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ABSTRACT

Modemn fighter aircraft are mostly designed to carry its store externally.
Installing store to an aircraft wing externally would have much engineering
implication especially through the change in the aerodynamic characteristic. This
research was carried out to study the application of the Computational Fluid
Dynamics (CFD) method along with experimental methods in predicting the
acrodynamic interference caused by these installations, Commercial CFD code,
Fluent 5.3 had been validated using experimental results reported in the literature for
two dimensional, subsonic and transonic flow over the NACA 0012 and the RAE
2822 airfoil. Subsequently, low speed wind tunnel experiments were carried out over
a wing model installed with an external store. The wing model was fabricated based
on a digitized BAe Hawk 208 fighter wing. For further CFD code validation, the
wind tunnel configurations were again simulated using the CFD method and its
results were validated with the experimental results. Finally, a simplified full scale
Hawk 208 aircraft model carrying an external store was simulated at various attitudes
and {low speeds. In the two-dimensional subsonic flow, pressure distribution
predicted by CFD was in good agreement and comparable to the experimental
results. For the transonic two-dimensional flow validation, pressure distribution
predicted by various flow models were slightly different from the experimental
results (9% to -22.2% in term of Cy ). For wind tunnel configuration. an average of
about 12% deviation in pressure distribution between the results predicted by the
CFD method and measured in the wind tunnel. The results of the full scale Hawk 208
simulation show that the aerodynamic interference caused by the store installation
were mostly evidence on the lower wing surface and negligible on the upper surface
at low angle of attack. This trend was reversed as the angle of attack was increased.
The area of influence on the wing surface by store interference increased in line with

the increased in airspeed.



ABSTRAK

Kcbanyakan pesawat pejuang modern adalah dircka untuk membawa “store”™
di bahagian luar seperti di bawah sayap. Memasang “store™ di bawah sayap pesawat
mempunyai banyak implikasi terutamanya yang disebabkan oleh perubahan dalam
ciri-ciri acrodinamik. Projek kajian ini mengkaji penggunaan kaedah CFD dalam
meramal ganguan aerodinamik seinng dengan upikaji terowong angin.
Pengaturcaraan CFD komersial iaitu Fluent 5.3 telah digunakan untuk meramal
aliran dua dimensi ke atas aerofoil NACA 0012 dan RAE 2822 dalam lingkungan
aliran subsonik dan juga transonik. Ini ditkuti dengan satu ujikaji terowong angin ke
atas satu model yang terdin danpada sebahagian sayap pesawat yang dipasang
dengan pelancar roket, 1a merupakan model yang diringkaskan danpada pesawat
pejuang Hawk 208. Keputusan ujikaji terowong angin akan digunakan untuk menilai
ketepatan ramalan oleh kaedah CFD dalam aliran 3 dimensi dan memantau
perubahan aerodinamik yang disebabkan oleh Pelancar Roket. Akhir sekali, kaedah
CFD digunakan untuk meramal aliran angin dan gangguan angin yang disebabkan
oleh pemasangan Pelancar Roket keatas satu model pesawat Hawk 208 bersaiz penuh
pada pelbagai kelajuan dan sudut tuju. Keputusan simulasi dengan kaedah CFD
uittuk aliran dua dimensi, mendapati ramalan tekanan bagi aliran subsomik adalah
sangat baik jika dibandingkan dengan keputusan ujika)i yang dilaporkan.
Walaubagaimanapun ramalan CFD bagi aliran transonik memperolehi perbezaan
antara 9% ke -22.2% dalam C; dibanding dengan keputusan ujikaji. Perbezaan
sebanyak 12% dalam tekanan udara didapati antara ramalan CFD dengan keputusan
ujikaji terowong angin yang dijalankan dalam kajian ini. Dalam kes simulasi pesawat
berukuran penuh, ramalan CFD menunjukan bahawa, gangguan aliran angin
tertumpu pada bahagian bawah sayap dan hampir tiada kesan pada bahagian atas
pada sudut serang yang rendah, trend ini terbalik apabila sudut serang meningkat
Keluasan kawasan yang dipengaruhi oleh gangguan Pelancar roket memingkat
seiring dengan kelajuan pesawat.
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CHAPTER I

INTRODUCTION

1.1 Introduction

Modern fighter aircrafl are mostly designed to carry store externally. When a
store is installed externally, for example under the wing, the flowfield on s
surrounding components such as the wing, the engine and the control surfaces will
change considerably, The flow phenomena that may be induced or introduced could
include local shock waves, flow separation and turbulence. These phenomena may
extend downstream and affect other aircraft components such as the horizontal and

vertical stabilizer and hence the controllability and the stability of the aircraft.

Before a store can be certified for aircrafl carriage, a comprehensive store
clearance program needs to be conducted. The aim of the store clearance program is
to ensure that the store is safe 1o be carried and/or released without causing any
stability and controllability difficulties to the aircraft and the store besides achieving

its objective of release.

Store clearance studies may include many areas such as acrodynamic,
structure, flutter, physical integration, trajectory prediction, aircraft performance and

stability analysis. The overall scope is wide and involves multiple engineering |



disciplines. Ability to identify the changes in aerodynamic charactenistics are perhaps
the most critical and important. [t is a prerequisite for other analysis, i.e. the
aerodynamic loads data are required for subsequent aircraft structural, stability and

performance analysis and the store trajectory prediction.

Aerodynamic change investigation in the external store clearance studies
usually involved complex geometry (multi components with mutual interference) and
complex flow field (two or more dominant flow phenomenon in a single flow).
Traditionally, flow of such nature was investigated through wind tunnel testing

beside empirical methods.

In recent year, Computational Fluid Dynamics (CFD) simulation has come
into practice in various acrodynamics study including store clearance. CFD is
basically a theoretical method using computational procedure to solve the universal
conservation laws those govern the fluid flow. Latest development in this field had
seen the CFD been integrated with computational structural analysis code for inter-
disciplinary analysis [1]. References [2,3] presented methods of integrating CFD and

six degrees of freedom (6 DOF) dynamics simulation in store trajectory analysis.

1.2 Research Objective

(1) To identify the aerodynamic interference effect to the present of
external store using theoretical method, which are suitable in
environment where the wind tunnel facilities and empirical data are

not available.

(1) To investigate the feasibility of using commercially available general
purpose CFD code to identify the aerodynamic forces and
characteristics as a result of the mutual aerodynamics interference

between the external store and wing.



1.3

1.4

Research Scopes

(1)

(11)

(111)

(1v)

To carry out literature review on methods in determining aircraft wing

and external store aerodynamics interference.

To determine the suitability of applying a commercial CFD code for
predicting aecrodynamic interference involving store-wing

configuration at subsonic flight.

To explore the use of a 3 Dimensional measurement software to
extract measurement from photographs, 1.e. Photomodeler for Hawk

208 wing geometry digitization.

To construct a pressure model of an aircraft wing installed with

external store and pylon and carried out wind tunnel testing.

To identify the aerodynamic interference effect when a Rocket
Launcher pod LAU 5003, installed externally to a simplified HAWK
2()8-support fighter model.

Research Methodology

This research includes comprehensive literature review on progresses in CFD

application especially in complex aerodynamic interference study. Followed with

validation on a commercial CFD code, i.e. Fluent 5.3 by Fluent Inc. The validation

begins with simulations of a simple two dimensional, subsonic and transonic flow
over NACA 0012 and RAE 2822 airfoil, respectively. Simulated results were
validated with the reported data in literature.



Subsequently, wind tunnel experiments on a pressure model built based on a
section of Hawk 208, support fighter's wing installed with extemal store were carmed
out. These experimental configurations were then numerically simulated using the
CFD method. The results obtained from experiment and simulation were compared
and formed second stage of CFD code validation.

Finally, a simplified full-scale Hawk 208 installed with LAU 5003 Rocket
Launcher Pod was simulated at different flight condition. This would help to idenufy
the effect of the external store aerodynamic interference on flowfield around the

wing specifically and overall system generally.

1.5  Expected Results

It is expected that, the simulation results will be satisfactory for preliminary
investigation involving aerodynamic interference at subsonic flight. The simulation
results, supplementied with the experimenial results, will reveal some facts on the

naturc of acrodynamic interference for wing-store configuration under present study.

1.6 Outline of Thesis

Chapter one generally introduces the outline of the research. Followed by
literature review in chapter two, review was emphasized on the nature of problem,
application of CFD method in acrodynamic interference study and the development
in CFD especially in acrodynamic application.



Chapter three outlined the general research methodology and the Hawk 208

wing geometry digitization processes utilizing computer program.

Chapter four presents a validation case in which a subsonic flow over NACA
0012 airfoil was simulated. The simulation results were validated with the

experimental results reported in literature.

Chapter five extends the two dimensional validation into the transonic flow
regime where a transonic flow over RAE 2822 airfoil was simulated. The simulation

results were again validated with the expennmental results.

Chapter six outlines wind tunnel experiment of low speed flow over a wing-
store configuration model. The model was built based on digitized Hawk wing
section complete with external store. These wing-store configurations were then

simulated using CFD method.

Chapter seven presents the final simulation study in which simplified full
scales Hawk 208 aircraft flies at various angle of attack and speed were simulated.
Aerodynamic interference arise from external store installation were analyzed

extensively. The thesis ends with conclusion and recommendation in chapter eight.
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