

PROVIDER INDEPENDENT CRYPTOGRAPHIC
TOOLS

(ALATAN KRIPTOGRAFI BEBAS PENYEDIA)

SUBARIAH BT. IBRAHIM
MAZLEENA SALLEH

Jabatan Sistem & Komunikasi Komputer
Fakulti Sains Komputer & Sistem Maklumat
UNIVERSITI TEKNOLOGI MALAYSIA

2003

PROVIDER INDEPENDENT CRYPTOGRAPHIC
TOOLS

(ALATAN KRIPTOGRAFI BEBAS PENYEDIA)

SUBARIAH BT. IBRAHIM
MAZLEENA SALLEH

RESEARCH VOTE NO.
71858

Jabatan Sistem & Komunikasi Komputer
Fakulti Sains Komputer & Sistem Maklumat

Universiti Teknologi Malaysia

2003

VOT 71858

 i

ACKNOWLEDGEMENT

Alhamdullilah, the research development project for electronic voting is

finally completed. With that, I would like to say thank you to those who has

contributed to the success of this project directly or indirectly.

Firstly, I would like to express my gratitude to RMC for its financial support

which has made it possible for the completion of this project. Special thanks to RMC

staff, Puan Zarina, for her help in various clerical work regarding the project. Thank

you too, to FSKSM staffs who has somehow contributed indirectly to the success of

this project.

Special thanks to my co-researcher, Assoc. Prof. Mazleena Salleh, for fruitful

discussion in the development of the project.

I also would like to thank my research assistant, Shah Rizan Abdul Aziz, who

has spent an enormous amount of time in designing and development the

cryptographic library. He also spent a considerable amount of time in preparing this

report, thank you again.

Last but not least, I wish to thank my husband, Assoc. Prof. Dr Mohd Salihin

Ngadiman for his support in my research participation.

 Puan Subariah Ibrahim,

Project Leader.

VOT 71858

 ii

ABSTRACT

PROVIDER INDEPENDENT CRYPTOGRAPHIC TOOLS

(Keyword : Cryptography, Cryptographic ServiceProvider)

This aim of this research is to provide a library of cryptographic

tools which can be used for teaching and further research. The library

consists of cryptographic algorithms that include symmetric and

asymmetric encryptions, key exchange, hashing algorithms and digital

signature algorithms. The library is implemented by using Java

cryptographic service provider framework that conforms to Java

Cryptographic Architecture (JCA) and Java Cryptographic Extension

(JCE). The library is developed using Software Development Life Cycle

(SDLC), supported by Unified Modeling Language (UML) for the design.

The programming language used is Java JDK1.4.1.

Key Researchers:

Puan Subariah Ibrahim (Head)

Assoc. Prof. Mazleena Salleh

Shah Rizan Abdul Aziz

E-mail: subariah@fsksm.utm.my

Tel. No.: 07-553 2386

Vote No.: 71858

VOT 71858

 iii

ABSTRAK

ALATAN KRIPTOGRAFI BEBAS PENYEDIA

(Kata Kunci : Kriptografi, Penyedia Perkhidmatan Kriptografi)

Matlamat utama penyelidikan ini adalah bagi menyediakan

pustakaan alatan kriptografi yang boleh digunakan untuk pengajaran dan

juga melakukan penyelidikan terhadap algoritma kriptogradi selanjutnya.

Pustakaan ini terdiri daripada algoritma-algoritma kriptografi termasuk

algoritma penyulitan simetri dan tak simetri, penukaran kekunci, algoritma

cincang serta tandatangan digital. Pustakaan ini dilaksanakan

menggunakan rangka kerja penyedia perkhidmatan kriptografi Java yang

selaras dengan Java Cryptographic Architecture (JCA) dan Java

Cryptographic Extension (JCE). Pustakaan ini dibangunkan dengan

menggunakan kaedah Kitaran Hayat Pembangunan Perisian dan disokong

dengan rekabentuk Unified Modeling Language (UML). Bahasa

pengaturcaraan yang digunakan untuk pembangunan perisian ialah Java

JDK1.4.1.

Key Researchers:

Puan Subariah Ibrahim (Head)

Assoc. Prof. Mazleena Salleh

E-mail: subariah@fsksm.utm.my

Tel. No.: 07-553 2386

Vote No.: 71858

VOT 71858

 iv

TABLE OF CONTENT

CHAPTER SUBJECT PAGE

 ACKNOWLEDGEMENT i

 ABSTRACT ii

 ABSTRAK iii

 TABLE OF CONTENT iv

 TABLE LIST vii

 DIAGRAM LIST viii

 APPENDIX LIST ix

CHAPTER I INTRODUCTION

1.1 Problem Statement 1

1.2 Aim 2

1.3 Objective 3

1.4 Scope 3

CHAPTER 2 LITERATURE STUDY

2.1 Java Cryptography Architecture 4

2.2 Engine Classes 6

2.3 How JCA Works 9

2.4 Algorithms 11

VOT 71858

 v

CHAPTER 3 PROJECT METHODOLOGY

 3.1 Methodology 14

 3.2 Implementation Details 15

 3.3 Hardware And Software Specification 16

 3.3.1 Hardware 16

3.3.2 Software 16

CHAPTER IV DESIGN AND IMPLEMENTATION

 4.1 SPI Concrete Classes 18

 4.2 Provider File 19

 4.3 Installation 20

 4.3.1 Configuring The Provider 21

 4.4 How To Use Provider 24

 4.4.1 Encryption 24

 4.4.1.1 Generating a Key 24

 4.4.1.2 Creating a Cipher 25

 4.5 Signature 26

 4.5.1 Creating the Key Pair Generator 26

 4.5.1.1 Algorithm-Independent Initialization 27

 4.5.1.2 Algorithm-Specific Initialization 27

 4.5.1.3 Generating the Pair of Keys 28

 4.5.2 Signature Generation and Verification 28

 4.6 Hashing 29

 4.7 Key Exchange 30

 4.8 Provider Specification 31

 4.8.1 Symmetric Algorithms 31

 4.8.2 Asymmetric Algorithm 32

 4.8.3 Key Agreement 33

 4.8.4 Digest 33

 4.8.5 Signature Algorithms 33

VOT 71858

 vi

CHAPTER V CONCLUSION

 5.1 Discussion 34

 5.2 Suggestion 35

 REFERENCES 36

 APPENDIX A 38

 APPENDIX B 41

VOT 71858

 vii

TABLE LIST

NO. TITLE PAGE

2.1 Engine and SPI classes 9

4.1 Symmetric Algorithms 32

4.2 Message Digest Algorithms 33

VOT 71858

 viii

DIAGRAM LIST

NO. TITLE PAGE

2.1 The JCA Architecture 6

2.2 How JCA or JCE Works 10

2.3 Relation of a SPI class, an engine class and the provider 10

VOT 71858

 ix

APPENDIX LIST

APPENDIX TITLE PAGE

A Design 39

B Paper 41

CHAPTER 1

INTRODUCTION

Nowadays, security is always a concern for IT developers. It is not strange to

see that any IT conference that discusses this topic will always be packed out. Today

the number of people using the Internet continues to increase. This trend has increased

the public awareness of the need of secure application and the problems that are

caused by failure in this area. For an e-commerce company, breaches in computer

security can reduce the public confidence in doing online transaction with the

company.

1.1 Problem Statement

Security is a fundamental issue in the development of information and

communication technology applications. Cryptography is the most established

mechanism that can provide confidentiality, integrity and authentication security

services in these applications. Cryptographic tools provide encryption, key-exchange

and hashing functions. Encryption algorithms consist of symmetric and asymmetric

algorithms. Symmetric algorithms use substitution and transposition of message

VOT 71858

 2

symbols, while asymmetric algorithms employ mathematics in providing the strength

of the algorithms. Key-exchange provides means of exchanging secret or session

keys, while hashing provides means of checking integrity of messages.

A cryptographic provider is a set of cryptographic tools provided by an

organization or company. There are several cryptographic libraries available, some of

which are freely available. One of them is SunJCE provider that is provided by

JavaSoft. However, the provider only provides implementation for a small number of

algorithms.

In addition, there are no available cryptographic library tools implemented

locally in Malaysia. By using other providers, we are unsure if there exists any

trapdoor or backdoor in the coding. By developing our own code for the

cryptographic tools, we are certain of the security of the tools, and there is no

restriction for using strong encryption. This project has developed cryptographic

tools, which can work with any other providers. This allows users to incorporate our

tools in existing applications, which may use tools from other providers.

1.2 Aim

The expected output of this research is a library of cryptographic tools. This

library can be used for teaching undergraduate and graduate cryptography classes in

enhancing students understanding of cryptographic algorithms. It also can provide

ground for further research in the field.

VOT 71858

 3

1.3 Objective

The objectives of this project are:

a) To provide locally developed cryptographic tools that are provider

independent.

b) To provide cryptographic tools, which students and researchers can do

further research on.

c) To obtain comprehensive understanding of mathematic involved in

cryptographic tools.

d) To identify and develop classes those are needed in developing

cryptographic tools.

1.4 Scope

The scopes of this project are:

a) The provider implements encryption, key-exchange and hashing tool only.

b) Symmetric algorithms that are implemented are triple-DES, IDEA,

Rijndael, RC5 and DES.

c) For asymmetric algorithms, RSA (encryption and digital signature), DSS

and ECDSA are developed.

d) Hashing tools like MD5 and SHA algorithms are developed.

CHAPTER 2

LITERATURE STUDY

This chapter discusses Java Cryptography Architecture (JCA) and Java

Cryptography Extension (JCE). Besides, we also discuss the requirements that are

needed to implement a provider. In addition, a brief explanation about several

algorithms is also discussed.

2.1 Java Cryptography Architecture

An object-oriented framework is a reusable design of all or part of a system

that is represented by a set of abstract classes and the way their instances interact [1].

JCA [2] is an object-oriented framework for accessing and developing cryptographic

functionality for the Java platform. It was first brought in the Java Development Kit

(JDK) 1.1 to accommodate message digest and digital signature services.

In consequent releases, the Java 2 SDK notably extended the Java

Cryptography Architecture. It also improved the certificate management

infrastructure to support X.509 v3 certificates, and introduced a new Java Security

 5

Architecture for fine-grain, highly configurable, flexible, and extensible access

control.

The Java Cryptography Extension (JCE) expands the JCA API to include

APIs for encryption, key exchange, and Message Authentication Code (MAC).

Together, the JCE and the cryptography aspects of the SDK provide a complete,

platform-independent cryptography API. JCE was previously a not obligatory

package (extension) to the Java 2 SDK, Standard Edition, versions 1.2.x and 1.3.x.

JCE has now been integrated into the Java 2 SDK, v 1.4.

A good cryptography framework has two important criteria, which are

algorithm independent and implementation independent. For a framework to be

implementation independent it should conceal the details of a provider from an

application and the application should not call directly any packages of the provider.

That is to say, a framework should part an application and providers by sitting

between them. In this fashion, an application can only see an implementation

independent interface, called upward interface, of the framework. Conversely, a

framework should provide a downward API that can be implemented in many ways.

To be algorithm independent the upward interface of a framework should be abstract

and only show a relationship with generic cryptographic concepts, such as Message

Digest, rather than concrete algorithms such as SHA-1 and MD5.

The diagram in Figure 2.1 shows that the JCA design follows the above

paradigm and its structure. The JCA architecture contains three pieces: the JCA-

based applications, the JCA framework and the JCA-compliant providers. The JCA-

based applications are on the top. The JCA framework provides an upward interface,

called engine classes, and standard names, which are a set of security algorithms

names such as RSA and MD5. Since a JCA-based application only knows the engine

classes and the standard names, only engine class names and standard names will

appear in the application’s sources code and its configuration files. The framework

also defines a downward uniform API, called “Service Provider Interface” (SPI), to

underlying cryptographic providers. This uniform interface allows a provider to be

replaced at run-time.

 6

Figure 2.1: The JCA Architecture [3]

2.2 Engine Classes

The JCA includes the classes of the Java 2 SDK Security package that is

related to cryptography, this includes the engine classes. Users of the API ask for and

use instances of the engine classes to carry out corresponding operations. The

following engine classes are defined in the JCE:

a) MessageDigest: used to calculate the message digest (hash) of

specified data.

b) Signature: used to sign data and verify digital signatures.

c) KeyPairGenerator: used to generate a pair of public and private keys

suitable for a specified algorithm.

d) KeyFactory: used to convert opaque cryptographic keys of type Key

into key specifications (transparent representations of the underlying

key material), and vice versa.

 7

e) CertificateFactory: used to create public key certificates and

Certificate Revocation Lists (CRLs).

f) KeyStore: used to create and manage a keystore. A keystore is a

database of keys. Private keys in a keystore have a certificate chain

associated with them, which authenticates the corresponding public

key. A keystore also contains certificates from trusted entities.

g) AlgorithmParameters: used to manage the parameters for a

particular algorithm, including parameter encoding and decoding.

h) AlgorithmParameterGenerator: used to generate a set of

parameters suitable for a specified algorithm.

i) SecureRandom: used to generate random or pseudo-random numbers.

j) CertPathBuilder: used to build certificate chains (also known as

certification paths).

k) CertPathValidator: used to validate certificate chains.

l) CertStore: used to retrieve Certificates and CRLs from a

repository.

In the JCE, the following engine classes are defined:

a) Cipher: used to provide the functionality of a cryptographic cipher used

for encryption and decryption. It forms the core of the JCE

framework.

b) KeyGenerator: used to generate secret keys for symmetric algorithms

 8

c) KeyAgreement: used to provide the functionality of a key agreement

protocol. The keys involved in establishing a shared secret are created

by one of the key generators (KeyPairGenerator or KeyGenerator),

a KeyFactory, or as a result from an intermediate phase of the key

agreement protocol.

d) Mac: used to provide the functionality of a Message Authentication Code

(MAC).

e) SecretKeyFactory: used to convert keys (opaque cryptographic keys

type java.security.Key) into key specifications (transparent

representations of the underlying key material in a suitable format)

and vice versa.

The application interfaces supplied by an engine class are implemented in

terms of a Service Provider Interface (SPI). That is, for each engine class, there is a

corresponding abstract SPI class, which defines the SPI methods that cryptographic

service providers must implement.

An instance of an engine class, the API object, puts in a nutshell (as a private

field) an instance of the corresponding SPI class, the SPI object. All API methods of

an API object are declared final and their implementations invoke the corresponding

SPI methods of the encapsulated SPI object. An instance of an engine class (and of

its corresponding SPI class) is created by a call to the getInstance factory method

of the engine class.

The name of each SPI class is the same as that of the corresponding engine

class, followed by Spi. For example, the SPI class corresponding to the Signature

engine class is the SignatureSpi class.

Each SPI class is abstract. To supply the implementation of a particular type

of service, for a specific algorithm, a provider must subclass the corresponding SPI

class and provides implementations for all the abstract methods. An engine class is

 9

the MessageDigest class, which provides access to a message digest algorithm.

Its implementations, in MessageDigestSpi subclasses, may be those of various

message digest algorithms such as SHA-1, MD5, or MD2. Table 2.1 shows the SPI

classes, which are defined in the JCA and the JCE.

Table 2.1: Engine and SPI classes
Engine Class SPI Class

MessageDigest MessageDigestSpi

Signature SignatureSpi

KeyPairGenerator KeyPairGeneratorSpi

KeyFactory KeyFactorySpi

CertificateFactory CertificateFactorySpi

KeyStore KeyStoreSpi

Cipher CipherSpi

KeyGenerator KeyGeneratorSpi

KeyAgreement KeyAgreementSpi

Mac MacSpi

SecretKeyFactory SecretKeyFactorySpi

Another requirement is that the provider code needs to be signed by a trusted

entity. The trusted entity can Sun itself. Sun added this additional requirement to

install a provider because the United States imposed an export control restriction

upon JCE. Therefore, a provider must request a code-signing certificate from Sun,

and the certificate is then used to sign the provider code.

2.3 How JCA Works

Java.security and javax.crypto packages and their sub packages consist

of important classes for the programmers to use in a development of a secure

application. Both frameworks allow many different possible implementations of the

 10

algorithms from different providers. For example, although the implementation is

written in other language, programmers only have to know the usage of the standard

classes in the JCA and JCE.

Programmers do not have to be aware of the existence of any of the providers

installed in JDK. They only need to know the usage of the classes that are defined in

the JCA and JCE. When user code used the classes (engine classes), JCE will hand

over all requests for cryptographic functions to those provider classes. To get the

implementation of the provider, the provider must be added to the system. This can

be done either statically or dynamically. Figure 2.2 shows the process.

Figure 2.2: How JCA or JCE Works

The classes in the JCA and the JCE provide a framework for cryptographic

functions. In order to create the implementations, we must extend the abstract

classes called Service Provider Interface (SPI). Each method in SPI classes must be

implemented. Figure 2.3 shows the relation of the Signature and SignatureSpi

classes to a provider’s implementation of a digital signature algorithm.

 11

Figure 2.3: Relation of a SPI class, an engine class and the provider

2.4 Algorithms

The followings are the algorithms that are implemented in this project:

a) The RSA [4] cryptosystem is a public-key cryptosystem that offers both

encryption and digital signatures (authentication). Ronald Rivest, Adi

Shamir, and Leonard Adleman developed the RSA system in 1977.RSA

stands for the first letter in each of its inventors' last names

b) The Data Encryption Standard (DES) [5] was developed by The National

Bureau of Standards with the help of the National Security Agency in the

1970s. Its purpose is to provide a standard method for protecting sensitive

commercial and unclassified data. IBM created the first draft of the

algorithm, calling it LUCIFER. DES officially became a federal standard

in November of 1976.

c) Triple DES [4] encryption is the encryption standard used by many VPN

solutions including several IPSec implementations. It uses a 192 bit key

to encrypt\/decrypt data.

d) IDEA (International Data Encryption Algorithm) [4] is the second version

of a block cipher designed and presented by Lai and Massey. It is a 64-bit

iterative block cipher with a 128-bit key and eight rounds. Decryption is

carried out in the same manner as encryption once the decryption subkeys

have been calculated from the encryption subkeys. The cipher structure

 12

was designed to be easily implemented in both software and hardware,

and the security of IDEA relies on the use of three incompatible types of

arithmetic operations on 16-bit words. The speed of IDEA in software is

similar to that of DES.

e) MD2 [6], MD4 [7], and MD5 [8] are message-digest algorithms

developed by Rivest. They are meant for digital signature applications

where a large message has to be "compressed" in a secure manner before

being signed with the private key. All three algorithms take a message of

arbitrary length and produce a 128-bit message digest. While the

structures of these algorithms are somewhat similar, the design of MD2 is

quite different from that of MD4 and MD5. MD2 was optimized for 8-bit

machines, whereas MD4 and MD5 were aimed at 32-bit machines.

f) SHA-1, SHA-256, SHA-384, SHA-512 [9] are versions of Secure Hash

Algorithm, which generate respectively, hashes of 160, 256, 384, or 512

bits.

g) Tiger [10] is a fast new hash function, designed to be very fast on modern

computers, and in particular on the state-of-the-art 64-bit computers (like

DEC-Alpha). It is optimized for 64-bit processors and produces 128, 160,

or 192-bit hashes

h) RIPEMD-160, RIPEMD-128 [11] are cryptographic hash functions,

designed by Hans Dobbertin, Antoon Bosselaers, and Bart Preneel. It is

used as a secure replacement for the 128-bit hash functions MD4, MD5,

and RIPEMD. RIPEMD was developed in the framework of the EU

project RIPE (RACE Integrity Primitives Evaluation, 1988-1992).

i) Diffie-Hellman [12] key agreement protocol (also called exponential key

agreement) was developed by Diffie and Hellman in 1976 and published

in the groundbreaking paper "New Directions in Cryptography." The

protocol allows two users to exchange a secret key over an insecure

medium without any prior secrets

 13

j) DSA [4] was published by The National Institute of Standards and in the

Digital Signature Standard (DSS), which is a part of the U.S.

government's Capstone project

k) The Elliptic Curve Digital Signature Algorithm (ECDSA) [13] is the

elliptic curve analogue of the Digital Signature Algorithm (DSA). It was

accepted in 1999 as an ANSI standard, and was accepted in 2000 as IEEE

and NIST standards. It was also accepted in 1998 as an ISO standard, and

is under consideration for inclusion in some other ISO standards. Unlike

the ordinary discrete logarithm problem and the integer factorization

problem, no sub exponential-time algorithm is known for the elliptic

curve discrete logarithm problem. For this reason, the strength-per-key-bit

is substantially greater in an algorithm that uses elliptic curves.

l) ECDH [14] a key exchange scheme based on the elliptic curve discrete

logarithm problem.

CHAPTER 3

METHODOLOGY

This chapter describes how this cryptographic library was developed based

on the scopes that were stipulated in Chapter 1 and discusses the steps that were

used. The first section explains the methodology in general. The section explains the

implementation steps in detail.

3.1 Methodology

In general, this project followed Software Development Life Cycle model.

The project started with the study of the algorithms that was going to be

implemented. The algorithms fell into three main categories, which were

encryption/signature tools, key exchange tools and hashing tools. The study included

how the algorithm work, the key size needed, types of padding and modes of

operation.

After that, a design of the whole library was made. The design conformed to

the framework defined in Java Cryptographic Architecture. In the design, a number

 15

of SPI classes were sub classed. The sub classes implemented all the abstract

methods in the corresponding SPI class. The methods contained the implementation

of the algorithms.

The implementation process followed the guidelines stated in the official Java

documentation. The guidelines ensured that library conformed to the standard

imposed by Sun and also guaranteed that the library will work seamlessly in Java.

One of the important requirements in the guidelines was the signing requirement

from authorized entity. Such signing would ensure the authenticity of the library.

After completing the implementation, the correctness of the library was

determined by testing. Due to time constraint, the fastest and accurate way to

determine it was by comparing the output of the algorithms with the other library. In

the testing, the inputs to the algorithms were determined in advance and must be

equal to each other.

3.2 Implementation Details

Once the design of the library was completed, the coding process began. Java

classes that correspond to UML classes in the design were created. The

implementation of the algorithm was put into the sub classes of SPI class. All the

abstract methods in the SPI classes were overridden.

Having completed the coding process, the Master class was created. The

function of the class was to register the algorithms and services implemented in the

library. The Master class was a sub class of Provider class in java.security

package. The coding for registering the algorithms and services was included in the

constructor function. Besides the algorithms, the class also held the name of the

library. For this library, we named it as “FSKSM”. After coding, the code was

compiled as normal.

 16

For testing, several steps were taken. Because we also developed algorithms

that require classes in javax.crypto package (JCE), we signed the library using a

signing certificate. The certificate was issued by an authorized entity, which was

SUN. Therefore, the next step was to obtain the certificate. Next, after compressing

the library files into a JAR file, the certificate was used to sign the library. Finally,

the library was ready to use.

3.3 Hardware And Software Specification

Hardware and software play an important role to determine the development

efficiency. To develop this provider, several hardware and software criteria were

determined.

3.3.1 Hardware

The following are hardware specifications:

a) 166 MHz (recommended minimum)

b) 64 MB memory (recommended)

c) 50 MB hard disk space (depending on features installed)

d) Microsoft® Windows 98 and above

3.3.2 Software

The followings are two pieces of software that were needed in this project:

 17

a) JBuilder is a Java development environment that is used to speed

up the programming process. Open, scalable, and standards-based,

JBuilder provides a set of visual development tools for creating

applications for the Java 2 platform. It also provides customers the

freedom of choice to develop and deploy their Java applications to

any of the leading operating systems, including Mac OS X, Linux,

Windows, and Solaris.

b) Another tool that is used is Rational Rose. Rational Rose®

software is the award-winning model-driven development tool that

is part of Rational Software's comprehensive and fully integrated

solution designed to meet today's software development

challenges. Rational Rose assists developer to design better

software using the UML method.

CHAPTER 4

DESIGN AND IMPLEMENTATION

This chapter discusses the design and implementation of the provider. UML

notation is used to design the classes that are needed for the library. Besides, it also

discusses the files created, the installation process and brief instructions on how to

use the provider.

4.1 SPI Concrete Classes

This provider has the following SPI concrete classes:

a) JCEDESCipher, JCEIDEACipher, JCEDESedeCipher,

JCERC564Cipher, JCERSACipher, JCERijndaelCipher

extend CipherSpi. The classes are used for encryption and

decryption.

b) JCERC5KeyGenerator, JCERijndaelKeyGenerator,

JCEDESKeyGenerator, JCEDESedeKeyGenerator,

 19

JCEIDEAKeyGenerator extend KeyGeneratorSpi. The

classes are used for generating symmetric key.

c) DSAKeyPairGenerator, RSAKeyPairGenerator and

DHKeyPairGenerator extend KeyGeneratorSpi. The classes

are used to generate asymmetric keys.

d) SHA1, SHA256, SHA384, SHA512, MD2, MD4, MD5,

RIPEMD128, RIPEMD160 extend MessageDigestSpi. The classes are

used for hashing.

e) DHKeyAgreement extends KeyAgreementSpi. This class is

used to generate secret key using Diffie-Hellman algorithm.

f) DHAlgorithmParameters extends

AlgorithmParameterGeneratorSpi

AlgorithmParametersSpi, and

DHAAlgorithmParameterGenerator extends.

Besides the classes above, there are several additional classes that is used to

support the functionality of the provider.

4.2 Provider File

The final product of the file is a JAR file, which contains the provider class.

The JAR file has been signed by a certificate-signing certificate, which was received

from SUN. The name of the JAR file is FsksmProvider.jar. The name, however,

can be changed into any other names.

 20

The files in the JAR file must not be altered or removed. This is because JCA

framework can detect such modifications and throw exception. As a result, the

provider becomes unusable. This is an example of security features of this provider

that can prevent application from attacks such as modification and alteration.

4.3 Installation

The installation procedure described in this section and the following are

adapted from Java Documentation by JavaSoft. The procedure enables Java Security

to find the algorithm implementations in the provider when clients (applications)

request them. The installation consists of two steps: installing the provider package

classes and configuring the provider.

The JAR file containing the provider classes can be installed as an "installed"

or "bundled" extension or by placing it in the application CLASSPATH. In this

section, we will only discuss the first and third methods.

To install the provider as installed extension, place FsksmProvider.jar file

in the standard place for the JAR files of an installed extension:

<java-home>/lib/ext [Solaris]

<java-home>\lib\ext [Windows]

Here <java-home> refers to the directory where the runtime software is

installed, which is the top-level directory of the JavaTM 2 Runtime Environment (JRE)

or the jre directory in the JavaTM 2 SDK (Java 2 SDK) software. For example, if you

have the Java 2 SDK, v 1.4 installed on Solaris in a directory named

 21

/home/user1/J2SDK1.4.0, or on Microsoft Windows in a directory named

C:\J2SDK1.4.0, then you need to install the JAR file in the following directory:

/home/user1/J2SDK1.4.0/jre/lib/ext [Solaris]

C:\J2SDK1.4.0\jre\lib\ext [Windows]

Similarly, if you have the JRE, v 1.4 installed on Solaris in a directory named

/home/user1/j2re1.4.0, or on Microsoft Windows in a directory named

C:\j2re1.4.0, you need to install the JAR file in the following directory:

/home/user1/j2re1.4.0/lib/ext [Solaris]

C:\j2re1.4.0\lib\ext [Windows]

Another way to install the provider is by placing the JAR file in the

CLASSPATH. Take, for example, we want to run an application named

program.class on Microsoft Windows and the program uses the provider. We run the

program by typing the following command:
java –cp FsksmProvider.jar program

4.3.1 Configuring the Provider

Having installed the provider, the next step is to add the provider to a list of

approved providers. This can be done either statically or dynamically.

This is done statically by editing the security properties file

<java-home>/lib/security/java.security [Solaris]

<java-home>\lib\security\java.security [Windows]

 22

Here <java-home> refers to the directory where the JRE was installed. For

example, if you have the Java 2 SDK v 1.4 installed on Solaris in a directory named

/home/user1/J2SDK1.4.0, or on Microsoft Windows in a directory named

C:\J2SDK1.4.0, then you need to edit the following file:

/home/user1/J2SDK1.4.0/jre/lib/security/java.security [Solaris]

C:\J2SDK1.4.0\jre\lib\security\java.security [Windows]

Similarly, if you have the Java 2 Runtime Environment, v 1.4 installed on

Solaris in a directory named /home/user1/j2re1.4.0, or on Windows in a

directory named C:\j2re1.4.0, then you need to edit this file:

/home/user1/j2re1.4.0/lib/security/java.security [Solaris]

C:\j2re1.4.0\lib\security\java.security [Windows]

For this provider, this file should have a statement of the following form:
security.provider.n=my.utm.fsksm.provider.FsksmProvider

This declares the provider, and specifies its preference order n. The

preference order is the order in which providers are searched for requested

algorithms when no specific provider is requested. The order is 1-based; 1 is the most

preferred, followed by 2, and so on.

To register the provider dynamically, a program can call either the

addProvider or insertProviderAt method in the Security class. This type of

registration is not persistent and can only be done by code that is granted the

following permission:
java.security.SecurityPermission "insertProvider.FSKSM}"

If the JAR file is in the myjce_provider.jar file in the /localWork

directory, then here is a sample policy file grant statement granting that permission:

 23

grant codeBase "file:/localWork/FsksmProvider.jar" {

permission

java.security.SecurityPermission."insertProvider.FSKM";

};

User must note that whenever JCE providers are not installed extensions,

permissions must be granted for when applets or applications using JCE are run

while a security manager is installed. There is typically a security manager installed

whenever an applet is running, and a security manager may be installed for an

application either via code in the application itself or via a command-line argument.

Permissions do not need to be granted to installed extensions, since the default

system policy file grants all permissions to installed extensions.

Whenever a client does not install the provider as an installed extension, the

provider may need the following permissions granted to it in the client environment:

a) java.lang.RuntimePermission to get class protection domains. The

provider may need to get its protection domain in the process of doing

self-integrity checking.

b) java.security.SecurityPermission to set provider properties.

In addition, prior to running such application you need to grant appropriate

permissions to the provider. For example, a sample statement granting permissions

this provider appears below. Such a statement could appear in a policy file. In this

example, the FsksmProvider.jar file is assumed to be in the /localWork directory.

grant codeBase "file:/localWork/FsksmProvider.jar" {

 permission java.lang.RuntimePermission

"getProtectionDomain";

 permission java.security.SecurityPermission

 "putProviderProperty.FSKSM";

};

 24

4.4 How To Use The Provider

The usage of the provider can be divided into four categories: encryption,

signature, hash and key exchange. Therefore, in this section, we will discuss the

usage separately.

Since this provider conforms the JCA framework, user must only know the

usage of classes in java.security package and its sub packages as well as classes in

javax.crypto package and its sub packages. To get the implementation of the

provider, user only need to type “FSKSM”, the name of this provider.

4.4.1 Encryption

This section explains the process of generating a key, creating and initializing

a cipher object, encrypting a file, and then decrypting it. Throughout this example,

we use the Data Encryption Standard (DES).

4.4.1.1 Generating a Key

To create a DES key, we have to instantiate a KeyGenerator for DES. To get

this provider key generator implementation, specify the provider “FSKSM” in the

statement. Since we do not initialize the KeyGenerator, a system-provided source of

randomness will be used to create the DES key:

 KeyGenerator keygen = KeyGenerator.getInstance("DES",”FSKSM”);

 25

 SecretKey desKey = keygen.generateKey();

After the key has been generated, the same KeyGenerator object can be re-

used to create further keys.

4.4.1.2 Creating a Cipher

The next step is to create a Cipher instance. To do this, we use one of the

getInstance factory methods of the Cipher class. We must specify the name of the

requested transformation, which includes the following components, separated by

slashes (/):

a) The algorithm name

b) The mode (optional)

c) The padding scheme (optional)

In this example, we create a DES (Data Encryption Standard) cipher in

Electronic Codebook mode, with PKCS #5-style padding and specify FSKSM as the

provider. The standard algorithm name for DES is "DES", the standard name for the

Electronic Codebook mode is "ECB", and the standard name for PKCS #5-style

padding is "PKCS5Padding":

Cipher desCipher;

// Create the cipher

desCipher =

Cipher.getInstance("DES/ECB/PKCS5Padding",”FSKSM”);

We use the generated desKey from above to initialize the Cipher object for

encryption:
 // Initialize the cipher for encryption

 desCipher.init(Cipher.ENCRYPT_MODE, desKey);

 26

 // Our cleartext

 byte[] cleartext = "This is just an example".getBytes();

 // Encrypt the cleartext

 byte[] ciphertext = desCipher.doFinal(cleartext);

 // Initialize the same cipher for decryption

 desCipher.init(Cipher.DECRYPT_MODE, desKey);

 // Decrypt the ciphertext

 byte[] cleartext1 = desCipher.doFinal(ciphertext);

cleartext and cleartext1 are identical.

4.5 Signature

In this section, we will generate a public-private key pair for the algorithm

named "DSA" (Digital Signature Algorithm). We will generate keys with a 1024-bit

modulus using the implementation from FSKSM provider.

4.5.1 Creating the Key Pair Generator

The first step is to get a key pair generator object for generating keys for the

DSA algorithm:
KeyPairGenerator keyGen =

KeyPairGenerator.getInstance("DSA",”FSKSM”);

The next step is to initialize the key pair generator. In most cases, algorithm-

independent initialization is sufficient, but in some cases, algorithm-specific

initialization is used.

 27

4.5.1.1 Algorithm-Independent Initialization

All key pair generators share the concepts of a keysize and a source of

randomness. A KeyPairGenerator class initialize method has these two types of

arguments. Thus, to generate keys with a keysize of 1024 and a new SecureRandom

object, you can use the following code:

SecureRandom random = SecureRandom.getInstance();

random.setSeed(userSeed);

keyGen.initialize(1024, random);

4.5.1.2 Algorithm-Specific Initialization

For situations where a set of algorithm-specific parameters already exists

(such as "community parameters" in DSA), there are two initialize methods that have

an AlgorithmParameterSpec argument. Suppose your key pair generator is for the

"DSA" algorithm, and you have a set of DSA-specific parameters, p, q, and g, that

you would like to use to generate your key pair. You could execute the following

code to initialize your key pair generator (recall that DSAParameterSpec is an
AlgorithmParameterSpec):

DSAParameterSpec dsaSpec = new DSAParameterSpec(p, q, g);

SecureRandom random = New SecureRandom();

keyGen.initialize(dsaSpec, random);

 28

4.5.1.3 Generating the Pair of Keys

The final step is generating the key pair. No matter which type of

initialization was used (algorithm-independent or algorithm-specific), the same code

is used to generate the key pair:
KeyPair pair = keyGen.generateKeyPair();

4.5.2 Signature Generation and Verification

The following signature generation and verification examples use the key pair

generated in the key pair example above.

Signature dsa = Signature.getInstance("SHA1withDSA",”FSKSM”);

/* Initializing the object with a private key */

PrivateKey priv = pair.getPrivate();

dsa.initSign(priv);

/* Update and sign the data */

dsa.update(data);

byte[] sig = dsa.sign();

Verifying the signature is straightforward.

/* Initializing the object with the public key */

PublicKey pub = pair.getPublic();

dsa.initVerify(pub);

/* Update and verify the data */

dsa.update(data);

boolean verifies = dsa.verify(sig);

System.out.println("signature verifies: " + verifies);

 29

4.6 Hashing

First create the message digest object, as in the following example:
MessageDigest sha = MessageDigest.getInstance("SHA-1",”FSKSM”);

This call assigns a properly initialized message digest object to the sha

variable. The implementation implements the Secure Hash Algorithm (SHA-1), as

defined in the National Institute for Standards and Technology's (NIST) FIPS 180-1

document.

Next, suppose we have three byte arrays, i1, i2 and i3, which form the total

input whose message digest we want to compute. This digest (or "hash") could be

calculated via the following calls:

sha.update(i1);

sha.update(i2);

sha.update(i3);

byte[] hash = sha.digest();

An equivalent alternative series of calls would be:

sha.update(i1);

sha.update(i2);

byte[] hash = sha.digest(i3);

After the message digest has been calculated, the message digest object is

automatically reset and ready to receive new data and calculate its digest. All former

state (i.e., the data supplied to update calls) is lost.

 30

4.7 Key Exchange

Key agreement is a protocol by which 2 or more parties can establish

the same cryptographic keys, without having to exchange any secret

information. In this example, we discuss how to write Diffie-Hellman key

exchange code.

Two parties who wish to communicate; each must have a pair of

Diffie-Hellman key. First, create a DH parameter using an

AlgorithmParameterGenerator object, and specify FSKSM as the name of

the provider. FSKSM implementation of this generator uses the SKIP pre-

generated value. Therefore, time taken to generate the parameters is not very

long.

AlgorithmParameterGenerator paramGen

= AlgorithmParameterGenerator.getInstance("DH",”FSKSM”);

paramGen.init(512);

AlgorithmParameters params = paramGen.generateParameters();

dhSkipParamSpec = (DHParameterSpec)params.getParameterSpec

(DHParameterSpec.class);

 Next, create a key pair by calling KeyPairGenerator generate

method.

KeyPairGenerator KpairGen =

KeyPairGenerator.getInstance("DH",”FSKSM”);

KpairGen.initialize(dhSkipParamSpec);

KeyPair Kpair = KpairGen.generateKeyPair();

After that, instantiate a KeyAgreement object. This object will be used to

do the key agreement by calling its initialize and doPhase methods.

KeyAgreement KeyAgree = KeyAgreement.getInstance("DH",”FSKSM”);

KeyAgree.init(Kpair.getPrivate());

KeyAgree.doPhase(OtherPubKey, true);

 31

Finally, call generateSecret () method to create the secret value in the form of byte

array. The byte array can be used as a key to any symmetric ciphers.

byte[] Secret = aliceKeyAgree.generateSecret();

4.8 Provider Specification

4.8.1 Symmetric Algorithms

For all symmetric algorithms, the modes of operation that are supported in this
provider are:

a) ECB

b) CBC

c) OFB(n)

d) CFB(n)

Where (n) is a multiple of 8 that gives the block size in bits, e.g., OFB8. OFB and

CFB mode can be used with plain text that is not an exact multiple of the block size

if NoPadding has been specified.

Padding schemes that are supported are:

a) No padding

b) PKCS5/7

c) ISO10126/ISO10126-2

d) X9.23/X923

When placed together this gives a specification for an algorithm. The followings are

some examples:

a) DES/CBC/X9.23Padding

b) DES/OFB8/NoPadding

 32

c) IDEA/CBC/ISO10126Padding

Table 4.1 shows information about the algorithms.

Name KeySizes (in bits) Block Size

DES 64 64 bit

DESede 128, 192 64 bit

IDEA 128 (128) 64 bit

RC5-64 0 .. 256 (256) 128 bit

Rijndael 0 .. 256 (192) 128 bit

4.1: Symmetric Algorithms

4.8.2 Asymmetric Algorithm

Padding schemes that are supported are:

a) OAEP - Optimal Asymmetric Encryption Padding

b) PCKS1 - PKCS v1.5 Padding

This providers support multiple block encryption and decryption for RSA algorithm.

Two modes of operation that are supported are:

a) ECB

b) CBC

When placed together with RSA this gives a specification for an algorithm. Some

examples are;

• RSA/CBC/PKCS1Padding

• RSA/ECB/OAEPPadding

 33

The key size can be any multiple of 8 bits large enough for encryption (2048).

4.8.3 Key Agreement

Diffie-Hellman key agreement is supported using the "DH" and "ECDH";

4.8.4 Digest

Table 4.2 shows digest algorithms that are supported in this provider.

Name Output (in bits) Notes

MD2 128

MD4 128

MD5 128

RipeMD128 128 basic RipeMD

RipeMD160 160 enhanced version of RipeMD

SHA1 160

SHA-256 256 Draft version from FIPS 180-2

SHA-384 384 Draft version from FIPS 180-2

SHA-512 512 Draft version from FIPS 180-2

Tiger 192

Table 4.2: Message Digest Algorithms

4.8.5 Signature Algorithms

Signature schemes that are supported by this provider are as follows:

a) MD5withRSA

b) SHA1withRSA

c) SHA1withDSA

d) SHA1withECDSA

CHAPTER 5

CONCLUSION & SUGGESTION

The provider that has been developed support several important algorithms.

The algorithms cover encryption, decryption, signature, hashing and key exchange.

5.1 Discussion

This provider is a Java-based provider that implements important algorithms.

It is an alternative provider for those who do not want to use default provider in JDK.

This provider follows the guidelines that are provided by Sun. Therefore, it is

guaranteed that this provider can be used without compatibility problems with JCA.

In addition, this provider can work with other providers without any problems

except that this provider does not support key or parameter encoding because it takes

a lot of time to write encoding codes. I found it quite difficult to understand ASN1

format, which most standards follow. I hope that this project will be extended to

support key and parameter encoding.

 35

5.2 Suggestion

a) There are still a lot of algorithms yet to be implemented. This project can

be extended to support more algorithms.

b) As mentioned in the previous section, this project should support

encoding features.

References

1. R. Johnson. Components, frameworks, patterns (extended abstract). In M.

Harandi, editor, Proceedings of the 1997 Symposium on Software

Reusability, pages 10 – 17, Boston, MA, 1997.

2. Sun Microsystems, Java Cryptography Architecture, API specification &

reference. Available at

http://java.sun.com/j2se/1.4.1/docs/guide/security/CryptoSpec.html

3. H. Yih, R. David, W. Xunhua. A JCA-based Implementation Framework

for Threshold Cryptography. Available at

http://www.acsac.org/2001/papers/42.pdf

4. Stallings. W. Cryptography And Network Security: Principles and

Practice (Prentice Hall, Upper Saddle River, New Jersey 07458, 1999).

5. National Institute Of Standards and Technology (NIST). FIPS Publication

46-2: Data Encryption Standard (DES) (April 1994).

6. B Kaliski. RFC 1319: The MD2 Message-Digest Algorithm. Internet

Activities Board, (April 1992).

7. Rivest, R. “The MD4 Message Digest Algorithm.” Proceedings, Crypto

’90, August 1990; published by Springer-Verlag.

8. R. Rivest. RFC 1321: The MD5 Message-Digest Algorithm. Internet

Activities Board, (April 1992).

9. National Institute of Standards and Technology (NIST), FIPS Publication

180-2: Secure Hash Standard (2002 August)

10. Ross Anderson and Eli Biham, Tiger: A Fast New Hash Function,

http://www.cs.technion.ac.il/~biham/Reports/Tiger/tiger/tiger.html (1996)

 37

11. Hans Dobbertin, Antoon Bosselaers, Bart Preneel, RIPEMD-160: A

Strengthened Version of RIPEMD http://

www.esat.kuleuven.ac.be/~cosicart/pdf/AB-9601/AB-9601.pdf

12. RSA Laboratories, PKCS #3 v1.4: Diffie-Hellman Key-Agreement

Standard (November 1, 1993).

13. Don Johnson, Alfred Menezes, Scott Vanstone, The Elliptic Curve Digital

Signature Algorithm (ECDSA), available at

http://www.certicom.com/pdfs/whitepapers/ecdsa.pdf

14. ANSI X9.63, “Public-key cryptography for the financial services industry

- Elliptic Curve Key Agreement and Key Transport Algorithms,” draft,

1998.

Appendix A - Design

This appendix shows overall design in UML notations.

A1 CipherSpi

CipherSpi

JCEDesCipherJCEDESedeCipher JCEIDEACipher

JCERC564Cipher JCERijndaelCipherJCERSACipher

A2 KeyGeneratorSpi

KeyGeneratorSpi

JCEDESKeyGenerator JCEDESedeKeyGenerator JCEIDEAKeyGenerator

JCERC5KeyGenerator JCERijndaelKeyGenerator

A3 KeyPairGeneratorSpi

KeyPairGeneratorSpi

RSAKeyPairGenerator DHKeyPairGeneratorDSAKeyPairGenerator

 39

A4 MessageDigestSpi

MessageDigestSpi

SHA256 SHA384 SHA512 MD2

MD4 MD5 RIPEMD128 RIPEMD160

SHA1

A5 KeyAgreementSpi

KeyAgreementSpi

DHKeyAgreement

A6 AlgorithmParametersSpi And

AlgorithmParameterGeneratorSpi

AlgorithmParametersSpi AlgorithmParameterGeneratorSpi

DHAlgorithmParameters DHAlgorithmParameterGenerator

 40

A7 Paddings

Padding

PKCS5Padding

encode()
decode()

X923Padding

encode()
decode()

NoPadding

encode()
decode()

ISO12612dPadding

encode()
decode()

A8 Modes Of Operation (DES)

DESBlockCipher

init()
doFinal()
update()
getBlockSize()
reset()
getAlgorithmName()
getIV()
getOutputSize()

ECBDESCipher CBCDESCipher CFBDESCipher OFBDESCipher

DES

encrypt()
decrypt()

 41

APPENDIX B

PAPER: Shah Rizan Abdul Aziz, Subariah Ibrahim, Mazleena Salleh, “A Java
Cryptographic Service Provider”, Proceeding in Research Seminar
RMK7 & RMK8 (ASIIT), May 7, 2003.

 42

A JAVA CRYPTOGRAPHIC SERVICE PROVIDER

Shah Rizan Bin Abdul Aziz (1), Subariah Binti Ibrahim (2), Mazleena Binti Salleh (3)

Fakulti Sains Komputer Dan Sistem Maklumat
Universiti Teknologi Malaysia

81310 Johor Bahru, Johor

(1) srk1979@lycos.com (2) subariah@fsksm.utm.my (3) mazleena@fsksm.utm.my

Abstract: This paper describes the implementation of a Java cryptographic service provider that utilizes the
Java Cryptography Architecture (JCA) and Java Cryptography Extension (JCE) to provide several security
tools. The tools are mainly encryption, key exchange and hashing tools. To ensure the integrity of the security
tools, the provider contains self-integrity checking code that checks the Java Archive (JAR) file, which contains
the provider’s code. The implementation of the provider also follows several programming techniques that
ensures the implementation of the provider can only be accessed through JCA and JCE only. The provider uses
the latest version of JCA and JCE that are by default built in the core Java library, JavaTM Standard Edition 1.4.

Keywords: Cryptography, Information Security, Hashing, Encryption, Key-Exchange

1. Introduction

Security attacks has become the major concern when
developing software systems. Most applications are
vulnerable to security attacks such as modification,
interruption, interception and fabrication [1]. To
reduce the risk of being attacked, programmer
employs several techniques to develop a secure
system. One of the security mechanisms used during
the development of a system is cryptography.

Most programmers use additional software
called library to add cryptographic functionality in
their system. The software or library contains
application-programming interface (API) that can be
used directly by programmer. Most software includes
comprehensive documentation for programmers to
refer. Today, there are a lot of cryptography libraries
in the Internet. Some of them must be bought before
it can be used and some of them are freely distributed
and can be modified.

However, there are problems relating to the use
of external cryptography library. For libraries that
must be bought, most of them are distributed in
executable form only. Therefore, programmer does
not know the programming codes of the library. If
problem arises because of bugs in the library, the
only way to correct them is to send them to the
original developer and this could cost a lot of money.
In contrast, open-source library includes
programming codes with the executables and the
library can be modified. However, most of open-
source libraries are developed on voluntarily basis
and the developers are not responsible for any
damages caused by the bugs in the library.

Hence, there is a need for an organization or a

team of developers to have their own cryptography
library. Furthermore, nowadays security modules can
be one of the important parts of most software
systems, therefore the cryptography library used must
be trusted to function properly and reliably. Any bugs
in the library should be identified and corrected
immediately so that the development of the whole
system will not be affected. Moreover, the
cryptography library can be used in another software
development.

In this project, a Java cryptographic service
provider is developed. It is a cryptographic library,
called provider, which utilizes the standards in Java:
Java Cryptography Architecture and Java
Cryptography Extension [2,3]. This provider
implements encryption, key-exchange and hashing
tools. The encryption tool allows a user to convert a
plaintext or data into unintelligible form. The
conversion is by means of a reversible translation,
based on a translation table or algorithm [1]. In the
encryption tools, both symmetric and asymmetric
cryptographic algorithms are implemented. The key-
exchange tool allows two communicating parties to
exchange a session key. The purpose of the tool is to
enable two users to exchange a key securely that can
then be used to encrypt subsequent messages [1].
Hashing or hash function is a process of mapping a
variable-length data block or message into a fixed-
length value called a hash code and it is used as an
authenticator to data or message [1]. Hashing can
provide integrity security service and may be used in
implementing digital signature protocol.

 43

This paper discusses the implementation of the
library, the algorithms supported and additional
security measures taken during the development of
the library.

2. Provider Requirements

JCA and JCE provide the classes needed to
implement the provider [2-6]. There are several
engine classes in javax.crypto (JCE) and
java.security (JCA) packages. Engine class is an
abstract class (without concrete implementation) that
is used to provide cryptographic services [2]. Engine
classes in JCA are:

• MessageDigest: used to calculate the
message digest (hash) of specified data.

• Signature: used to sign data and verify
digital signatures.

• KeyPairGenerator: used to generate a
pair of public and private keys suitable for a
specified algorithm.

• KeyFactory: used to convert opaque
cryptographic keys of type Key into key
specifications (transparent representations of
the underlying key material), and vice versa.

• CertificateFactory: used to create
public key certificates and Certificate
Revocation Lists (CRLs).

• KeyStore: used to create and manage a
keystore. A keystore is a database of keys.
Private keys in a keystore have a certificate
chain associated with them, which
authenticates the corresponding public key.
A keystore also contains certificates from
trusted entities

For JCE, the engine classes are:

• Cipher: provides the functionality of a
cryptographic cipher used for encryption
and decryption. It forms the core of the JCE
framework.

• KeyGenerator: generate secret keys for
symmetric algorithms.

• KeyAgreement: provides the functionality
of a key agreement protocol.

• Mac: provides the functionality of a
Message Authentication Code (MAC).

• SecretKeyFactory: used to convert keys
(opaque cryptographic keys of type
java.security.Key) into key
specifications (transparent representations of

the underlying key material in a suitable
format), and vice versa.

Because the engine classes do not have concrete
implementations, the developer must provide the
implementation. The implementation is provided by
sub classing Service Provider Interface (SPI) classes.
For each engine class, there is a corresponding
abstract SPI class, which defines the SPI methods
that cryptographic service providers must implement.
Table 1 shows the SPI classes.

Table 1: Engine and SPI Classes

Engine Class SPI Class

MessageDigest MessageDigestSpi

Signature SignatureSpi

KeyPairGenerator KeyPairGeneratorSpi

KeyFactory KeyFactorySpi

CertificateFactory CertificateFactorySpi

KeyStore KeyStoreSpi

Cipher CipherSpi

KeyGenerator KeyGeneratorSpi

KeyAgreement KeyAgreementSpi

Mac MacSpi

SecretKeyFactory SecretKeyFactorySpi

Another requirement is the provider code needs
to be signed by a trusted entity, which is Sun itself
[2]. Sun added this additional requirement for
provider that implement cryptographic services found
in JCE due to export control restriction imposed by
the United States government [6]. A code-signing
certificate was requested and it is used to sign the
JAR file that contains the provider code.

3.0 How JCA and JCE Work

JCA (java.security package and its sub packages) and
JCE (javax.crypto package and its sub packages)
contain important classes for the programmers to use
cryptographic algorithms in the application. Both
frameworks allow many different possible
implementations of the algorithms, from different
providers. For example, the implementations are
written purely in Java or in other languages. JCA and
JCE hide the implementation from programmers.
Figure 1 illustrates how they work.

The programmers do not have to be aware of the
existence of any of the providers. They only need to
know the usage of classes in java.security and

 44

javax.crypto packages and their sub packages. When
the user code uses the classes (engine classes), JCA
and JCE will delegate all requests for cryptographic
functions to those provider classes. To get the
implementation of the provider, the provider must be
added to the system. This can be done either
statically or dynamically.

Fig. 1: How JCA or JCE Works

The classes in java.security and javax.crypto
packages and their sub packages provide a
framework for those cryptographic functions. In
order to create the implementations of various
algorithms, we must extend the abstract classes
called Service Provider Interfaces (SPI). Each
method in those SPI classes must be implemented.
Figure 2 shows the relation of the Signature and
SignatureSPI classes to a provider’s implementation
of a digital algorithm.

Fig. 2: Relation of a SPI class, an engine class

and a provider implementation class

4.0 Implementation

Table 2 lists the algorithms that have been
implemented in this provider.

Table 2: Algorithms Supported In the Provider

Cryptographic Tools Algorithms
Encryption & Decryption RSA [7], DES [8], Triple

DES [1], IDEA [1], RC5
[9]

Signature RSA [7]
Hashing MD2 [10], MD4 [11],

MD5 [12], SHA-1, SHA-
256, SHA-384 , SHA-
512 [13], Tiger [14],
RIPEMD-160, RIPEMD-
128 [15]

Key Exchange Diffie-Hellman [16]

4.1 Encryption Tools

To provide implementations for encryption
algorithms, classes such as CipherSpi,
KeyPairGeneratorSpi and KeyGeneratorSpi are
extended. KeyPairGeneratorSpi is for the generation
of public key and private key in asymmetric
algorithm whereas KeyGenerator is generating a key
for symmetric algorithm. CipherSpi is for encryption
and decryption. Table 3 shows the implementation
classes.

Table 4: Implementation Classes For Encryption

Algorithms Implementation Class
RSA JCERSACipher

JCARSAKeyPairGenerator
DES JCEDESCipher

JCEDESKeyGenerator
Triple DES JCEDESedeCipher

JCEDESedeKeyGenerator
RC564 JCERC564Cipher

JCERC564KeyGenerator
IDEA JCEIDEACipher

JCEIDEAKeyGenerator

4.1.1 Modes of Operation

Four modes of operation can be used for all
symmetric algorithms. The implementations of the
modes are based on the description in [1,17]. The
modes are:

• Electronic, Codes Book, ECB
• Chiper Block Chaining, CBC
• Cipher Feedback, CFB
• Output Feedback, OFB

This provider also have additional feature for

RSA algorithm. PKCS#1 standard does not define
the modes of operation for RSA [8]. Therefore most

Calls Calls

Calls

User code

JCA/JCE

JCA/JCE
Provider 2

JCA/JCE
Provider 1

Signature
(engine class)

SignatureSPI

ProviderSignatureImpl

 45

providers implement the RSA algorithm that can only
encrypt a block of data at a time. An exception will
be thrown if the message length is greater than a
specified value. To overcome this problem, this
provider has implemented an RSA cipher that can
accept message, with length greater than the block
length. Therefore, the cipher can function just as
symmetric ciphers do except that the RSA cipher
only supports CBC and ECB modes of operation.

4.1.2 Padding

Padding is required when the message length is less
than the multiples of the block length. For symmetric
algorithms, the provider supports the following
padding schemes:

• PKCS#5 [18]
• X923 [19]
• ISO10126-2 [20]

Padding schemes supported by RSA algorithm are
PKCS#1 and OAEP [8].

4.2 Signature tool

This tool is used to sign a message and verify the
signature. To date, RSA signature algorithm has been
implemented and the implementation is based on
PKCS#1 documentation [8]. Based on the
documentation, RSA signature algorithm requires
hashing function such as MD5 and SHA-1. The
function is taken from the hashing tools implemented
in this provider.

The implementations of the algorithm are
contained in two sub classes of SignatureSpi class.
One class is the signature with MD5 digest function
and the other class is with SHA-1 digest function.
The names of the classes are
MD5WithRSASignature and
SHA1WithRSASignature.

4.3 Key Exchange Tool

This tool is used to enable two entities to exchange
keys to produce a session key that then can be used to
secure the connection between them. The session key
can be used as the key for symmetric algorithms.

To date, Diffie-Hellmann key exchange has been
developed. It makes use of SKIP pre-generated
values for modulo and bases [6]. It is believed that
the use of the SKIP pre-generated values would
speed up the key pair generation, as the computer
does not have to generate the modulo and bases
randomly. With pre-generated values, the

programmer does not have to type in the SKIP values
manually.

The implementation for KeyPairGenerator,
KeyAgreement, AlgorithmParameters and
AlgorithmParameterGenerator engine classes for
Diffie-Hellmann algorithm are implemented by sub
classing the related SPI classes. KeyPairGenerator
engine class is used to generate the public and private
keys, while KeyAgreement engine class is used to
generate the session key after it has received the
public keys of the entities that want to communicate.
AlgorithmParameter class is used to hold the prime
and base values whereas
AlgorithmParameterGenerator engine class is used to
generate the global parameter values (Actually, this
generator doesn’t generate. It only return the pre-
generated values defined by SKIP).

4.4 Hashing Tool

This hashing tool enables programmer to employ
digest function easily. The function produces a
unique value that will be used as an authenticator: a
value to be used to authenticate a message. This
lower-level function is always used as a primitive in
a higher-level authentication protocol that enables a
receiver to verify the authenticity of a message [1].
RSA digital signature as described in PKCS#1
document is an example of the higher-level function
[8].

To implement the algorithm, the
MessageDigestSpi class is extended. Each algorithm
is implemented in one sub class.

5.0 Security Measures

Several security measures are taken in developing the
provider. One of them is adding self-integrity
checking codes as recommended by the guideline.
This type of checking is included to ensure that the
JAR file containing its code has not been
manipulated in an attempt to invoke provider
methods directly rather than through JCE and JCA
[5].

The checking procedure uses the certificate that
has been used to sign the JAR file that contains this
provider. The certificate is embedded in the checking
code as a byte array. The embedded certificate will
be used to check whether or not the provider code is
authentic [5]. Each constructor in each
implementation class must call the code.

Another security measure that has been taken in
developing the cryptographic tools are by declaring
all SPI implementation classes in the provider
package as final so that they cannot be sub classed.

 46

Besides that, their implementation methods are
declared protected. This kind of coding can make the
provider classes become unusable if someone tries to
instantiate them directly that is to bypass JCE or
JCA. In order to prevent crypto-related helper classes
in the provider package to be accessed from outside
the provider package, the classes are declared so that
they have package-private scope [5].

6.0 Conclusion

Although there are a number of providers already
available, this provider is developed because of
several reasons. By developing our own provider, it
can be modified and distributed by us. Also, the
development of the provider teaches us how to
implement a provider. By implementing our own, we
also can ensure the correctness and the security of the
provider. The providers available from the Internet
may contain malicious code that can harm the
application using it. Some of the providers in the
Internet might not contain some algorithms we need.
Therefore, this provider is implemented with the aim
to provide as many algorithms as possible. RSA
algorithm implemented in this provider supports
ECB and CBC modes while other providers only
support ECB mode. The implementation of Diffie-
Hellman key-exchange uses pre-defined SKIP values
for faster key generation.

7.0 References

[1] Stallings, W, Cryptography And Network

Security: Principles and Practice (Prentice
Hall, Upper Saddle River, New Jersey
07458,1999).

[2] Sun Microsystems, Inc, JavaTM

Cryptography Architecture,
http://java.sun.com/j2se/1.4.1/docs/guide/se
curity/CryptoSpec.html

[3] Sun Microsystems, Inc, JavaTM
Cryptography Extension,
http://java.sun.com/j2se/1.4.1/docs/guide/se
curity/jce/JCERefGuide.html

[4] Sun Microsystems, Inc, How to Implement a
Provider for the JavaTM Cryptography
Architecture,
http://java.sun.com/j2se/1.4.1/docs/guide/se
curity/HowToImplAProvider.html

[5] Sun Microsystems, Inc, How to Implement a
Provider for the JavaTM Cryptography
Extension,
http://java.sun.com/j2se/1.4.1/docs/guide/se
curity/jce/HowToImplAJCEProvider.html

[6] Garms, J. and Somerfield, D., Professional

Java Security: JCA, JCE, JAAS, JSSE, SSL
and E-Commerce (Wrox Press Ltd,
Birmingham, UK, 2001).

[7] RSA Laboratories, PKCS #1: PKCS #1
v2.0: RSA Cryptography Standard (October
1998).

[8] National Institute of Standards and
Technology (NIST). FIPS Publication 46-2:
Data Encryption Standard (DES) (April
1994).

[9] Rivest., R. “The RC5 Encryption
Algorithm.” In proceedings, Second
International Workshop on Fast Software
Encryption, December 1994; published by
Springer-Verlag.

[10] B. Kaliski. RFC 1319: The MD2 Message-
Digest Algorithm. Internet Activities Board,
(April 1992).

[11] Rivest, R. “The MD4 Message Digest
Algorithm.” Proceedings, Crypto ’90,
August 1990; published by Springer-Verlag.

[12] R. Rivest. RFC 1321: The MD5 Message-
Digest Algorithm. Internet Activities Board,
(April 1992).

[13] National Institute of Standards and
Technology (NIST), FIPS Publication 180-
2: Secure Hash Standard. (2002 August)

[14] Ross Anderson and Eli Biham, Tiger: A
Fast New Hash Function,
http://www.cs.technion.ac.il/~biham/Report
s/Tiger/tiger/tiger.html (1996)

[15] Hans Dobbertin, Antoon Bosselaers, Bart

Preneel, RIPEMD-160: A Strengthened
Version of RIPEMD
http://www.esat.kuleuven.ac.be/~cosicart/pd
f/AB-9601/AB-9601.pdf

[16] RSA Laboratories, PKCS #3 v1.4: Diffie-

Hellman Key-Agreement Standard
(November 1, 1993).

[17] National Institute of Standards and

Technology (NIST). FIPS Publication 81:
DES Modes Of Operation (April 1994).

[18] RSA Laboratories, PKCS #5 v2.0:
Password-Based Cryptography Standard
(March 25, 1999).

 [19] American National Standard Institute,
X9.23, Encryption of Wholesale Financial
Messages (1995).

 47

[20] International Organization for
Standardization (ISO 10126-2:1991),
Banking – Procedures for Message

Encipherment (wholesale) – Part 2: DEA
Algorithm (ISO 10126-2:1991).

