is used for testing the implemented firmware. From the test results it
was found that by following the proposed hybrid method for developing the control
firmware, a firmware that conformed to the requirements set could be developed
successfully. The quality of the WCR control firmware reflects the effectiveness of the
hybrid software engineering methodology and the software tools used in the
methodology.

References

1. Ward, P. T. And Mellor, S. J. (1985). “Structured Development For Real-Time Systems”, Volume 1-3,

New York: Yourdon Press.
2. Douglass B. P. (1998). Real-Time UML Developing Efficient Object For Embedded Systems, USA:

Addison Wesley.
3. Burns A., Wellings A. J. (1995).HRT-HOOD: A Structured Design Method For Hard Real-Time

System, Volume 3, Elsevier.
4. Pressman, Roger S. (1997). “Software Engineering A Practitioner ‘S Approach”. Forth Edision. New

York, U.S.A.: Mcgraw-Hill.

User Requirements Definition Phase for
IMR71848 Intelligent Mobile Robot
Software

Document ID : URD-IMR71848
First Issue – august 2003

Prepared: Dyg. Norhayati Abg.

Jawawi, FSKSM, UTM
Date: 19 August 2003 Signature

Approved: Mohd Ridzuan Bin Ahmad Date: Signature

This document contains preliminary information. It subjects to revision and therefore does not
represent a final report. The information in this document represents the view of the UTM Vot 71848
project research group.

URD-IMR71848

Copyright 2003 Vot 71848 Group 2

TABLE OF CONTENTS

1 INTRODUCTION ..3
1.1 PURPOSE..3
1.2 SCOPE..3
1.3 DEFINITIONS, ACRONYMS AND ABBREVIATIONS ..4
1.4 REFERENCES ...4
1.5 OVERVIEW ..5

2 GENERAL DESCRIPTION ..6
2.1 PRODUCT PERSPECTIVE...6
2.2 GENERAL CAPABILITIES..6
2.3 GENERAL CONSTRAINTS ...8
2.4 USER CHARACTERISTICS ...9
2.5 OPERATIONAL ENVIRONMENT...9
2.6 ASSUMPTIONS AND DEPENDENCIES...11

3 SPECIFIC REQUIREMENTS ..12
3.1 CRUISE ..13
3.2 COMMUNICATION WITH EXTERNAL PC...14
3.3 SENSOR MONITORING ..15
3.4 HIGH-LEVEL CONTROL..16
3.5 CAPABILITY REQUIREMENTS...17
3.6 CONSTRAINTS REQUIREMENTS..18

3.6.1 Communication interfaces...18
3.6.2 Hardware Interfaces..18
3.6.3 Human-computer Interfaces (user interfaces)..18

APPENDIX A: LIST OF USER REQUIREMENTS ..19

APPENDIX B: LIST OF USER REQUIREMENTS TO BE CONFIRMED...................................20

URD-IMR71848

Copyright 2003 Vot 71848 Group 3

User Requirements Definition Phase for Intelligent Mobile Robot

Software

Abstract: This report describes a set of user requirements that apply to embedded

software of a mobile Robot. This user requirement is prepared for the research Vot

71848 (Title - Experimental Evaluation of Hybrid Software Engineering Methodology

for Embedded Firmware Development on Intelligence Mobile Robot) Research

Group.

1 INTRODUCTION

1.1 Purpose

This document provides a definition of user requirements for the embedded software

of an intelligent mobile robot. This software user requirement report is being prepared

as part of a working group in UTM Vot 71848 Research Group (UTM71848RG).

Since these requirements are also connected to other user system requirements such as

the robot hardware and mechanical system, some of the requirements may need to be

adjusted, after review of the other work components. As such, it is an evolving

document and is expected to undergo further review and refinement.

1.2 Scope

The software produced from this requirement will be called Intelligent Mobile Robot

for 71848 research or called IMR71848 software. The IMR71848 software will be

produce under the name of UTM71848RG. The software will be used to evaluate a

hybrid software engineering methodology in intelligent mobile robot domain.

At this phase of the robot software development, there is no specific application

targeted for the robot. The goal of this software is to control the movement the

intelligent mobile robot in finding a passage and exiting through the passage. This

URD-IMR71848

Copyright 2003 Vot 71848 Group 4

software requirement is mainly based on part of software robot requirement of a

mobile robot, which is developed at UTM by [1] [2].

1.3 Definitions, Acronyms and Abbreviations

Priority - a mechanism used to order the request to run any task.

UTM – Universiti Teknologi Malaysia

UTM71848RG – UTM Vot 71848 Research Group

LCD - Liquid Crystal Display

LED – Light Emitting Diod

DC - Direct Current

IR - Infrared

I/O – Input and output

IMR - Intelligent Mobile Robot

ADC – Analog to Digital Converter

DAC – Digital to Analog Converter

UR – User Requirement

TBC – To Be Confirmed

1.4 References

[1] Mohd Ridzuan Bin Ahmad, “Development of Reactive-Decentralized Control

Algorithm for Intelligent Multi-Agent Robotics System in Cooperative Task

Achievement”, Master of Engineering thesis, Faculty of Electrical

Engineering, Universiti Teknologi Malaysia, August 2003.

[2] Dyg. Norhayati Abg. Jawawi, Ahmad Zariman Abd. Majid, Ahmad Ruzaimee

Abd. Rashid, “Intelligent Mobile Robot Structure and Behaviour”, Technical

Report VOT71848, Faculty of Computer Science and Information System,

Universiti Teknologi Malaysia.

[3] Nenad M. Kircanski, Mobile Robotics Systems, University of Toronto, CRC

Press LLC, 2002.

URD-IMR71848

Copyright 2003 Vot 71848 Group 5

[4] Brooks R. A. (1986). “A Robust Layered Control System for a Mobile Robot”,

IEEE Journal of Robotics and Automation, Vol. RA-2, No.1

[5] Thomas Braunl, (2003). “Embedded Robotics – Mobile Robot Design and

Applications with Embedded Systems”, Springer

1.5 Overview

Kircanski defined mobile robot and intelligent mobile robot as followed [3]:

“A mobile robot is an autonomous system capable of traversing a terrain with
natural or artificial obstacles.”

“By the term intelligent in intelligent mobile robot means that the navigation
is "task-oriented" and that it is based on dynamically sensing and modeling
the external world.”

Based on the definition the UTM71848RG proposed a wheeled mobile robot capable

of traversing in an environment, which is surrounded by four walls. The goal or task

of the robot is to find a passage and exiting through the passage. Therefore, the goal

of this Intelligent Mobile Robot (IMR) software is to control the movement the robot

in finding a passage and exiting through the passage.

The IMR71848 software requirements have been partitioned into the following

categories:

1) General description and background of the IMR software

2) Specific requirements include the software functional capability, performance and

constraints. The specific software requirements in discussed in the following sub-

title:

(a) Cruise

(b) Monitor Sensor

(c) High-level navigation

(d) Communication

Each of the above areas is discussed in the remaining sections of this report.

URD-IMR71848

Copyright 2003 Vot 71848 Group 6

2 GENERAL DESCRIPTION

2.1 Product Perspective

The software product is a new software product for this particular UTM robot

implementation i.e. the software product is not to replace an existing system. The

software product is not standalone and it has to communicate with other part of

software product such as intelligence robot software. The software also has to interact

with other system components such as embedded controller, remote PC and the

environment through sensors.

2.2 General Capabilities

The IMR71848 software must capable to control the movement the robot in finding a

passage and exiting through the passage. During the cruising process, the IMR71848

software must support the intelligent components of the robot in order to ensure that

the robot can response to the conditions in the environment in archiving the robot

goal.

The mechanical construction of the robot is shown in Figure 1 and the side view of

the robot is shown in Figure 2. The IMR consists of a body and two pair of wheels.

The robot’s body is a three layers platform including a ground layer. The body carries

the embedded controller and its associated electronics, and others load. The

IMR71848 robot is a differential drive design robot. The cruising of the robot is

supported a pair of drive wheels and a pair of castor wheels. Each drive wheels is

move by a direct-current (DC) and the castor wheels are placed at the robot for

stabilization of the IMR. The software is responsible to control the DC motors, in

order control the movement of the IMR71848.

The software will be embedded into the AMD188ES embedded controller component

of the robot. The embedded controller for the IMR can be represented in block

diagram form as shown in Figure 2. The main function of the embedded digital

controller is to move the wheels of the robot until the robot archive the goal. In order

URD-IMR71848

Copyright 2003 Vot 71848 Group 7

to move the robot and archive the robot’s goal, the software need to control the motor

at each robot drive wheels, monitor the environments and navigate the robot. The

embedded controller monitors its environment using four infrared (IR) proximity

sensors, an infrared distance sensor and a digital camera. The embedded controller

receives configuration commands and sends back information to a remote PC using

wireless communication via Radio Frequency (RF) transceiver.

300 MM

155 MM

150 MM

Figure 1: The Mechanical Construction Of The IMR.

Figure 2: The side view of the IMR Robot.

URD-IMR71848

Copyright 2003 Vot 71848 Group 8

AMD188ES
Embedded
Controller

East IR Proximity
Sensor

West IR Proximity
Sensor

South IR Proximity
Sensor

North IR Proximity
Sensor

D/A

Encoder

M Left Motor

Right Motor

m
ot

or
 D

riv
er

D/A

Encoder

M

m
ot

or
 D

riv
er

IR Distance
Sensor

RF Transceiver

digital
camera

Figure 3 : Block diagram of IMR controller.

2.3 General Constraints

The embedded software will control the functionality of the hardware (e.g. sensors

and motors). The software development will not consider the detail specification of

the hardware, only the specification that related to interfacing of the software and the

hardware will be considered.

Another limitation that will be considered in the software development process is the

hardware capability and size of the system such as memory and processor capabilities.

These limitations will influence the selection of tools and methods used in the

software development. It also limits the code size of the software produce.

To enables the use of good quality and low cost PC based C compilers such as from

Borland and Microsoft in the software development, the developments process will be

done in PC and the real external world input and output will be simulate.

The IMR71848 software project in under research project vot 71848, therefore the

software project development period and budget is limited under the grant funding.

The software development process is limited until 15 September 2003. The financial

URD-IMR71848

Copyright 2003 Vot 71848 Group 9

budget of the software development limited to RM13000. This budget includes

software development tools and robot hardware.

2.4 User Characteristics

The operator the system are technician and engineer, the involvement of the operator

is listed in Table 1.

 Technician Engineer
Involvement phase Operation, testing, maintenance User requirements, operation,

testing, maintenance
Education level Minimum SPM Minimum B.Sc.
Experience with
such system

1-5 years 1-6 years

Language Malay Malay, English
Table 1: Operator the system

2.5 Operational Environment

The robot software is highly coupled to the external world. The relationship between

the control software and the external devices is shown in Figure 2. Human operator

starts or stops the robot through switch on/off button. Once the robot system is

switched on the following operations with external devices need to be performed by

the IMR71848 software:

1. Cruise. The robot movement needs to be controlled by sending commands to

motor driver unit based on the environment monitoring.

2. Sensors monitoring. The environment must be monitored to detect the presence

of obstacles using proximity sensors, distance sensor and digital camera.

3. High-level control. To navigate the robot intelligently toward the robot goal

location and acknowledge the completion of the task.

4. Communication. The robot receives information from remote PC and sends

robot information back to remote PC.

The experiment environment of the mobile robot is indoor environment. The robot’s

environment is surrounded with walls except for the doorway passage. Figure 3 shows

the experiment environment of the IMR71848. The IMR71848 cruise around the

URD-IMR71848

Copyright 2003 Vot 71848 Group 10

environment to find the passage. The robot needs to avoid obstacle exist within its

environment.

Embedded
controller

Motor Driver
unit (2)

motor command,
speed seeting

Encoder (2)

IR Distance
Sensor

RF
Transceiver

Proximity
sensors (4)

speed

proximity
readingobstacle

distance

information

digital camera image

LCD Display

Swich

robot status

go/stop

Figure 2 : Graph showing external devices.

 WALL
DOOR

PASSAGE

200 CM

200 CM

70 CM

70 CM

Figure 3 : Experiment environment of IMR71848.

URD-IMR71848

Copyright 2003 Vot 71848 Group 11

2.6 Assumptions and Dependencies

It is assume for this requirements the requirements will be validated for the real

controller system i.e. this requirement is applicable for software on embedded

controller not only on PC. The end software product of the robot has to be tested at

the embedded controller level. If the controller or hardware is not ready in the

software-testing phase, a mechanism such as simulation of the hardware must be

provided in this software development process. The requirements of the simulation

software will not be consider in this requirement.

The success of meeting milestone date setup at each development phase for this

software depend on the following events:

• Non-availability of RTOS when the development have to be started

• Non-availability of hardware or robot controller when the implementation and

testing of the embedded software need to be started.

• Lack of skill of the development team to new experience and new tools – RTOS,

Real-time methodologies selected, C programming for microcontroller systems

and hardware programming

• Major changes in the robot requirements during the process of software

development

URD-IMR71848

Copyright 2003 Vot 71848 Group 12

3 SPECIFIC REQUIREMENTS

The IMR7848 is a wheeled robot that capable to move around its environment in

archiving the robot following goals:

• Finding a passage

• Exiting through the passage

• Avoid obstacles

• Maintain the robot at certain speed

The IMR7848 software is to move the wheels of the robot until the robot archive the

robot’s goals (UR1). In order to move the robot and archive the robot’s goal, the

software need to control the DC motors at each robot drive wheels, monitor the

environments and navigate the robot.

The program starts to operate when the user switches on the robot and end when the

user switches off the robot (UR2). Once the robot system is switched, the main

operation of the robot software is divided into four main groups (UR3) as follows:

i. Cruise. This software component enables the IMR to move around its

environment. This module needs to send command to motor driver based on the

movement commands received from high-level navigation module.

ii. Monitor sensors. Based from the reading from the sensors, this component

software presented the environment status for high-level navigation module.

iii. High-level Control. In archiving the robot’s goal, this module supports the

intelligent component of the robot. Based on the environment status received

from monitor sensors module, this module will decide the behaviour of the

robot. Based on this behaviour the movement of the robot will be identified.

iv. Communication. The robot configuration send to the robot through wireless

communication, based on this configuration the robot will be configure before

the robot journey started. The robot movement and sensor data will be

monitored using the remote PC.

The summary of the three functional operation of the robot controller is presented in

Figure 4.

URD-IMR71848

Copyright 2003 Vot 71848 Group 13

Environment

Monitor
Sensors

Cruise High-level
ControlRobot

Motors

Sensory Data

EnvironmentStatus

motors

command

Timing

 pulses

movement
commands

speed

PC

Communication

robot
configuration

robot
information

speed
robot
configuration

Figure 4: Interaction between the robot functional operation.

3.1 Cruise

Cruise software component control the IMR71848 movement around the robot

environment (UR4). Based on movement commands that are received from High-

level control module, the IMR71848 motor will be control in order to control the

IMR71848 movement (UR5). Movement commands elements are (UR6):

1. Status: stop or go

2. Direction: straight or turning

The direction movement of the robot can be classified into two (UR7):

• Straight – two types of direction forward or backward.

• Turning – either left or right and each turning is 45 degree.

During straight line cruising, IMR7848 software needs to maintain the robot at

constant speed level of TBC01. To make a right turn the speed of the left motor

(TBC02) is faster than the right motor (TBC02). To make a left turn the speed of the

right motor (TBC03) is faster than the left motor (TBC03).

URD-IMR71848

Copyright 2003 Vot 71848 Group 14

This cruise module received tuning pulses from encoder in the robot motor. This

module is responsible to change the tuning pulses reading to speed value of the motor

(UR8).

Based on the received movement command from high-level navigation module and

the current speed of the motor, at each sampling period the control signals to the DC

motors are calculated using the proportional-integral (PI) control algorithm (UR9):

Where,

 u(t) is the control signal at time t

e(t) is the error between the target speed and the current speed at time t

 Kp and Ki are constants for each motor.

The computation of the control signal must be completed within 100 milliseconds to

ensure the constant speed of the robot (UR10).

3.2 Communication with External PC

To monitor the movement of the IMR17848 robot, it is communicated to a remote PC.

The IMR17848 communicates with a remote PC to receive configuration commands

and sending back information via a Radio Frequency (RF) transceiver (UR11).

Configuration commands are the setting up of the robot before the robot starts it

movement (UR12). Information that sends to the remote PC is the robot speed and

direction (UR13).

In IMR17848 software design, the designer doesn’t really care what software on the

remote PC does. The designer just concern with the controller on the robot and how it

interface. The remote PC software will be specified in other document.

() () ()p iu t K e t K e t dt= + ∫

URD-IMR71848

Copyright 2003 Vot 71848 Group 15

3.3 Sensor monitoring

The embedded controller monitors its environment using some sensors. The sensors

provide information for the IMR7848 software to enable the software to eliminate

interferences due to the collision with obstacles and walls (UR14). Besides, the

sensors help the robot to plan its movement (UR15). The robot environment is

monitored using:

1. Four IR proximity sensors to detect the presence of obstacles during the forward

and reverse movement of the robot (UR16).

2. An IR distance sensor to estimate the distance of obstacles and walls from the

robot current location (UR17).

3. A digital camera to detect shape of objects in the robot’s environment (UR18).

The implementation of IMR7848 software is divided into three main incremental

phases based on the sensors and communication introduced to the robot. The phases

suggested are as shown in Table 2.

Phase Sensor added Robot Capability
Basic IR proximity Find wall and follow the walls to detect

passage.
Medium IR distance, RF

transceiver
Differentiate wall and other static
obstacle.

Advanced Digital camera TBC
Table 2: The IMR71848 incremental phases.

The requirement specified in this document will cover basic and medium phase in

detail, the implementation of the advanced phase will be specified in detail later

(TBC04).

The sensors position and direction is shown in Figure 5. Four IR proximity sensors

use to detect the existence of obstacle at four direction of the robot: front, back, left

and right (UR19). An IR distance sensor will rotate 180 degree with 15 degree for

each distance reading; therefore, with 180 degree rotation can record 7 different

directions of distance reading (UR20).

URD-IMR71848

Copyright 2003 Vot 71848 Group 16

The IMR7848 software needs to periodically get information from the environment

through sensors, and the maximum period or cycle for reading the each sensor is

listed in Table 3 (UR21). The reading of the sensors is called environment status.

Object Min.-max. times
IR Proximity Sensors – reading sensors 0.5 sec – 1 sec
IR Distance Sensor – reading sensors 1 sec – 2 sec

Table 3: Sensors Timing Estimation

Front IR Proximity
sensor

Back IR Proximity
sensor

Right IR Proximity
sensor

Left IR Proximity
sensor

proximity sensor

distance sensor

Figure 5: Sensors position and directions.

3.4 High-level Control

The robot can be moved forward, reverse, turn left and turn right. The robot moves at

constant speed level during straight movement and this speed will be change during

turning movement (UR22). The speed levels of the robot are depending on the

distance of the robot from an obstacle (TBC05). The robot speed will be display on

Liquid Crystal Display (LCD) display. Besides the robot’s speed, the battery status

will also be displayed on LCD (UR23).

During the cruising process, the IMR71848 software must support the intelligent

components of the robot in order to ensure that the robot can response to the

URD-IMR71848

Copyright 2003 Vot 71848 Group 17

conditions in the environment in archiving the robot goal (UR24). The intelligence of

the IMR71848 robot is supported by subsumption architecture proposed by Professor

Rodney Brooks from Mobile robot Group, MIT Artificial Intelligent Laboratory [4].

The implementation of this architecture toward IMR71848 is based on Mohd Ridzuan

2003 (UR25). Based on Mohd Ridzuan, IMR71848 robot basic behaviour are as

followed (UR26):

1. Cruise – The ability of the robot to move around its environment.

2. Wall Detection – The ability of the robot to detect and follow the wall.

3. Obstacle avoidance – The ability of the robot to avoid collision with any

obstacle.

4. Passage detection – The ability of the robot to reach the wall passage.

5. Task Completion – The ability of the robot to acknowledge the completion of

the robot task once the robot manage to exit the passage.

In subsumption architecture all the above behaviours run in parallel, the higher-level

behaviours have the power to suppress the lower-level behaviour. Each behaviour is

assigned priority level as shown in Table 4 (UR27). The highest priority is given the

lowest number.

Behaviour Priority
Cruise 5

Wall Detection 4
Obstacle avoidance 3
Passage detection 2
Task Completion 1

Table 4: Behaviour priority level.

The navigation algorithm used by IMR71848 is wandering standpoint algorithm [4].

The algorithm try to reach from start in direct line, and when encounter an obstacle

the robot will follow around the object until the goal direction is clear again (UR28).

3.5 Capability Requirements

Limitation that will be considered in the software development process is the

hardware capability and size of the system such as memory and processor capabilities.

URD-IMR71848

Copyright 2003 Vot 71848 Group 18

The hardware capability is 128K EPROM and 128 RAM. The size and the memory

usage of the IMR7848 software must be with this capability.

The type and the timing specification of the information transfer to remote PC

depending on the capability of the RF transceiver.

3.6 Constraints Requirements

3.6.1 Communication interfaces

The format of the data packet received and sends back to the external PC is yet to be

defined (TBC06).

3.6.2 Hardware Interfaces

The software has to run on embedded processor (UR29). The main hardware

requirements of the system are as follows (UR30):

• Controller - based on Intel AMD188ES microcontroller

• EPROM - 128 K

• RAM - 128 K

• Parallel I/O

• Serial I/O

• ADC/DAC

• Switches on/stop

• LCD Display

3.6.3 Human-computer Interfaces (user interfaces)

At this stage it is assume all input and output to the system done through remote PC

and LCD display, LED display and switches (UR31).

Local user interfaces detail are as followed (UR32):

• 2 switches to start and stop robot

• a LCD to display robot status and diagnostic results

• LED display diagnostic results

URD-IMR71848

Copyright 2003 Vot 71848 Group 19

Appendix A: List of User Requirements

UR No. User Requirements Description

1. The IMR7848 software is to move the wheels of the robot until the robot archive the
robot’s goals.

2. The program starts to operate when the user switches on the robot and end when the
user switches off the robot

3. Once the robot system is switched, the main operation of the robot software is divided
into four main groups

4. Cruise software component control the IMR71848 movement around the robot
environment

5. Based on movement commands that are received from High-level control module, the
IMR71848 motor will be control in order to control the IMR71848 movement

6. Movement commands elements are status and direction.
7. The direction movement of the robot can be classified into two: straight and turning.
8. This cruise module is responsible to change the tuning pulses reading to speed value

of the motor.
9. Based on the received movement command from high-level navigation module and

the current speed of the motor, at each sampling period the control signals to the DC
motors are calculated using the proportional-integral (PI) control algorithm.

10. The computation of the control signal must be completed within 100 milliseconds to
ensure the constant speed of the robot.

11. To monitor the movement of the IMR17848 robot, it is communicated to a remote PC.
The IMR17848 communicates with a remote PC to receive configuration commands
and sending back information via a Radio Frequency (RF) transceiver.

12. Configuration commands are the setting up of the robot before the robot starts it
movement.

13. Information that sends to the remote PC is the robot speed and direction.
14. The sensors provide information for the IMR7848 software to enable the software to

eliminate interferences due to the collision with obstacles and walls.
15. The sensors help the robot to plan its movement.
16. Four IR proximity sensors to detect the presence of obstacles during the forward and

reverse movement of the robot.
17. An IR distance sensor to estimate the distance of obstacles and walls from the robot

current location.
18. A digital camera to detect shape of objects in the robot’s environment.
19. Four IR proximity sensors use to detect the existence of obstacle at four direction of

the robot: front, back, left and right.
20. An IR distance sensor will rotate 180 degree with 15 degree for each distance reading;

therefore, with 180 degree rotation can record 7 different directions of distance
reading.

21. The IMR7848 software needs to periodically get information from the environment
through sensors, and the maximum period or cycle for reading the each sensor is listed
in Table 3.

22. The robot moves at constant speed level during straight movement and this speed will
be change during turning movement.

23. The robot speed will be display on Liquid Crystal Display (LCD) display. Besides the
robot’s speed, the battery status will also be displayed on LCD.

24. During the cruising process, the IMR71848 software must support the intelligent
components of the robot in order to ensure that the robot can response to the
conditions in the environment in archiving the robot goal.

URD-IMR71848

Copyright 2003 Vot 71848 Group 20

25. The implementation of subsumption architecture toward IMR71848 is based on Mohd
Ridzuan 2003

26. IMR71848 robot basic behaviour are cruise, wall detection, obstacle avoidance,
passage detection and task completion.

27. Each behaviour is assigned priority level as shown in Table 4.
28. The navigation algorithm used by IMR71848 is wandering standpoint algorithm. The

algorithm try to reach from start in direct line, and when encounter an obstacle the
robot will follow around the object until the goal direction is clear again

29. The software has to run on embedded processor
30. The main hardware requirement of the system : Intel AMD188ES microcontroller,

128K EPROM and 128 RAM, Parallel I/O, ADC/DAC, Switches on/stop and LCD
Display.

31. At this stage it is assume all input or output to the system done through remote PC and
LCD display.

32. Local user interfaceS detail are 2 switches to start and stop robot, a LCD to display
robot status and diagnostic results and LED display diagnostic results.

Appendix B: List of User Requirements to be confirmed

UR No. User Requirements Description

1. IMR7848 software needs to maintain the robot at constant speed level
2. To make a right turn the speed of the left motor (TBC02) is faster than the

right motor (TBC02).
3. To make a left turn the speed of the right motor (TBC03) is faster than the left

motor (TBC03).
4. The requirement specified in this document will cover basic and medium phase

in detail, the implementation of the advanced phase will be specified in detail
later.

5. The speed levels of the robot are depending on the distance of the robot from
an obstacle.

6. The format of the data packet received and sends back to the external PC is yet to be defined.

Software Requirements Specifications for
IMR71848 Intelligent Mobile Robot
Software

Document ID: SRS- IMR71848
First Issue - December 2003

Prepared: Dyg. Norhayati Abg.

Jawawi, FSKSM, UTM
Date: 30 December
2003

Signature

This document contains preliminary information. It subjects to revision and therefore does not
represent a final report. The information in this document represents the view of the project research
group.

SRS-ECSR01

Copyright 2003 Vot 71848 Group 2

TABLE OF CONTENTS

1 INTRODUCTION ... 3
1.1 PURPOSE.. 3
1.2 SCOPE.. 3
1.3 DEFINITIONS, ACRONYMS AND ABBREVIATIONS .. 4
1.4 REFERENCES ... 4
1.5 OVERVIEW .. 5

2 GENERAL DESCRIPTION .. 6
2.1 RELATIONS TO CURRENT PROJECTS .. 6
2.2 RELATION TO PREDECESSOR AND SUCCESSOR PROJECTS.. 6
2.3 FUNCTION AND PURPOSE... 6
2.4 ENVIRONMENTAL CONSIDERATIONS ... 6

2.4.1 Robot Hardware Environments... 6
2.4.2 Robot Operating Environments... 7
2.4.3 Operating Environments in the Development Systems... 7

2.5 RELATION TO OTHER SYSTEMS.. 8
2.6 GENERAL CONSTRAINTS ... 9
2.7 MODEL DESCRIPTION.. 9

3 SPECIFIC REQUIREMENTS .. 11
3.1 ENVIRONMENT MODEL ... 11
3.2 BEHAVIOURAL MODEL.. 13

3.2.1 First level Functional Behaviour Analysis ... 13
3.2.2 Detail Functional Behaviour Analysis.. 15
3.2.3 Non-functional Analysis .. 19

SRS-ECSR01

Copyright 2003 Vot 71848 Group 3

Software Requirements Specification for IMR71848 Intelligent Mobile

Robot Software

Abstract: This report describes a set of software requirements that apply to an

intelligent mobile robot system. This report is prepared for the research Vot 71848

(Title - Experimental Evaluation of Hybrid Software Engineering Methodology for

Embedded Firmware Development on Intelligence Mobile Robot) Research Group.

This document is an evolving document and is expected to undergo further review

and refinement.

1 INTRODUCTION

1.1 Purpose

This specification document provides a definition of software requirements for the

embedded software of an intelligent mobile robot. It is based on requirements analysis

of the user requirements (URS-IMR71848). This report will be used as the main

reference for the detail design of the Intelligent Mobile Robot under Vot 71848

(IMR71848) software. Therefore the readers of this document are IMR71848l

software designer, IMR71848 requirement analyser for next incremental stage or

maintenance purposes and the IMR71848 verification team.

This software requirement report is being prepared as part of a working group in

UTM VOT 71848 research member group (UTM71848RG).

1.2 Scope

The software will be produced under the name of UTM71848RG. The goal of this

software project is to develop software for controlling the movement the intelligent

mobile robot in finding a passage and exiting through the passage.

SRS-ECSR01

Copyright 2003 Vot 71848 Group 4

1.3 Definitions, Acronyms and Abbreviations

ADC – Analog to Digital Converter

DAC – Digital to Analog Converter

DC - Direct Current

I/O – Input and output

IR - infrared

LCD - Liquid Crystal Display

LED – Light Emitting Diode

PI - Proportional-Integral

RF - Radio Frequency transceiver

RTK – Real-time Kernel

RTOS – Real-time Operating Systems

SPM – Sijil Peperiksaan Malaysia

USR – User Requirement Specification

UTM – Universiti Teknologi Malaysia

UTM – Universiti Teknologi Malaysia

UTM71848RG – UTM Vot 71848 Research Group

WCR - Wall climbing Robot

1.4 References

[1] Mohd Ridzuan Bin Ahmad, “Development of Reactive-Decentralized Control

Algorithm for Intelligent Multi-Agent Robotics System in Cooperative Task

Achievement”, Master of Engineering thesis, Faculty of Electrical

Engineering, Universiti Teknologi Malaysia, August 2003.

[2] Dayang. Norhayati Abang. Jawawi, Ahmad Zariman Abd. Majid, Ahmad

Ruzaimee Abd. Rashid, “Intelligent Mobile Robot Structure and Behaviour”,

Technical Report VOT71848, Faculty of Computer Science and Information

System, Universiti Teknologi Malaysia.

[3] Nenad M. Kircanski, Mobile Robotics Systems, University of Toronto, CRC

Press LLC, 2002.

SRS-ECSR01

Copyright 2003 Vot 71848 Group 5

[4] Brooks R. A. (1986). “A Robust Layered Control System for a Mobile Robot”,

IEEE Journal of Robotics and Automation, Vol. RA-2, No.1

[5] Thomas Braunl, (2003). “Embedded Robotics – Mobile Robot Design and

Applications with Embedded Systems”, Springer

[6] Dayang. Norhayati Abang. Jawawi, “User Requirements Definition Phase for

IMR71848 Intelligent Mobile Robot Software”, Faculty of Computer Science

and Information System, UTM, August 2003

1.5 Overview

The requirements have been partitioned into the following categories:

1. General description of the IMR71848 firmware project

2. IMR71848 formware specific requirement

2.1.1. Environment Model

2.1.2. Behavioural Model

Each of the above areas is discussed in the remaining sections of this report. Readers

should understand the integration of various sections of this report.

SRS-ECSR01

Copyright 2003 Vot 71848 Group 6

2 GENERAL DESCRIPTION

2.1 Relations to Current Projects

This robot software project is being prepared as part of a working group in

UTM71848RG. The parent project is funded under UTM grant, vot number 71848.

The objective of the patent project is to evaluate experimentally a hybrid software

engineering methodology for embedded firmware development on intelligent mobile

robot. This software project develops a firmware of the UTM IMR71848 and used for

the software methodology evaluation purposes. Previous work on developing

firmware for UTM Wall Climbing Robot, has tested the software methodology under

hardware-in-the-loop simulation and was found to be effective.

2.2 Relation to Predecessor and Successor Projects

This software prototype is mainly based on software methodology implemented on

(Dayang, 2002) and the software intelligence of the robot is based on (Ridzuan,

2003).

2.3 Function and Purpose

The main function of the embedded digital controller is to move the wheels of the

robot until the robot archive the goal. In order to move the robot and archive the

robot’s goal, the software need to control the motor at each robot drive wheels,

monitor the environments and navigate the robot.

2.4 Environmental Considerations

2.4.1 Robot Hardware Environments

The software has to run on embedded processor. The main processor in the controller

is based on AMD188ES microcontroller with 128K EPROM and 128K RAM, Parallel

SRS-ECSR01

Copyright 2003 Vot 71848 Group 7

I/O, Serial I/O, ADC/DAC, Switches on/stop and Status LED. The embedded

controller monitors its environment using some sensors - four infrared proximity

sensors, an infrared distance sensor and a digital camera. It also communicates with a

remote PC via a Radio Frequency (RF) transceiver.

2.4.2 Robot Operating Environments

The experiment environment of the mobile robot is indoor environment. The robot’s

environment is surrounded with walls except for the doorway passage. Figure 1 shows

the experiment environment of the IMR71848. The IMR71848 cruise around the

environment to find the passage. The robot needs to avoid obstacle exist within its

environment.

 WALL
DOOR

PASSAGE

200 CM

200 CM

70 CM

70 CM

Figure 1: Experiment environment of IMR71848.

2.4.3 Operating Environments in the Development Systems

• The software development environment – Windows95 and DOS

environments

• Software development tools – Borland C compiler version 3.1, Assembler

• MicroC/OS-II real-time operating system used for intertasks communication

and memory management of the software.

SRS-ECSR01

Copyright 2003 Vot 71848 Group 8

• ROM locator for generating ROMable code

2.5 Relation to other Systems

The firmware is a subsystem of a complete IMR71848 system. Figure 2 shows the

major component of the IMR71848 system and the interconnection of the IMR71848

firmware in the system.

AMD188ES
Embedded
Controller

East IR Proximity
Sensor

West IR Proximity
Sensor

South IR Proximity
Sensor

North IR Proximity
Sensor

D/A

Encoder

M Left Motor

Right Motor

m
ot

or
 D

riv
er

D/A

Encoder

M

m
ot

or
 D

riv
er

IR Distance
Sensor

RF Transceiver

digital
camera

Figure 2: Block diagram of IMR controller.

Figure 1 shows that the robot controller system involves the following entities.

1. An operator – The operator has the ability to start and stop the robot. The operator

is also provided with a display given information of the robot status and the robot

movements.

2. IR proximity sensors – The sensors detect the presence of obstacles during the

movement of the robot.

3. IR distance sensor – The sensor estimate the distance of obstacles and walls from

the robot current location

4. Digital camera – The camera detect shape of objects in the robot’s environment

5. Radio Frequency (RF) transceiver – To communicate to a remote PC.

6. DC motors – The robot is moved by actuating the DC motors.

SRS-ECSR01

Copyright 2003 Vot 71848 Group 9

7. Encoders – A feedback mechanism of the robot motor. The software will receive

tuning pulses from encoder in the robot motor.

2.6 General Constraints

General constraints of the firmware development are:

1. Budget

2. Hardware

3. The used of the available tools and facilities in UTM only

2.7 Model Description

A hybrid methodology is proposed for the IMR71848 firmware analysis model. In the

proposed hybrid methodology, several suitable notations and diagrams taken from

Ward-Mellor Structured Development for Real-Time Systems (Ward-Mellor), Unified

Modeling Language for Real-Time (UML-RT) and Hard Real-Time Hierarchical

Object Oriented Design (HRT-HOOD) methodologies were used to specify and

design the robot control firmware. The models and techniques used in the hybrid

analysis are summarised in Table 1. In the specification stage the notations and

diagrams from Ward-Mellor and HRT-HOOD were used. In the design stage

notations and diagrams from UML-RT and HRT-HOOD were used.

Based on the captured requirement (Dayang, 2003), the analysis of the IMR71848

firmware will be modeled using environment model and behavioural model. The

environment model is used to build a clear model of the robot environment in this

specification analysis phase. The notations used in the environment model consist of:

• Context diagram defines the external objects or external devices in the robot

system environment.

• Event lists table aims to list all the possible objects and functions in the system

for further analysis and in the design stage.

• Object timing estimation table, which the timing specification for each object

in the environment was estimated.

SRS-ECSR01

Copyright 2003 Vot 71848 Group 10

Table 1 : The models and techniques used in hybrid methodology.

No. Modeling stage Techniques and tools used Methodology used
1. Environment model Outside-in structuring Ward-Mellor
 Tools

Context diagram
Event list table
Timing estimation table

Ward-Mellor
Ward-Mellor
HRT-HOOD

2. Behavioural model
2.1. First level decomposition Structured-object model HRT-HOOD
 Tools

Use-case diagram
Data flow diagram
Functional group table
Package diagram

Ward-Mellor
HRT-HOOD

2.2. Detail functions
decomposition

Tools
Data flow diagram
Sequence diagram

Ward-Mellor
UML-RT

2.3. Non-functional
decomposition

Tools
Event-response table
Statechart diagram
Sequence diagram

Ward-Mellor
UML-RT
UML-RT

From the analysis of the environment model, a group of the software behaviour will

be identified. The behaviour of the IMR71848 transformation between the functions

will be presented using the Ward-Mellor first level data flow diagram (DFD). The

first level of the system behavior is then detailed by the Ward-Mellor’s second level

decomposition of each module. State transition diagram (STD) is used together with

sequence diagram to model the behaviour of the robot system such as the control flow

in the robot system.

SRS-ECSR01

Copyright 2003 Vot 71848 Group 11

3 SPECIFIC REQUIREMENTS

This section contains statements and discussions of requirements applicable to

IMR71848 software. The discussion contains a statement of top-level requirements,

refinements of requirements where there was agreement by the members of the

working group, and an identification of issues that require further considerations.

3.1 Environment Model

The IMR71848 firmware environment model is defined using context diagram, (is

shown in Figure 3), event list table (is shown in Table 2) and object timing estimation

table (is shown in Table 3).

Robot Control
System

Switch IR Distance
Sensor

IR Proximity
Sensors

LCD
Display

EncoderMotors

RF
Transceiver

distances
reading

obstacle
existence status

robot status

speed

sp
ee

d s
ett

ing
robot configuration

robot
information

* There are 2
motors *

* There are 2
encoders *

* There are 4
sensors *

motor
command

go/stop

Camera

image

Figure 3: IMR71848 context diagram

From the context diagram the function of each object or device can be defined. Table

2 summarised the function of each object and lists of event that are connected to each

function performed on each object. To perform the functions and react toward the

listed events, each object was assigned with non-functional requirement, the timing

specification for each object in the environment was estimated in Table 3.

SRS-ECSR01

Copyright 2003 Vot 71848 Group 12

Table 2: Event list table for robot control firmware

Object Function Event list
IR proximity
sensors

To detect the presence of obstacles
during the movement of the robot.

• Front IR proximity
sensor indicate on

• Back IR proximity
sensor indicate on

• Left IR proximity
sensor indicate on

• Right IR proximity
sensor indicate on

• Front IR proximity
sensor indicate off

• Back IR proximity
sensor indicate off

• Left IR proximity
sensor indicate off

• Right IR proximity
sensor indicate off

IR distance
sensor

To estimate the distance of obstacles and
walls from the robot current location.

• No object in front
• Object within 40-80 cm

in front
• Object within 20-39 cm

in front
• Exit found

Digital camera To detect zone of objects in the
robot’s environment.

• Zone A
• Zone B

Encoders To change the tuning pulses reading
to speed value of the motor.

• Speed > required speed
• Speed < required speed

Motors Actuating the DC motors according to the
control instruction given to the motor.

• Increase the speed
• Decrease the speed

RF transceiver Received robot configuration
commands from PC to remote control
the robot and sends robot information to
the PC to monitor robot sensor data.

• Received from PC on
• Received from PC off
• Transmit to PC on
• Transmit to PC off

LCD display Display information of the robot status
for monitoring purposes.

• LCD display enable
• LCD display disable

Switches The operator has the ability to start and
stop the robot.

• Operator switch on
• Operator switch off
• Operator switch go
• Operator switch stop

SRS-ECSR01

Copyright 2003 Vot 71848 Group 13

Table 3: Minimum and maximum time for each object

Object Min.-max. times
IR proximity sensors 0.5 sec – 1 sec
IR distance sensor 1 sec – 2 sec
Digital camera 50 sec – 1 min
Motors 50 millisec – 100 millisec
Encoders 50 millisec – 100 millisec
RF transceiver 1 sec – 10 sec
LCD display 10 sec – 30 sec
Switches 1 sec – 2 sec

3.2 Behavioural Model

3.2.1 First level Functional Behaviour Analysis

From the incoming and outgoing events analysis of the environment model, the

IMR71848 firmware functional behaviour is presented in Figure 4 by capturing the

robot systems environment. The eight objects from the context diagram are divided

into three main group functions. The IMR71848 functions and the objects involve in

each function is shown in Table 4.

environm ent m onitor environm ent

control m otor

m otors

identify m otor speed

control robot m ovem ent

operator

com m unicate with PC
set robot

display robot s tatus

m onitor s ys tem

Intelligent m onitoring

<<extend>>

<<extend>>

<<extend> >

Figure 4: IMR71848 use case diagram

SRS-ECSR01

Copyright 2003 Vot 71848 Group 14

Table 4: Robot main function group and devices

Group function Devices/Objects Functions
i. Monitor Environment IR proximity sensors, IR

distance sensor and Digital
camera

Monitor environment by
information to the robot
controller.

ii. Control Motor Encoders and Motors Actuating the DC motors
based on the motor current
speed and robot direction.

iii. Intelligent monitoring
or also called
Artificial Intelligence
(AI)

none High level and intelligent
monitoring of the robot

iv. Monitor system or
operator monitoring

RF transceiver, LCD
display and Switches

Communicate with robot
operators.

The IMR71848 first level functionality is shown using DFD in Figure 5. The first

level DFD diagram, help to identify the essential abstractions of the IMR71848

domain, the domain diagram is presented using package diagram in Figure 6.

 Environment
Monitoring

1

Motor
Controlling

2

distances
reading

Intelligent
Monitoring

3

robot
movement

movement
commands

speed setting

robot
information

Operator
Monitoring

4

go/stop

environment
status

robot
configuration

obstacle
existence status

motor
command

speed

go/stop

images

robot status

Figure 5: The robot first levels DFD

SRS-ECSR01

Copyright 2003 Vot 71848 Group 15

Environment
monitoring domain

Operator Monitoring
Domain

Intelligent
Monitoring Domain

Motor Controlling
Domain

Figure 6: The IMR71848 Domain Diagram.

3.2.2 Detail Functional Behaviour Analysis

Each software group function, was decomposed into the following objects and sub-

functions.

1. Environment Monitoring

Camera

robotstatus
(f rom Operator Monitoring Domain)

transmission
(from Operator Monitoring Domain)

EnvironmentSensor

AD Converter

DistanceSensor

1

1

1

1

arbiter
(from Intelligent Monitoring Domain)

11

ObstacleSensors

frontIRsensor

backIRsensor

leftIRsensor

rightIRsensor

Figure 7: Environment monitoring class diagram

SRS-ECSR01

Copyright 2003 Vot 71848 Group 16

Environment
Monitoring

1.1
Scan object

1.2

Scan
Obstacle

1.3

E/D

obstacle
scanner
data

environment
status

obstacle
existence status

object distance

Scan image
1.4

image
image data

distance
scanner
data

E/D

Figure 8: Environment monitoring DFD

2. Motor Controlling

movement commands
(f rom Intell igent Monitor ing Domain)

encoder controller

1 11 112 12

motor

2

1

2

1

DA Converter

11 11

Figure 9: Motor controlling class diagram

SRS-ECSR01

Copyright 2003 Vot 71848 Group 17

Control
Motors

2.1 Send signal
to DC motor

2.4

movement
commands

Scan Leg
Position

2.2

speeds

tuning
pulses Calculate

Control
Signals

2.3

E/D

job
status

E/D

E/D

job
status

control
signal

control
signal

movement
commands

Figure 10: Motor controlling DFD

3. Operator Monitoring

switch on/off

switch

systemsetting

reception

LCD display

RF transceiver

transmissionEnvironmentSensor
(f rom Env ironment monitoring domain)

switch go/stop

robotstatus

arbiter
(f rom Intelligent Monitoring Domain)

battery

Figure 11: Operator monitoring class diagram

SRS-ECSR01

Copyright 2003 Vot 71848 Group 18

RF
Monitoring

3.1send to PC
3.2

received
from PC

3.3
job statusrobot

information

robot
configuration

Environment
status

Display
Robot
Status

3.6

system
information

display

battery
sensors

data

Setting
System

3.4

on/off

E/D

Self
Diagnostic

3.5

Diagnostic
code

go/stop

Scan
Battery
Status

3.7

Diagnostic
code

robot
configuration

E/D

battery
power

battery
status

Figure 12: Operator monitoring DFD

4. Intelligent Monitoring

mo tor
(f rom Motor C on trol Dom ain)

movem ent com man ds
1

1

1

1

m ovem ent

swi tch go/ s to p
(f rom Operator Monitoring D om ain)

Dis tanceS ensor
(f rom Env ironm ent m onitoring dom ain)

O bst ac le Se nsors
(f rom Env ironm ent m onitoring dom ain)

battery
(f rom Operator Monitoring D om ain)

arbiter

1..* 11..* 1

behaviour 8

1

8

1

Figure 13: Intelligent Monitoring class diagram

SRS-ECSR01

Copyright 2003 Vot 71848 Group 19

Setting
robot

behaviour
4.1

go/stopbattery
status

object
distance

obstacle
existence

status

Setting
robot

movements
4.2

behaviour

movement
commands

Exiting
4.6

wall
following

4.4

Cruise
4.3

avoiding
obstacle

4.5

Stopping
4.7

E/D

speed

E/D

speed,
turning

turning
job

status

job
status

Figure 14: Intelligent Monitoring DFD

3.2.3 Non-functional Analysis

Based on the event lists from Table 2, each event are detailed to show the responses

of the robot software toward the environments transformation. The response to each

active event listed is shown in Table 5.

Statechart and sequence diagram were used to define the dynamic behaviour of the

robot firmware. The analysis of the IMR71848 dynamic behaviour was analysed

based on the event lists and responses from Table 4. Using the following sub-section

the IMR71848 operation and the IMR71848 firmware dynamic behaviour was

analysed.

SRS-ECSR01

Copyright 2003 Vot 71848 Group 20

Table 5: Events list and responses

 Event lists Responses
 Environment Monitoring
1. Front IR proximity sensor indicate on • stop

• turn right
• follow object

2. Back IR proximity sensor indicate on • forward
3. Left IR proximity sensor indicate on • follow object
4. Right IR proximity sensor indicate

on
• forward

5. Front IR proximity sensor indicate
off

• forward

6. Back IR proximity sensor indicate
off

• forward

7. Left IR proximity sensor indicate off • forward
8. Right IR proximity sensor indicate

off
• forward

9. No object in front • forward
10. Object within 40-80 cm in front • increase speed
11. Object within 20-39 cm in front • decrease speed
12. Exit found • turn left

• forward
• stop

13. Zone A • update zone
14. Zone B • update zone
 Motor Controlling
15. Speed > required speed • decrease speed
16. Speed < required speed • decrease speed
17. Increase the speed • update PD calculation
18. Decrease the speed • update PD calculation
 Operator Monitoring
19. Received from PC on • read data
20. Received from PC off • check latest data
21. Transmit to PC on • write data
22. Transmit to PC off • update data
23. LCD display enable • write display
24. LCD display disable • update robot status
25. Operator switch on • self diagnostic test

• display robot status
• wait for on

26. Operator switch off • disable the firmware
27. Operator switch go • enable arbiter
28. Operator switch stop • disable arbiter

SRS-ECSR01

Copyright 2003 Vot 71848 Group 21

1. Environment Monitoring

Event related with environment are IR sensors on or off, distance sensor range and

zone identified by the camera.

scanning
front sensor

scanning
back sensor

scanning left
sensor

scanning right
sensor

set obstacle code

set obstacle code

set obstacle code

Write
environment

code

write obstacle code scanning distance
sensor

write distance code

waiting for
acknowledgment

Tm(range)

isDone

reading camera

write image

Select
behaviour

[front obstacle=TRUE]

increase
motor speed

decrease
motor speed

[object clear]

[40<object<80]

Figure 15: Environment behaviour.

 : f r o n t IR s e n s o r : a r b i te r :
E n v ir o n m e n t S e n s o r

o n

s e le c t b e h a v i o u r

w r i te e n v i ro n m e n t c o d e

Figure 16: Front sensor on sequence behaviour.

SRS-ECSR01

Copyright 2003 Vot 71848 Group 22

2. Motor Controlling

Control motors

reading current
speed

calculating
control signal

update speed

writng DACwrite

waiting for
acknowledgment

[isDone]

tm[range]

Figure 17: Control motor behaviour.

 : e nc o d e r : c o ntro ller : D A C o n ve rte r : m o ve m e nt
c o m m a nd s

re a d s p e e d

re a d m o ve m e n d s c o m m a n d

c a lc u la te

w ri te

c o m p le te

w a i ting

Figure 18: Control motor sequence behaviour.

3. Operator Monitoring

Event – Operator Switch on

The program starts to operate when the user switches on the robot and end when the

user switches off the robot. This function includes: self diagnostic test and display

system information the operator.

SRS-ECSR01

Copyright 2003 Vot 71848 Group 23

off

power off on

self
diagnostic

display
status

system
error

set
configuration

ready

terminal error

self
diagnostic

display
status

completed / set error code

system
error

switch off / disable devices

switch on / check devices

set
configuration

[error=FALSE]

[error=TRUE]

ready

[error=TRUE]

terminal error

Figure 19: Operator switch “on”

 : s w itc h on/off :
s y s tem s ett ing

 : robots tatus : LCD dis play

on

s et c onfigurat ion (c onfig error)

s et robot s tatus(error c ode)

s e lf d ia g n o s tic (e rro r co d e)

d i sp la y (robot s tatu s)

set s y s tem

Figure 20: Operator switch “on” sequence diagram

SRS-ECSR01

Copyright 2003 Vot 71848 Group 24

id le

rece iving

rece ive d fir s tbyte

[ready to rec eive]
[is D o ne]

send ing[ready to send]

[is D one]

Figure 21: TR communication behaviour

4. Intelligent Monitoring

Event 1 – Operator Switch go

S elect behaviour

in itia l ready

cru ise fo llow w a ll avo id ex it

w rite m ovem ents

set com m and request next com m and

Figure 22: Operator switch “go”

 : a rb i te r : m o ve m e nt : s w itc h g o /s to p

s e t s ta tus

s e le c t b e h a v io u r

w ri te m o ve m e nt

c he c k m o ve m e n t c ha ng e

Figure 23: Operator switch “go” sequence diagram

EVALUATION OF HYBRID SOFTWARE ENGINEERING
METHODOLOGY FOR DEVELOPMENT OF EMBEDDED FIRMWARE

FOR INTELLIGENT AUTONOMOUS MOBILE ROBOT

Dayang Norhayati Abg. Jawawia, Ahmad Zariman Abd. Majida, Ahmad Ruzaimee Abd. Rashida, Dr.
Safaai Derisa, Dr. Rosbi Mamatb, Radziah Mohamada

E-mail: dayang@fsksm.utm.my

aDepartment of Software Engineering, Faculty of Computer Science and Information System,
Universiti Teknologi Malaysia, 81310 Johor Bahru, Malaysia

bDepartment of Mechatronics and Robotics Engineering, Faculty of Electrical Engineering, Universiti
Teknologi Malaysia, 81310 Johor Bahru, Malaysia

ABSTRACT

Software development for embedded real-time systems is very much different from the
traditional data processing systems due to non-functional requirements such as
dependability and the presence of hard timing constraints. Special tools and appropriate
methodologies are therefore highly desirable for the development of embedded real-time
software. Previous work on developing control firmware for Universiti Teknologi
Malaysia-Wall Climbing Robot have faced with the problem of adopting a single
methodology for developing the robot control firmware, a methodology called hybrid
methodology was proposed. This methodology was tested on UTM Wall Climbing Robot
under hardware-in-the-loop simulation and was found to be effective. However, a few
questions are still to be answered and measured in order to fully test the effectiveness of the
hybrid methodology on actual embedded system. The main objective of this paper is to
evaluate hybrid Software Engineering methodology for developing control firmware at
analysis and design phase. An intelligence mobile robot is developed to serve as embedded
real-time system platform.

Keywords : Software Engineering, Embedded Firmware, Intelligent Mobile Robot

INTRODUCTION

A mobile robot is an autonomous system capable of traversing a terrain, performs its
designated tasks, senses its environment and intelligently reacts to it. As the
complexity and functionality of the robot is increased, such as adding more sensors
to the robot so as to increase its reactivity and intelligence, designing and developing
control software for this type of robot can be very difficult and a challenging task.

Issues related to real-time control, embedded system and artificial
intelligence are involved in the mobile robot software development process. This
type of software must be developed with proper software methodology or well-
defined development process. Typically, the software or firmware is embedded in the
onboard controller. To provide intelligence and reactive action, the robot firmware
must sense its environment with multiple sensors and process the information and
taking actions in real-time.

In a real-time system such as a mobile robot, the correctness of the system
depends not only on the logical results, but also on the time at which the results are

59

produce. A mobile robot software system is inherently concurrent and multitasking
since it has to react to and process numerous events simultaneously. Furthermore,
this real-time software differs from the traditional data processing software in that it
is constrained by non-functional requirements such as timing and dependability. In
order to increase the software productivity, maintainability and flexibility in
developing real-time robot software, proper software engineering need to be
considered. Proper Software Engineering (SE) methodology ensures the software
development process is manageable, and that reliable and correct program is
constructed [2].

Previous work on developing control firmware for Universiti Teknologi
Malaysia (UTM) Wall Climbing Robot [1] have found that Unified Modeling
Language Real-Time SE methodology is still lacking in capability for control
oriented hard real-time systems, Hard Real-Time HOOD SE methodology requires
the support of ADA language, and Ward-Mellor SE methodology is inadequate for
representing hard timing constraints. Faced with the problem of adopting a single
methodology for developing the robot control firmware, a methodology called hybrid
methodology was proposed. This methodology was tested on UTM Wall Climbing
Robot software under hardware-in-the-loop simulation and was found to be effective.
The aim of this paper is to evaluate hybrid SE methodology for developing control
firmware at analysis and design phase. An intelligent mobile robot is developed to
serve as embedded real-time system platform.

INTELLIGENT MOBILE ROBOT SPECIFICATION

The Intelligent Mobile Robot developed in this work is called IMR71848. The robot
is a differential drive wheeled mobile robot, capable of traversing in an environment,
which is surrounded by four walls. The task of the robot is to find a passage and
exiting through the passage. Therefore, the goal of the IMR71848 software is to
control the movement the robot in finding a passage and exiting through the passage.

The IMR71848 consists of a body and two pair of wheels. The body carries
the embedded controller and its associated electronics, and others load. The cruising
of the robot is supported a pair of drive wheels and a pair of castor wheels. Each
drive wheels is move by a direct-current (DC) motor. The software controls the
speed of DC motors, in order to move the robot.

The software will be embedded into the AMD188ES on board
microcontroller The embedded controller for the IMR71848 with 128K EPROM and
128K RAM can be represented in block diagram form as shown in FIGURE 1. In
order to move the robot and achieve the robot’s goal, the software need to control the
motor at each robot drive wheels, monitor the environments and navigate the robot
intelligently.

During the cruising process, the IMR71848 software must support the
intelligent components of the robot in order to ensure that the robot can response to
the conditions in the environment in achieving the goal. The intelligent behaviour of
the IMR71848 robot is supported by subsumption [3]. The navigation algorithm used
by IMR71848 is wandering standpoint algorithm [4]. The algorithm try to reach from
start in direct line, and when encounter an obstacle the robot will follow around the
object until the goal direction is clear again.

60

AMD188ES
Embedded
Controller

Right IR Proximity
Sensor

Left IR Proximity
Sensor

Back IR Proximity
Sensor

Front IR Proximity
Sensor

D/A

Encoder

M Left Motor

Right Motor

m
ot

or
 d

riv
er

D/A

Encoder

M

m
ot

or
 d

riv
er

IR Distance Sensor

RF Transceiver

FIGURE 1: Block Diagram of IMR71848 Embedded Controller and Interfaces

The embedded controller monitors its environment using four infrared (IR)
proximity sensor and a IR distance sensor. During the movement of the robot, the
environment must be monitored, typically, every half a second to detect the presence
of obstacles using the IR proximity sensors and measuring distance to wall every
second using IR distance sensor. At each sampling period, the control signals to the
DC motors are calculated using the proportional-integral (PI) control algorithm. The
speed of the motor is sensed using the encoders and fed back to the embedded
controller. The computation of the control signal typically, must be completed
within 100 milliseconds to ensure the correct speed of the robot. The embedded
controller also communicates with a remote PC to receive configuration commands
and sending back information via a Radio Frequency (RF) transceiver.
 The main functional operation of the robot controller can roughly be divided
into four major tasks: high-level control, monitor environment, communication and
cruise. To satisfy the timing requirements for these major tasks, a real-time kernel is
used to achieve multi-tasking in the control firmware.

HYBRID SOFTWARE ENGINEERING METHODOLOGY

A hybrid methodology was proposed for the UTM Wall Climbing Robot control
firmware development [1]. In the proposed hybrid methodology, several suitable
notations and diagrams taken from Ward-Mellor Structured Development for Real-
Time Systems (Ward-Mellor) [5], Unified Modeling Language for Real-Time
(UML-RT) [6] and Hard Real-Time Hierarchical Object Oriented Design (HRT-
HOOD) [7] methodologies were used to specify and design the robot control
firmware. The models and techniques used in the hybrid analysis and design method
are summarised in TABLE 1. In the specification stage the notations and diagrams
from Ward-Mellor and HRT-HOOD were used. In the design stage notations and
diagrams from UML-RT and HRT-HOOD were used.

The idea of combining several notation and tools from different software
engineering methodologies for developing real-time system is not new in software
engineering practice. The main advantage of adopting the hybrid method is that any
appropriate notation and diagram can be chosen from different methodologies for
functional and non-functional specification and design. The main disadvantage is that

61

no CASE tool support is available to assist the use of the hybrid method. However,
due to the scale of IMR71848 project this can be handled manually.

EVALUATION OF THE HYBRID SE METHODOLOGY FOR IMR71848
FIRMWARE ANALYSIS AND DESIGN

To ensure the quality of IMR71848 firmware, the mobile robot development process
should address the issues targeted toward the embedded IMR71848 system. Some
issues, which will influence the software tools and software development process of
the robot firmware are; small-scale system limitations, concurrency and multitasking,
real-time requirement, evolving nature of the IMR71848 requirement and target
hardware system.

No. Modeling stage Techniques and tools used Methodology used
1. Environment model Outside-in structuring Ward-Mellor
 Tools

Context diagram
Event list table
Timing estimation table

Ward-Mellor
Ward-Mellor
HRT-HOOD

2. Behavioural model
2.1. First level decomposition Structured-object model HRT-HOOD
 Tools

Data flow diagram
Functional group table

Ward-Mellor
HRT-HOOD

2.2. Detail functions
decomposition

Tools
Data flow diagram

Ward-Mellor

2.3. Non-functional
decomposition

Tools
Event-response table
State transition diagram
Sequence diagram

Ward-Mellor
Ward-Mellor
UML-RT

3. Design
3.1. Tasks decomposition and

task behavioural
Tools

Statechart diagram

UML-RT

3.2. Task communication and
synchronisation

Tools
Task diagram

-

3.3. Timing Performance Tools
Priority table

HRT-HOOD

TABLE 1: The Models and Techniques Used in the Hybrid Method Specification
Analysis and Design

To effectively analyse the suitability of the hybrid method for the IMR71848
firmware development, some desirable criteria were set. These desirable criteria were
derived from the IMR71848 firmware specification and development issues
discussed above. The criteria include; (1) software development life cycle,
(2)concurrency and multitasking model, (3) timing analysis, (4) maintainability and
(5) others including simplicity, training, case tools and documentation.

Software Development Life-Cycle
The mobile robot system is still in developmental stage; as such the firmware will
evolve in functionality and complexity. When more functionality is added, for
example extending sensing capability of the robot, the firmware will change and the
methodology used should be able to cope with these incremental changes. The nature

62

of the evolving IMR71848 project make the iterative and incremental process model
is more suitable to be used. Therefore in the development of the robot firmware the
incremental process model is adopted. Incremental process model combine elements
of linear sequential model with the iterative prototyping, which enable software
engineer to develop increasingly more complete version of the software [2].

The software life cycle for each increment model of the firmware
development is summarised in FIGURE 2. Each phase of the life cycle is
characterised by specific activities and the product produced by those activities. The
products of each phase are shown in FIGURE 2 in italic besides each transition
arrow.
Based on the firmware design, the implementation stage is to gradually develop the
firmware part by part by building more and more functionality and non-functionality
of the IMR71848 firmware using software tools: Borland C/C++ 3.1 compiler, ROM
locator for generating ROMable code and µC/OS-II real-time kernel.

Concurrency and Multitasking Model
In the development of the IMR71848 software, a real-time kernel will be used to
provide multitasking and concurrency facilities. Software design with a real-time
kernel will be much easier if tasks are properly structured. The hybrid methodology
can provides task structuring in the design stage, and provides facilities for
identifying and portioning the structured tasks into independent tasks group that will
handle the concurrent activities.

Requirements Capture

1. Context diagram
2. Events list table
3. Objects timing estimation table

1. Functional group table
2. DFD
3. Events response table
4. STD
5. Sequence Diagram

Requirement Analysis

Design
Tasks decomposition & behaviour
Tasks communication
Timing performance

Verification &
Validation

Users

URS

SRS

Task Testing

Task Behaviour
Testing

Intertask Testing
Performance
Testing

System
Integration
Testing

Implementation

C and MicroC/os-II

Integration & Testing

C and MicroC/os-II

Environment Model Behavioural Model

User requirement specification
(URS)

Software requirement specification
(SRS)

Detail design

Firmware

n increment Firmware

Software Delivery

1. Hierarchical decomposition diag.
2. Task diagram
3. Priority tables

FIGURE 2: Software Life Cycle Of The Hybrid Methodology

In hybrid methodology, a system is structured into functions and the interfaces
between them are defined in the environment and behaviour model described in

63

TABLE 1. This procedure is called outside-in functional structuring. The functions
then will be grouped into concurrent tasks. The IMR71848 context diagram from
environment model and the first levels data flow diagram (DFD) from behavioural
model of the IMR71848 is shown in FIGURE 3 and FIGURE 4 respectively.

 Monitor
Environment

1

Cruise
2

Monitor
Communication

3

distances
reading

High Level
Control

4

speed

movement
commands

speed setting

robot information

Operator
Console

5

go/stop

environment
status

robot
configuration

obstacle
existence status

motor
command

speed

speed

robot status

go/stop

robot status

robot
configuration

Robot Legs
Controlled

System

Switch IR Distance
Sensor

IR Proximity
Sensors

LCD
Display

EncoderMotors
Driver

RF
Transceiver

distances
reading

obstacle
existence status

robot status

speed
speed setting

robot
configuration

robot
information

* There are 2
motor at each
drive wheel *

* There are 2
motor at each drive
wheel *

* There are 4
sensors *

motor
command

go/stop

FIGURE 3: IMR71848 Context

Diagram
FIGURE 4: First Levels Data Flow

Diagram for the IMR71848
The functionality of the robot is not the only type of requirement in the robot system.
To perform the functions and react toward the events, each event was assigned with
non-functional requirement. With the assistance of the functional requirements from
context diagram and DFD the event-driven and time-driven requirements can be
specified correctly using events tables, object timing estimation, state transition
diagram (STD) and sequence diagram.

Three important design issues, related to the mobile robot firmware presented
using hybrid method are tasks structuring or task decomposition, task communication
and synchronization and timing. Further task decomposition is performed during
design phase by detailing the IMR71848 behavioural model using statechart. The
information offered by behavioural model were used to derive the statechart for the
IMR71848 firmware, an example of the IMR71848 statechart is shown in FIGURE
5. To make sure that mutual exclusion between shared data is obtained in this
concurrent system, a task diagram is introduced in the hybrid method [1].

Enable Monitor Environment

Reading
Proximity

Status

Off

enable monitor
environment

disable monitor
environment

Setting Env.
Status

[isDone]

Reading
Obstacle
Distances

Status

Waiting
for Delay

tm[Cdelay]

Waiting
for Delay

tm[Odelay]

[isDone]

Waiting
for Delay

[isDone]

tm[Envdelay]

H H

H

FIGURE 5: The IMR71848 Statechart for Environment Monitoring

64

The hybrid method proposes a functional-based task structuring with the assistance
of sequence diagram and statechart diagram from object-based structuring. Object
and functional tasks structuring seem to be natural for the IMR71848 software, with
sensor and actuator objects, and control objects between them. It also can support
concurrency and task structuring in a clear and visible manner.

Timing Analysis
The hybrid methodology address timing constraints during the analysis and design
phase. During analysis, the response time specification is developed. The timing
specification for each object in the environment was estimated at this stage and is
presented in TABLE 2.

Object Min.-max. times
IR Proximity Sensors – reading sensors 0.5 sec – 1 sec
IR Distance Sensor – reading sensors 1 sec – 2 sec

DC Motors – increase or decrease speed 100 millisec
Encoders – read speed 100 millisec

Communication – received or send data 1 sec – 2 sec
TABLE 2: Object Timing Estimation

Hybrid method classifies tasks according to temporal nature such as cyclic, function
and protected task in design stage, this information is specified in task diagram. In
order to schedule the execution of tasks using a preemptive real-time kernel, the
priority of each task needs to be assigned. The timing constraints information derived
from the IMR71848 firmware specification was used in the assigning tasks priority
process. The timing was analysed using Rate Monotonic Scheduling technique [7]
and based on the object timing estimation in TABLE 2, in order to initialise priorities
for each task.

Sequence diagram is used to analyse the system timing by presenting the
messages sequence and time constraints for particular message patterns between
objects. It aimed to represent the timing constraints at different level and different
objects. The sequence diagram, if event “IR Distance and Proximity Sensors indicate
obstacle” occur, is shown in FIGURE 6.

HLC
Monitor

Communication
Monitor

Environment Cruise

active environment monitor
request

 assign new speed

move to speed level 2

distance level 2

stop

Moving. Obstacle exist

robot information

Obstacle exist

current speed

FIGURE 6: Sequence Diagram for Event “IR Distance and Proximity Sensors

indicate obstacle”

65

This timing analysis approach supported by hybrid method is suitable for the
specification of the embedded robot firmware as the timing constraints, which will
affect the stability of the robot, can be specified much earlier.

Maintainability
The evolving nature of the IMR71848 system requires the firmware to be easy to
maintain and modify. Traceability and adaptability of the IMR71848 specification
and design is important in order to make the firmware easy to maintain and modify.
The methodology should be traceable in term of technique used in derivation of
requirement and design.

Context diagram gives the scope definition of system and environment, in
which devices used to interact with environment such as sensors and actuator are
considered external events, is shown in TABLE 2. This makes context diagram
analysis is detail, which lead to unclear boundary between requirements and design.
Therefore, there is the tendency to make design decision during the specification
phase particularly if the specification gets detailed. This probably have some
disadvantages to the changing specification of the developmental IMR71848
software. But considering the current complexity of the IMR71848 software, the
context diagram of hybrid method is sufficient to model the system environment.

Simplicity and Good Documentation
The notation used in hybrid method is much simpler and some of the constraints are
represented in textual notation. The advantage is that users can easily understand it
and minimum training is needed. This is important in the development of IMR71848
system as the software designer are usually electrical engineers with little training in
software development methodology. Because of the simple notation used, the non-
functional requirements cannot fully be represented diagrammatically.

Half of the notation and tools used in hybrid method is adopted from Ward-
Mellor methodology, which was introduced almost twenty years ago, so it is stable
and many references, documentation and reviews of this methodology is available.
Because of its simplicity and stability, the Ward-Mellor methodology is widely used
in industry. The tools from UML-RT and HRT-HOOD methodology are mainly used
to support non-functional nature of the embedded firmware.

CONCLUSION

The hybrid methododology, which combined several suitable notations and diagrams
from three different methodologies, was used for the IMR71848 firmware analysis
and design. The hybrid method is an enhance version of the Ward-Mellor method
which better support for behavioural structuring, non-functional behaviour and
timing specification in the analysis phase, and better support in design phase with
emphasis on task decomposition, task synchronisation and task timing performance.

The suitability of the hybrid method for the IMR71848 firmware analysis and
design was evaluated using some criteria: concurrency and multitasking model;
timing analysis; maintainability and others including simplicity, training, case tools
and documentation. It was found that the hybrid method flows of analysis and design
can translate the mobile robot problem to implementation more naturally by
considering the IMR71848 firmware development issues.

66

The hybrid method has been shown in this paper is suitable and practical for
developing small-scale real-time embedded control software manually. Further work
need to be done in order to use some of the CASE tools available assisting
specification and design of the embedded real-time firmware. Currently our group is
testing the firmware on actual IMR71848 system by measuring the exact
performance of the IMR71848 firmware.

ACKNOWLEDGEMENT
The authors would like to thank Malaysia Ministry of Science, Technology and
Environment and UTM Research Management Center (RMC) for supporting this
work under funding VOT 71848.

REFERENCES
[1] Dayang Norhayati Abang Jawawi (2000). “The Development of Real-time

Control Firmware for A Wall Climbing Robot - A Small-scale Embedded Hard
Real-time System.” Faculty of Computer Science and Information Systems.
Universiti Teknologi Malaysia: Master’s Thesis.

[2] Pressman, Roger S. (1997). “Software Engineering A Practitioner ‘S Approach”.
Forth Edision. New York, U.S.A.: Mcgraw-Hill.

[3] Brooks R. A. (1986). “A Robust Layered Control System for a Mobile Robot”,
IEEE Journal of Robotics and Automation, Vol. RA-2, No.1.

[4] Thomas Braunl, (2003). “Embedded Robotics – Mobile Robot Design and
Applications with Embedded Systems”, Springer.

[5] Ward, P. T. And Mellor, S. J. (1985). “Structured Development For Real-Time
Systems”, Volume 1-3, New York: Yourdon Press.

[6] Douglass B. P. (1998). Real-Time UML Developing Efficient Object For
Embedded Systems, USA: Addison Wesley.

[7] Burns, A., and Wellings, A. J. (1996). “Real-time Systems and Programming
Languages.” Second Edition. UK: Addison Wesley.

APPENDIX A

Intelligent Mobile Robot Software Structure and
Behaviour

Compiled by:

Dyg. Norhayati Abg. Jawawi, Ahmad Zariman Abd. Majid, Ahmad
Ruzaimee Abd. Rashid

Department of Software Engineering
Faculty of Computer Science and Information System

Universiti Teknologi Malaysia
81310 Johor Bahru, Malaysia

Appendix A page 2

Abstract 1

1.0 Definition 2
1.1 ISO Definition on Industrial Robot 2

1.2 ISO Definition on mobile robot (not official) 2

1.3 Definition Of Intelligent Mobile Robot 2

2.0 Structure 3

2.1 Goal Oriented 3

2.2 Task Orinted 3

2.3 Action Selection and Arbitration 4

2.4 Computational Paradigm 5

2.4.1 The Composite Local Model 6

2.4.2 The Sensor Model 7

2.4.3 Update Local Model 8

3.0 Behavior 8

3.1 Recognition 9

3.1.1 Recognition techniques 9

3.2 Manipulation 10

3.3 Navigation 11

3.3.1 Find Path 12

3.3.2 The Stanford Cart and the C-MU Rover 12

3.3.3 Hilare 13

3.3.4 Comment 13

4.0 IMR Project 14

4.1 Mobile Robot System to aid the daily life for physically
handicapped - www.stakes.fi/tidecong/622taka.htm 14

4.2 MIT ARTIFICIAL INTELLIGENCE LABORATORY - www.ai.mit.edu
 4.2.1 The Ants : A Community of Microrobots. -

 www.ai.mit.edu/projects/ants

16

16

4.3 ActivMedia Robotics - www.activmedia.com 18

4.3.1 POWERBOT - www.activrobots.com/ROBOTS/power.html 19

4.3.2 PIONEER 3-AT -
www.activrobots.com/ROBOTS/p2at.html 20

4.3.3 PEOPLEBOT– 22

Appendix A page 3

ww.activrobots.com/ROBOTS/peoplebot.html

4.3.4 P3-DX8 - www.activrobots.com/ROBOTS/p2dx.html 23

4.4 Amigobot - www.amigobot.com/amigo/robots.html 25

4.5 CYBERBOTICS - www.cyberbotics.com 26

4.5.1 HEMISSON –
www.cyberbotics.com/products/robots/hemisson.html 26

4.5.2 KHEPERA II –
www.cyberbotics.com/products/robots/khepera.html 26

4.5.3 KOALA -
www.cyberbotics.com/products/robots/koala.html 27

4.6 Angelus Research Corp. - www.angelusresearch.com 27

4.6.1 WHISKER - www.angelusresearch.com/Whiskers.htm 28

4.6.2 ADVANCE WHISKER –
www.angelusresearch.com/advwhrs.htm

29

Appendix A page 1

Abstract

Intelligence for robot to grow and evolve can be observed both through growth in

computational power, and through the accumulation of knowledge of how to sense,

decide and act in a complex and dynamically changing world. There are four

elements of intelligence: sensory processing, world modeling, behavior generation

and value judgment. Input to, and output from, intelligent system are via sensors and

actuators. Recently, intelligent systems have been discussed in knowledge

engineering, computer science, mechatronics and robotics. Various methodologies

about intelligence have been successfully developed. As the scale and complexity of

robot software increases, the successful construction of integrated robot systems

depends less on the performance of any one particular algorithm and more on

system architecture and decision processes in each element of the system. This

paper is trying to find the true definition of Intelligent Mobile Robot by research trough

existing projects whether from research prospect or commercial prospect.

1.0 Definitions

Appendix A page 2

1.1 ISO Definition on Industrial Robot

An industrial robot is an automatic, servo-controlled, freely programmable,

multipurpose manipulator, with several axes, for the handling of workpieces, tools, or

special devices. Variably programmed operation make possible the execution of a

multiplicity of tasks.

1.2 ISO Definiton on mobile robot (not official)

A mobile robot is an autonomous system capable of traversing a terrain with natural

or artificial obstacles. Its chassis is equipped with wheels/tracks or legs, and,

possibly, a manipulator setup mounted on the chassis for handling of work pieces,

tools, or special devices. Various preplanned operations are executed based on a

preprogrammed navigation strategy taking into account the current status of the

environment.

1.3 Definition Of Intelligent Mobile Robot

By the term "intelligent" in Intelligent Mobile Robot we mean that the navigation is

"task-oriented" and that it is based on dynamically sensing and modeling the external

world. The Intelligent Mobile Platform (IMP) is designed to respond to commands of

the form "Go To <place>" where <place> is a pre-learned location in a network of

"learned places". The IMP is able to use its network of places to plan a path to

<place>. It is then able to use its sensing, modeling and navigation abilities to
execute this plan and to modify the plan dynamically in reaction to unexpected

events. The IMP is to serve as a foundation for household, business, and factory

robots which require intelligent navigation. [1]

2.0 Structure

Appendix A page 3

2.1 Goal Oriented

Navigation in indoor environment can be considered a goal-oriented task. In fact,

normally some kind of a priori knowledge about environment is assumed and one of

the main task main task of a mobile robot must be able to planning a path from its

current position to the goal. Then the vehicle must be able to verify, continuously, if it

is following the planned path and to detected (and successfully to avoid) unknown

obstacles along the path. In literature, many references about goal oriented

navigation can be found, using several kind of sensors: vision, odometers, gyro, laser

and so on. Most of techniques can be grouped into two classes, dead-reckoning and

external references based approaches.

 Dead reckoning techniques determine present location of vehicles by

advancing some previous position through known course and velocity data over

known period of time. The most known implementation of dead reckoning is the

odometry. The incremental estimation of position is affected by an incremental

estimation of position is affected by the incremental growth of the error. Practical

application on AGV, generally control error growth by integrating inertial navigation

techniques (gyro based but are too much expensive) to dead reckoning or using

external beacons to determine the correct current position and so positioning

uncertainty can be reset.

 External references based approaches use sensors placed on the vehicle to

detect known landmarks in the environment in order to determine the robot position.

Landmarks can be active or passive. Active landmarks are emitting beacons placed

at known locations in the environment and the vehicles is equipped idoneous sensors

able to detect them. Passive landmarks are detected, in most cases, by vision based

techniques and they consist of natural landmarks.[2]

2.2 Task Oriented

a large application domain for multi-robot teams involve task-oriented missions, in

which potentially heterogeneous robot must solve several distinct task. Consider the

following problem: a team of heterogeneous mobile robot is required to perform a

task oriented mission. Each robot on the team is programmed with the task

capabilities necessary to perform a subset of task required by the current mission. In

order to reduce the effect of bottlenecks and single point of failure, the robot are

Appendix A page 4

designed to over lap in the task they are able to accomplish, although they may

demonstrate different level of performance in accomplishing the same task due to

robot heterogeneity. The capabilities of the robot in such a mission may change

overtime, due either to robot subsystem failure or perhaps due to robot action

learning. [3]

2.3 Action Selection and Arbitration

A robot operates by selecting actions that will achieve tasks and goals. Maes

describes this as the action selection problem . All architectures must provide a

solution for this problem. Identifying the action selection problem places the focus on

building software that provides resources and mechanisms for action selection, thus

while approaches may vary, action selection or more generally action arbitration is

the bottom line for intelligent activity. Arbitration is not limited to the actuators of the

system. It can be applied at various levels within a system to build up resources for

action selection (e.g., a sensor fusion process), allocate resources (e.g., task/goal

arbitration or planning), and control actuators (motor action arbitration). Figure 1.1,

adapted from Bagchi, shows a generalized architecture that uses action selection to

build up a robot abstraction for the tasks and goals of the system as well as to handle

task and goal selection.

Figure 1.1 Fundamental Decision Process

Arbitration mechanisms form an important element of intelligent system behavior

at many levels. In sensors processing, action selection results in sensor fusion.

Sensor arbitration combines sensor data into logical sensors, much like those

developed by Luo [9], to be used by other modules. In the motion control domain,

Appendix A page 5

arbitration combines influences on motion (e.g., goal points, obstacles) to yield an

overall motion that simultaneously meets several goals for the robot, similar to motor

schema. For planning and sequencing, the arbitration mechanism predicts or

activates a sequence of operations as shown by Bagchi. Thus action selection or

arbitration is pervasive in the design of intelligent robots that include complex motion

control, sensor fusion, behavior sequencing and task planning. The type of action

selection mechanism used depends on the flexibility and structure of the system

architecture. Rigid architectures typically allow only a single mechanism, while more

flexible architectures combine several arbitration mechanisms at different points in

the system. [4]

2.4 Computational Paradigm

In common usage, a paradigm is an example which serves as a model. A

computational paradigm is a framework of data structures and processes which

perform some task. The vision system of the IMP is based on the computational

paradigm illustrated in figure 1.2

Appendix A page 6

Figure 1.2 Framework for intelligent mobile platform

The navigation system of the IMP is based on maintaining a dynamic internal model

of the local environment of the robot. An inexpensive rotating depth sensor

continuously provides information about the external world. Differences between the

sensor information and the internal model are used to indicate errors in the estimate

of the position of the robot. The information from the sensor is then used to update

the state of the internal model. This internal model also plays a crucial role in

integrating sensor information and in providing reliable information for path planning,

obstacle avoidance, learning, and path execution.

2.4.1 The Composite Local Model

At the core of this computational paradigm is a dynamic model of the surfaces and

obstacles in the immediate environment of the IMP. This model is called "The

Composite Local Model". "Local" refers to the fact that only information in the local

environment of the robot is represented. "Composite" refers to the fact that this

Appendix A page 7

model is composed of information obtained over time from multiple sensors and from

many views. The Composite Local Model plays two fundamental roles in this

computational framework.

• It is the structure in which potentially conflicting information from diverse

sensors is integrated with recently observed information and information

recalled from long term storage (in the case of the IMP: the global model).

• It is the structure on which processes for local path planning, path execution,

learning, object tracking, object recognition, and other "higher level"

processes are based.

Because of the nature of the navigation task and the sensors that are employed, the

Composite Local Model in the IMP is implemented with a relatively simple 2-0

representation. The IMP models the world and plans paths in a 2-D "flat-land"

universe. Surfaces and obstacles are represented as connected sequences of line

segments. Thus a table and a wall have the same structure; both appear as a barrier

with an infinite (or unknown) extent in vertical dimension. The Composite Local

Model must include the ability to represent the uncertainty of information. In the IMP,

this ability is provided by a state transition mechanism. The line segments which

compose the composite local model include a "state" attribute which represents both

their source and varying degrees of uncertainty. Consistent line segments are

reinforced and extended while inconsistent line segments are decayed and

eventually removed from the model.

2.4.2 The Sensor Models

Sensors typically produce large amounts of information. Before the information from

a sensor can be integrated into the Composite Local Model, surface information must

be abstracted from it. This abstraction is performed by the module labeled BuildSM
which produces a structure called the Sensor Model. The Sensor Model may be

viewed as a form of "Logical Sensor" which provides the sensor information in a

standard form which may be integrated into the Composite Local Model. In the first

version of the IMP, the sensors are a set of contact sensors on a skirt and the

rotating sonar sensor. In each case, BuildSM abstracts information in the form of line

segments representing obstacles in the real world.

Appendix A page 8

2.4.3 Update Local Model

The module labeled Update Local Model integrates the information from the Sensor

Models with the current Composite Local Model. This module consists of two parts.

The first part is a matching process which establishes the correspondence between

the segments in the Sensor Models and the Composite Local Model as each line is

produced by BuildSM. One of the side effects of this correspondence matching is an

average error vector for the orientation and the position of the robot, This error vector

tells the difference between the IMP’S estimated orientation and position and its

actual orientation and position. Special procedures also exist for detecting and

tracking moving objects. The second part is an integration step in which-the position,

size, connectivity and confidence of the segments in the Composite Local Model are

adjusted to reflect the results of correspondence matching. This second stage also

removes segments for which the confidence is low or for which the distance is too

far. The process does not remove nearby surfaces which are not currently visible.

The problems of reconciling conflicting information and of representing uncertain

information in the Composite Local Model involve interesting scientific issues. These

problems are intimately related to the representation of the Composite Local Model.

[5]

3.0 Behavior

Intelligent autonomous robots perform tasks according to different behaviors. We can

assume that in general, each robot will act according to a set of behaviors, either fully

or partially pre-defined. Suppose now that an agent has the ability to observe a robot

and to autonomously identify which behavior the robot is performing. Generally

Intelligent Robots consist these three sets of behavior.

Robot behaviors :

• Recognition

• Manipulation

Appendix A page 9

• Navigation

3.1 Recognition

Recognition behavior explain how the vision subsystem is interfaced to the rest of the

robot. This sub system is also used to locate suitable object from a distance identify it

or interact with the object. Developing computational models for visual recognition

and vision-based robotic control are some of the most fundamental problems in

Cybernetics. In spite of strong interdependency between these functions in biological

organisms, computational techniques for addressing these problems have typically

been mutually exclusive. Generally, recognition techniques, neither seek to address

the problem of vision-based control, nor do they attempt to formulate a framework

linking recognition to purposive motion. Vision-based robotics on the other hand,

either assumes the recognition problem to be solved or involves manual feature

selection and correspondence as an essential part of the technique, thus implicitly

addressing the recognition issues. Thus, while many recognition and vision based

control techniques are available, there is need for research that studies and exploits

the interaction of these problems.

3.1.1 Recognition Techniques :

Function based object recognition - page 272

A function-based recognition system reasons about observed object shape in order

to determine what function the object might serve then classifies the object

accordingly. Thus the recognition performed by a function –based system is

inherently more generic than that performed by a system which matches an observed

objects against a predefined set of geometric models

Symmetry exploration in 3d object recognition – page 257

A number of popular 3D object recognition paradigms are considered, including

interpretation tree search, hypothesis and test, invariant feature indexing of

interpretation tables, pose clustering and evidence based techniques. It is shown that

Appendix A page 10

symmetries can be used to avoid the generation of equivalent recognition result, or to

identify and filter out equivalent recognition result after they have been generated.

The necessity and usefulness of symmetry exploration in object recognition leads to

our believe that symmetry extraction algorithm should be integral part of the vision

model preprocessor of such a system. [6]

3.2 Manipulation

The Control system for robot. The set of behaviors develop here allow the robot to

acquire and retrieve object. (minimalist mobile robot – chapter 3) This control system

demonstrates two important principles.

• Robot trajectory toward object is guided by the environment itself, rather than

some plan developed from an internal world.

• Even a system composed of independent local agent can exhibit globally

directed behavior. – overcome get caught in loops or local minima by

removing central supervisor instead it is replace with another agent which

monitor some sensory variable indicative of the overall process of the robot.

During the past years, significant efforts have been contributed to the research on

the control design of a robot to perform the mechanical contact task on the

environment. Contact task generally require the simultaneous consideration of both

the robot’s position and the interactions force. Three fundamental approaches have

been identified.

1. Hybrid control suggest an approach to divide the robot’s motion space into

the position control subspace and the force control subspace.

2. Impedance control focuses on the design of a robot’s mechanical impedance

as seen from the environment. By utilizing the force feedback compensation,

the robot mechanical impedance can be adjusted naturally as soon as it

interact with the environment.

Appendix A page 11

3. Model matching control fundamentally controls the robot ‘s position and pays

attention to the frequency bandwidth of the robot control system with respect

to the environmental dynamics. In order to adapt to the dynamical

environment, a reference model of the robot position control loop is selected

and accordingly a force feedback compensator is design to adjust the system

bandwidth without using the hardware or software switches. [7]

3.3 Navigations

There are two major control strategies in the field of mobile control, in which

actuators are controlled so that their output are regulated at the desired values

determined from a given reference path and actuator-sensor configuration. The other

is mobile robot guidance control in which the relative position of the mobile robot from

reference is maintained as desired. In mobile robot guidance control, position and

posture of the mobile robot must be measured or estimated based on the

measurements of the relative position of the reference. Such information is also

necessary for navigation. [8]

A number of interesting research results have been obtained on problems which are

relevant to mobile robot navigation. A quick review of the salient systems provides a

picture of the current state of the scientific art.

3.3.1 Find-Path
Planning a path based on a model is a problem that is fundamental to intelligent

control of robot arms as well as mobile robots. Lozano-Perez has developed a formal

version of the general path planning problem. This formalization is referred to as the

"find-path" problem . In its most general form, the goal of find-path is to determine a

continuous path for an object from an initial location to a goal location without

colliding with an obstacle. Lozano-Perez provided a mathematical treatment of the

find-path problem using the "configuration space" approach. The idea is to find those

parts of free space which the object at particular orientations may occupy without

colliding with an obstacle. Obstacles are "expanded" by the shape of an object at a
set of orientations, while the object to be moved is shrunk to a point. The shortest

path for the object, including rotations, is computed as the shortest connected path

through the expanded obstacles. The shortest path through obstacles generally leads

Appendix A page 12

through a sequence of points which are adjacent to the expanded obstacles. If there

is position error in the control of the path execution, 3 such points can possibly result

in a collision. Brooks has recently proposed a new approach to the find-path problem

based on modeling free space . Brooks' solution was developed in a two dimensional

plane. Brooks fit two dimensional generalized cylinders" to the space between

obstacles to obtain pathways in which the object may freely travel on a plane. The

technique was extended to the third dimension by stacking planes.

3.3.2 The Stanford Cart and the C-MU Rover
Moravec developed a navigation system based on sensory signals using the

Stanford cart. This cart sensed its environment using a set of 9 stereo images

obtained from a sliding camera. A set of candidate points were obtained in each

image with an "interest" operator. Small local correlations were then made at multiple

resolutions to arrive at a depth estimate for the points The matched

points were plotted on a two dimensional grid and then expanded to a circle. A best

path from the current location to a goal was then chosen as the shortest sequence of

line segments which were tangent to the circles. The cart would advance by 3 feet

and then repeat the sensing and planning process. Stereo matching was also

performed between the images taken at different steps to obtain confirming and

additional depth information. A new vehicle, called the C-MU Rover has recently

been constructed by Moravec to support these techniques.

3.3.3 Hilare
A team under the direction of George Giralt at the LAAS laboratory in Toulouse has

been investigating the design and control of mobile robots since 1977. They have

developed a mobile robot named Hilare. Chatila developed a navigation system for

Hilare which is based 011 dividing a pre-learned floor plan into convex regions [2].

Convex regions were formed by connecting nearest vertices to form areas called C-

Cells. Laumond, at the LAAS in Toulouse, extended this idea by developing

hierarchies of C-Cells to represent rooms and parts of a known domain [8].

3.3.4 Comment
A few other efforts towards developing autonomous mobile robots have also been

reported. In many cases the efforts focus on engineering problems and pay little

attention to the issues of world modeling or path planning. Other groups have

become bogged down on the vision problem, often spending their efforts on general

solutions to the problems of low level vision. We believe that the most important

Appendix A page 13

problems to be addressed now are sensor interpretation, navigation, and system

organization. Toward this end, we have developed a computational paradigm for

intelligent robotic systems. This computational paradigm provides a framework for

the processes involved in sensor interpretation, path planning, and path execution.[5]

4.0 IMR Project

4.1. Mobile Robot System to aid the daily life for physically handicapped -

 www.stakes.fi/tidecong/622taka.htm

Purpose: The purpose of this system is to bring daily using objects and

 putting them somewhere indoors semi automatically.

2 main concepts:
(1)Telecommunication using a computer network

Recently, a computer network became easy to use. If we can use computer

network to control the mobile robot system, the mobile robot can controlled by

any place, and also can transfer volumes of informations by LAN.

(2)Graphical and Interactive communication

The operator must realize safe robot motion in human working space,

However, the operator of this robot is physically handicapped, he is not

always engineer and professional to robot. Therefore, it is necessary to use

graphical and interactive interface to operate the robot.

Appendix A page 14

System Structure of Mobile Robot

Figure1.3 System Structure of Mobile Robot

Interface System

Appendix A page 15

Figure.1.4 Image of Operator Console

• It has easy and interactive interface between human and robot.

• For example, it must have user-friendly input method, to show the real

status of the robot and etc. for non-professional operator.

• The motion environment for this robot is that the target objects puts

somewhere indoors, not fixed position, the operator must communicate to

the robot through the operator console to look for the object, and also the

robot must show the motion condition with easy understanding method.

4.2 MIT ARTIFICIAL INTELLIGENCE LABORATORY - www.ai.mit.edu

Introduction
 The Artificial Intelligence Laboratory has been an active entity at MIT in one

form or another since at least 1959. Our goal is to understand the nature of

intelligence and to engineer systems that exhibit intelligence. We are an

interdisciplinary laboratory of over 200 people that spans several academic

departments and has active projects ongoing with members of every academic

school at MIT. Our intellectual goal is to understand how the human mind works. We

believe that vision, robotics, and language are the keys to understanding intelligence,

and as such our laboratory is much more heavily biased in these directions than

many other Artificial Intelligence laboratories. Our mode of operation is to attack

theoretical issues and application areas at the same time. Even for theory however,

we like to build experimental systems to test out ideas.

Appendix A page 16

4.2.1 The Ants : A Community of Microrobots. - www.ai.mit.edu/projects/ants

Introduction : The ants are a community of cubic-inch microrobots at the MIT

Artificial Intelligence Lab. There are two main goal of this project :

1. Push the limits of microrobotics by integrating many sensors and

actuators into small package.

2. Form a structured robotic community from the interactions of many simple

individuals.

Social Behavior

1. Clustering Around Food

Once the robot in the middle detest the food, she emits the “I found food” IR signal.

Any robot within about 12 inches of her can detect the signal and head towards her.

When a robot receives the “I found food” signal it heads towards the robot with the

food while transmitting “I see an Ant with food”. Any robot within range of the second

robot receives the “I see an Ant with food” signal, heads towards the second robot,

and transmit “I see an Ant that sees an Ant with food”. It is like a robotic relay team.

2. Tag

The objectives of this behavior is for the single robot to seek out and tag (bump

into) any of “Not It” robots. The “It” robot heads for the “Not It” that the other robots

are transmitting from their IR beacons. When the “It” robot bumps into anything, it

transmits “Tag” from its tag emitter. If the object that was bumped into is a wall or

anything else boring, the “It” robots does not get the return signal and continues with

whatever it was doing. If, however, the “It” robot bumped into a “Not It” robot, the “Not

It” robot transmits “I got tagged” and then changes its mood from “Not It” to “It”. When

the former “It” robot receives the “I got tagged” signal’ then its changes it’s mood to

“Not It”.

Appendix A page 17

3. Manhunt

Manhunt is like tag with teams. There is a red team and a green team. The object is

for all the members of each team to tag all the members of the opposing team. When

a robot is tagged, it changes teams.

The Software

The software for the Ants is written using programming style called Subsumption

Architecture, developed by Prof. Rodney Brooks. The software on each robot is

made up of many little programs, or behaviors. Each behavior monitors a few of the

robot’s sensors and outputs a motor command based on those sensor’s readings.

These commands are then sent to the motors based on a hierarchy; the outputs of

more important behaviors override, or subsume, the outputs of less important ones.

4.3 ActivMedia Robotics - www.activmedia.com

Introduction

ActivMedia Robotics launched the Pioneer robot with Saphira API software in 1995 in

collaboration with inventor Dr. Kurt Konolige and with iRobot. Since breaking with

iRobot in 1997, ActivMedia Robotics systems have become the most popular

intelligent mobile robotics development platform in the world. Its Pioneer robots are

three-time winners of the World RoboCup Soccer Championship as well as many

American Association of Artificial Intelligence contests. The company has

collaborated on grants from DARPA and NIH. ActivMedia's AmigoBotTM has been

chosen as test platform for the new Intel low-power XScale board, designed

specifically for portable and wearable applications. ActivMedia robots have appeared

on Discovery Channel, Scientific American Frontiers and other popular venues.

In 2001, the company shipped its 1,000th robot. In February, 2002, the company

released its revolutionary new ActivMedia Robotics Interface for Applications (ARIA)

Appendix A page 18

with Saphira 8+. ARIA with Saphira 8+ expands the former capabilities of Saphira to

provide developers with a complete software development solution from robot OS to

gradient navigation and localization to integrated accessories such as grippers,

cameras and integrated I/O bus for custom accessories.

In April, 2002 the company announced its first general purpose application,

LaserPlansTM. In May, the PatrolBot TM surveillance & monitoring system was

released. In October, 2002, it announced its third commercial product; the PowerBot

AGV for flexible manufacturing and lab automation.

4.3.1 POWERBOT - www.activrobots.com/ROBOTS/power.html

Introduction

POWERBOT TM is an amazing high-payload high-speed highly maneuverable

platform with all the intelligence of our smaller platforms. PowerBotTM moves up to 6

kph with a payload up to 100kg. It is built on the same core client-server model as all

ActivMedia robots, making it software compatible. PowerBot TM offers a full-sized

PC computer option, opening the way for onboard vision processing, Ethernet-based

communications, laser, DGPS, and other autonomous functions. The PowerBotTM

stores up to 2100 watt-hours of swappable batteries. Fourteen forward and 14 rear

sonar sense obstacles from 15 cm to 7 m. PowerBot's powerful motors and two

monster wheels on steel frame with suspension is designed for higher speeds with

good response. The PowerBotTM uses 500 tick motor encoders. Its sensing extends

far beyond the ordinary with laser-based navigation options, GPS, bumpers, 6 dof

DC arm, vision, and a rapidly growing suite of other options.

The PowerBot has the ability to :

1. Wander randomly, avoiding obstacles

2. Drive controlled by keys or joystick

3. Communicate sensor & control information including sonar, motor

encoder, motor controls, user I/O and battery charge data

4. Run C/C++ programs created with or witout ARIA or our other software

developments environtments.

Appendix A page 19

With Laser Mapping and Navigation option, PowerBot can :

1. MAP rooms, labs or buildings in minutes.

2. Plan path to goal.

3. Avoid obstacles along the way.

4. Navigate tight spaces for delivery or docking.

PowerBot is designed for industrial, commercial and research use :

1. Handling

2. Delivery

3. Mapping

4. Navigation

5. Monitoring

6. Reconnaissance

7. Vision

8. Cooperation

4.3.2 PIONEER 3-AT - www.activrobots.com/ROBOTS/p2at.html

Introduction

PIONEER 3-AT is a highly versatile all-terrain robotic platform, software-compatible

with all ActivMedia robots, chosen by many DARPA grantees and others requiring a

high-performance robot with plenty of real estate for customization. Powerful, yet

easy to use; reliable, yet flexible, P3-AT is a popular team performer for outdoor or

rough-terrain projects.

P3-AT offers an embedded computer option, opening the way for onboard vision

processing, Ethernet-based communications, laser, DGPS, and other autonomous

functions. The P3-AT stores up to 252 watt-hours of hot-swappable batteries.

Optional 8 forward and 8 rear sonar sense obstacles from 15 cm to 7 m. P3-AT's

powerful motors and four monster wheels can reach speeds of .8 meters per second

and carry a payload of up to 30 kg. The P3-AT uses 100 tick encoders with inertial

correction recommended for dead reckoning to compensate for skid steering. Its

sensing extends far beyond the ordinary with laser-based navigation options,

integrated inertial correction to compensate for slippage, GPS, bumpers, gripper,

vision, stereo rangefinders, compass and a rapidly growing suite of other options.

Appendix A page 20

The bare P3-AT base with included ARIA and Saphira8+ software has the ability to:

1. WANDER randomly

2. DRIVE controlled by keys or joystick

3. PLAN PATHS with gradient navigation

4. DISPLAY a map of its sonar and/or laser readings

5. LOCALIZE using sonar (with optional laser upgrade)

6. COMMUNICATE SENSOR & CONTROL information relating sonar, motor

encoder, motor controls, user I/O, and battery charge data

7. TEST ACTIVITIES QUICKLY with ARIA API from C++ programs

8. SIMULATE BEHAVIORS OFFLINE with the simulator that accompanies

each development environment

The Pioneer 3-AT is an all-purpose outdoor base, used for research and prototyping

applications involving:

1. Mapping

2. Navigation

3. Monitoring

4. Reconnaissance

5. Vision

6. Manipulation

7. Cooperation

P3-AT's are made for use outdoors; they run on many earth, stone or paved

surfaces. Unencumbered, they can climb steep 45% grades. To operate on carpet,

select Indoor wheels, which may be swapped as needed. P3-AT's are not water-

proof.

4.3.3 PEOPLEBOT – www.activrobots.com/ROBOTS/peoplebot.html

Appendix A page 21

Introduction

PeopleBot™ provides a base for service or performance robots. The handsome

black and silver PeopleBot™ offers a gripper, table-sensing IR's and precise pan-tilt-

camera with ActivMedia Color-Tracking Software (ACTS) for sensing and grasping

objects on tables. Included demo uses state machines to recognize a colored object,

fetch it from one table and set it on another.

Peoplebot has the ability to :

1. Play sound files or synthesized speech

2. Listen for phrase or sounds it recognizes

3. respond to requests or conditions it senses

4. Navigate without running over toes or into furniture

5. Find and Fetch objects it recognizes

6. Follow colors

7. Transmit video images to surveillance monitors

8. Communicate with other robots

9. Connect to PC’s via the internet or LAN

10. Run autonomously

At 112 cm (45 in), the PeopleBot™ stands midriff to chest height on most adults.

Designed for use by seasoned professionals, the PeopleBot™ can be programmed

in C or C++. PeopleBot™ is ideal for prototyping, research or applications such as:

1. Tour guides

2. Waiters

3. Messengers

4. Monitors and guards

5. Trade shows

6. Exhibition

7. performances

8. Education

9. Research

10. Cooperative tasks

Appendix A page 22

PeopleBot™ runs indoors on flat floors. It can traverse low sills and household power

cords. With upper and lower sensing, the PeopleBot™ will turn away from nearly all

obstacles. Performance PeopleBot™ also has the ability to sense tabletops and

move its gripper into place for picking up objects. PeopleBot™ can run five days a

week for six hours a day without maintenance for years. More intensive use may

require regular factory maintenance, which is available by contract.

PeopleBot™ bases may communicate with each other via Ethernet and cooperate in

teams.

4.3.4 P3-DX8 - www.activrobots.com/ROBOTS/p2dx.html

Introduction

PIONEER 3-DX8 is an agile, versatile intelligent mobile robotic platform updated to

carry loads more robustly and to traverse sills more surely with high-performance

current management to provide power when it's needed. Built on the same core

client-server model as all ActivMedia robots, the P3-DX8 offers an embedded

computer option, opening the way for onboard vision processing, Ethernet-based

communications, laser, DGPS, and other autonomous functions. The P3-DX8 stores

up to 252 watt-hours of hot-swappable batteries. It arrives with a ring of 8 forward

sonar and with an optional 8 rear sonar ring. 3-DX8's powerful motors and 19cm

wheels can reach speeds of 1.6 meters per second and carry a payload of up to 23

kg. In order to maintain accurate dead reckoning data at these speeds, the Pioneer

uses 500 tick encoders. Its sensing moves far beyond the ordinary with laser-based

navigation options, GPS, bumpers, gripper, vision, stereo rangefinders, compass and

a rapidly growing suite of other options.

The bare P3-DX8 base with included ARIA and Saphira software has the ability to:

1. Wander randomly

2. Drive controlled by keys or joystick

3. Plans paths with gradient navigation

4. Display a map of its sonar and/or laser readings

Appendix A page 23

5. Localize using sonar (with optional laser upgrade)

6. Communicate sensor & control information relating sonar, motor encoder,

motor controls, user I/O, and battery charge data

7. Run C/C++ programs created with or without Saphira or other software

developments environments

8. Test activities quickly witj Saphira’s Colbert real-time programming

language

9. Simulate behavior offline with the simulator that accompanies each

development environment.

With ActivMedia Robotics Basic Suite software, this robot can travel point-n-click to

a location on your map. Basic Suite also allows the robot to be easily programmed

for demos or instructional purposes. With Laser Mapping & Navigation System, your

robot can map buildings and constantly update its position within a few cm while

traveling within mapped areas.

The Pioneer 3-DX8 is an all-purpose base, used for research and applications

involving:

1. Mapping

2. Teleoperation

3. localization

4. monitoring

5. reconnaissance

6. vision

7. manipulation

8. Cooperation

P3 -DX8's run best on hard surfaces. They can traverse low sills and household

power cords and climb most wheelchair ramps.

4.4 Amigobot - www.amigobot.com/amigo/robots.html

Appendix A page 24

This robot has the ability to :

1. sense their environment and respond to it

2. operate autonomously

3. protect themselves and let you know their current status

4. allow you to modify their behaviors

5. can be operated over the Internet

6. serve as videoconferencing devices

AMIGOBOT TMePRESENCE is the choice for those who want to see and hear

what's happening around the robot, whether the robot is in the next room or on the

other side of the world. AmigoBot TM ePresence includes all the hardware and

software you need to turn your desktop PC into an Internet robot operation and chat

center. You can:

1. drive the robot locally or online, up to 300 feet from your PC

2. create maps for the robot to navigate

3. send the robot to make deliveries, point-n-click, avoiding obstacles along

the way

4. see and hear from the robot's point of view

5. take snapshots of what the robot sees

6. see the robot's 8 sonar display

7. read the robot's action status messages

8. program new behaviors

9. modify demo behaviors

10. make the robot talk

11. download your own sounds to the robot

12. control who shares the robot online

13. chat with people sharing the robot

4.5 CYBERBOTICS - www.cyberbotics.com

Introduction

Appendix A page 25

Cyberbotics was founded in 1998 by Olivier Michel, as a spin off company from the

MicroComputing and Interface Lab (LAMI) of the Swiss Federal Institute of

Technology, Lausanne (EPFL). Cyberbotics is developing Webots, a 3D mobile robot

simulator for research and education. Cyberbotics is also developing custom 3D

mobile robot simulators for a number of companies and universities.

Products :
4.5.1 HEMISSON -
www.cyberbotics.com/products/robots/hemisson.html

Features :

• Cost effective

• Designed for education

• Works in remote control or autonomously.

• Capabilities: obstacle avoidance, line following, wall following, dance (LED

flashing, buzzer), drawings, etc.

• Applications: teaching, programming contests.

• Includes BotStudio programming software (DeLuxe only)

• Includes Webots simulation software (Deluxe only)

• Supported platforms: Windows and Linux (Deluxe only)

• Works in remote control or autonously

4.5.2 KHEPERA II -
www.cyberbotics.com/products/robots/khepera.html

Features :

• Compact

• Easy to Use

• Affordable

• Powerful Microcontroller

• Many Sensor and Actuator Extensions

• Many Software, Curriculum, Papers

• Applications: navigation, artificial intelligence, multi-agents systems, control,

collective behavior, real-time programming.

Appendix A page 26

4.5.3 KOALA - www.cyberbotics.com/products/robots/koala.html

Features :

• Compact size

• Highly modular with a wide variety of expansion options

• Powerful computational capabilities

• Full Khepera compatibility

• All-terrain indoor experiments

• Applications: telemanipulation, path planning, object research, recognition

and transport, surveillance, tour guide, Automatic vacuum cleaner

4.6 Angelus Research Corp. - www.angelusresearch.com

Introduction

the worlds largest supplier of intelligent robots with over 1000 robots in use around

the world. Our Educational line of Whiskers Robots teach the world's children about

the next technology wave beyond the Internet: Intelligent Robots and Machines. Our

Military Robots like Intruder and ART are used to make the most dangerous job in

the world: Military Operations, safer. Our military line of robots are dual use, also

providing Law Enforcement activities support in life threatening situations. Piper the

Robot inspects pipes protecting the environment by detecting problems before they

become Ecological disasters.

Mission :

• To bring intelligent machines and robots into our society for the betterment of

mankind.

• To educate young people in this new and exciting technology that will touch

all of our lives.

Products

4.6.1 WHISKER - www.angelusresearch.com/Whiskers.htm

Appendix A page 27

 Whiskers is a highly intelligent robot which can be programmed in an English

like language. It is highly motivational and educational for kids from Elementary

School through High Schools. This is the most popular intelligent robot in Technical

Education today. Students explore computer science careers in less than ten days

without any prior programming experience. Due to Whiskers unique capabilities,

many Universities use this robot as well.

Whiskerstm emulates the three levels of the human brain in real-time.

• Easy to program, no experience required

• User can teach the robot new commands

• Durable all heavy gauge aluminum

The Software Architecture is based on the three levels of intelligence found in the

Human Brain :

1. Cerebral Cortex - Physically the outer layer of the brain, which is

characterized by the folds just under the skull. Functions include: Decision making,

analysis, and dreaming. This is called the Goal Level in the intelligent operating

system.

 2. Limbic System - The gray matter found in the center of the brain controls

human behavior such as breathing, hunger, etc. This is called Behavior Level. Real-

time decisions are made and simple or complex actions are triggered.

 3. Brain Stem - The base of the brain connected to the spinal cord and nervous

system. This level controls our critical responses and instinctive behavior giving the

machine common sense. This is called Instinct Level. Motor/sensor fusion at this

level allows the machine to instantly react to its environment. The Behavior and Goal

levels can change the way this level reacts at any time.

 Consider what happens when you are cooking and you touch something hot.

Your skin feels the heat and your muscles immediately pull your hand away (Instinct

Level). A message is sent to your brain (pain) which causes your brain to make

decisions on what actions are to be taken next (Behavior Level). After you have

taken care of your burned finger, you resume your original task(Goal Level).

Appendix A page 28

Touching - Whiskers give the robot the ability to touch objects around him.

Seeing - Four independent optical sensors use Light Emitting Diodes (LED’s) and

photo-transistor pairs. They give Whiskers the ability to see objects around him.

Feeling - Wheel load or drag is measured continuously to give the robot a sense of

the terrain. It allows Whiskers to sense objects the other sensors did not see.

Speaking - The speaker and software that controls it, gives Whiskers the ability to

make sounds just like other animals use for communication.

4.6.2 ADVANCE WHISKER - www.angelusresearch.com/advwhrs.htm

This robot is an advanced version of Whiskers. It adds a head subsystem including

sonar ranging and four additional optical sensors. It uses two onboard computers

networked together so students can experiment with intelligent robots that can

navigate about their environment.

The Software Architecture is based on the three levels of intelligence found in the

human brain :

1. Cerebral Cortex- Physically the outer layer of the brain, which is

characterized by the folds just under the skull. Functions include: Decision making,

analysis, and dreaming. This is called the Goal Level in the Triune Operating System.

2. Limbic System - The gray matter found in the center of the brain, controls

human behavior such as breathing, hunger, etc. This is called Behavior Level. Real-

time decisions are made when simple or complex actions are triggered.

3 Brain Stem - The base of the brain is connected to the spinal cord and

nervous system. This controls our critical responses and instinctive behaviors. It is

analogous to the Instinct Level which gives the machine common sense.

Motor/sensor fusion allows the machine to instantly react to its environment. The

Behavior and Goal levels can alter the Instinct’s reaction at any time.

Appendix A page 29

 Consider what happens when a person touches something hot. The nerve

endings in the skin detects the heat and causes an immediate muscular response

(Instinct Level). Additionally, a message (pain) is sent to the brains’ Limbic System

that activates a higher level behavior or set of actions based on programmed

behaviors or learned experiences. This behavior or actions pre-empt the Cerebral

Cortex (Goal Level) while the behavior is executing. When the action is finished, the

Cerebral Cortex (Goal Level) regains control and continue where it left off or it may

decide to change strategies or goals.

Moving - Two independent DC motors provide locomotion using an advanced pulse

width modulation motor speed control. Speeds can be controlled from one to one

hundred percent in one percent increments.

Touching - Two whiskers on the base section are used for tactile sensors.

Seeing - Four independent optical sensors are mounted on the base using Light

Emitting Diodes (LED) and phototransistors pairs. A proprietary narrow beam sonar

system is mounted in the panning head section for navigation and long range sensor

scans. The sonar can detect object distances to one eight of an inch. A single Visible

Red LED sensor located in this section has the capability to see about three to four

feet. Three optical sensor arrays are located in the non-moving collar section for

additional object detection.

Feeling - A force feedback system is used to monitor wheel load. Force is measured

continuously to monitor the surface type or load. It is sensitive enough to determine

whether the robot is operating on carpet of hard flooring.

Thinking - The processor in the base section performs real-time collision avoidance

while the head processor navigates and scans the environment, simultaneously. The

two computers are networked together. This allows them to cooperate in solving the

navigation problem.

Learning - The language used for programming the onboard computers is English.

No prior programming experience is necessary to create new commands (words) for

this robot. However, the very tools used to create this easy to use and powerful

language is always available to the user. The user words actually become part of

language. The potential for this robot is limited only by the users imagination.

Appendix A page 30

References

[1] Nenad M. Kircanski, Mobile Robotics Systems, University of Toronto,2-4

[2] E. Stella, Goal Oriented Mobile Robot Navigation Using an Odour Sensors,
University di Lecce, 147

[3] Lynne E. Parker, Task Oriented Multi Robot Learning in Behaviour Based System,
Center For Engineering Systems Advanced Research, 1478

[4] Pacman,wilkes,kawamura, A Software Architecture for Integrated Service Robot
Development, Center for Intelligent Systems Vanderbilt University Nashville, 1

[5] James L. Crowley, Navigation for an Intelligent Mobile Robot, The Laboratory for
Household Robots The Robotics Institute Carnegie-Mellon University of Pittsburgh,
Pennsylvania, 5-11

[6] Book – modeling and planning for sensor based intelligent robot system,

[7] Zhi Wei Luo, Multiple Robot Manipulators Cooperative Compliant Manipulation on
Dynamical Environment, Department of Information and Computer Science
Toyohashi University of Technology, 1927

[8] N. Matsumoto, Mobile Robot Guidance Control with Nonlinear Observer Based
State Estimation, Research Laboratories Nippondenso Company Limited,2264

	borang pengesahan.PDF
	borang pengesahan.PDF
	docu0006.JPG

