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ABSTRACT 

 The scale-up studies based on the constant oxygen transfer coefficient (kLa)

from 16 liter to 150 liter of aerated and agitated bioreactor were performed.  The 

studies included the investigation on the significance of hydrodynamic difference 

between Rushton and marine impeller on the kLa at 16 liter scale.  By employing 

both static and dynamic gassing out techniques, the kLa values were calculated at 

different sets of impeller speeds and air flow rates performed in various viscosities 

and temperatures in the 16 liter and 150 liter BioengineeringTM stirred bioreactor.  

Empirical correlation was employed to correlate and investigate the dependence of 

kLa on specific power input and superficial air velocity.  Our experimental results 

discovered that the Rushton turbine was more effective in gas distribution and 

provide a greater oxygen transfer rate than the marine impeller.  In maintaining a 

constant kLa upon scale-up from 16 to 150 liter, the specific power input and the 

superficial air velocity cannot be maintained, adjustment has to be done.  Specific 

power input from 0.0001 to 4.2 kW/m3 and superficial air velocity within the range 

of 9 x 10-4 to 7 x 10-3 m/s was tested to maintain a constant value of kLa upon scale-

up in distilled water and CMC solution model.  The operating variables employed at 

150 liter scale successfully gave a comparable kLa values as in 16 liter scale.  Hence, 

the calculated scaling-up factor for impeller speed and air flow rate were 0.28 and 

3.1, respectively.  In order to investigate the potential of employing scaling-up 

protocol developed in this work, the kinetic profiles of E.coli batch fermentation at 

16 and 150 liter were compared.  By employing the scaling-up factors, the proposed 

scale-up protocol managed to provide the similar trend of cell growth, glucose 

consumption and oxygen uptake rate upon scale-up based on the constant kLa.  It 

may be concluded that the similar kLa for both scales was successfully achieved by 

employing the proposed scale-up protocol. 



vi

ABSTRAK 

 Kajian pengskalaan naik berdasarkan pekali pemindahan oksigen (kLa) yang 

malar daripada 16 liter ke 150 liter telah dijalankan di dalam bioreaktor teraduk 

berudara.  Ujikaji ini melibatkan kajian ke atas perbezaan hidrodinamik yang ketara 

antara pengaduk Rushton dan marin terhadap kLa pada skala 16 liter.  Dengan 

melakukan teknik penyingkiran gas secara statik dan dinamik, nilai-nilai kLa dikira 

pada set kelajuan putaran pengaduk dan kadar alir udara yang berbeza, kepada 

pelbagai kelikatan dan suhu dalam bioreaktor (BioengineeringTM) 16 dan 150 liter.  

Korelasi empirikal telah dilaksanakan untuk mengkorelasi dan mengkaji 

kebergantungan kLa terhadap kuasa masukan tentu dan halaju gas luaran.  

Keputusan-keputusan eksperimen menunjukkan bahawa turbin Rushton adalah lebih 

efektif dalam penyebaran gas dan membekalkan kadar pemindahan oksigen yang 

lebih daripada pengaduk marin.  Dalam mengekalkan kLa yang malar semasa 

pengskalaan naik,  kuasa masukan tentu dan halaju gas luaran tidak dapat 

dikekalkan, penyelarasan harus dilakukan.  Kuasa masukan tentu daripada 0.0001 ke 

4.2 kW/m3 dan halaju gas luaran dalam lingkungan 9 x 10-4 ke 7 x 10-3 m/s telah diuji 

untuk mengekalkan nilai kLa yang malar semasa pengskalaan naik dalam model air 

suling dan larutan CMC.  Pembolehubah operasi yang dilaksanakan memberikan 

nilai-nilai kLa yang boleh dibandingkan dengan nilai pada 16 liter.  Oleh yang 

demikian, faktor pengskalaan naik yang diperolehi adalah 0.28 bagi putaran 

pengaduk dan 3.1 bagi kadar alir udara.  Bagi mengkaji keupayaan protokol 

pengskalaan naik yang dibentuk, profil-profil kinetik fermentasi E.coli pada skala 16 

dan 150 liter telah dibandingkan.  Dengan menggunakan faktor pengskalaan naik, 

protokol pengskalaan naik yang dicadangkan berupaya memberikan perilaku yang 

sama dalam pertumbuhan sel, penggunaan glukosa dan kadar penggunaan oksigen 

ketika pengskalaan naik berasaskan nilai kLa yang malar.  Ia mungkin dapat 

disimpulkan bahawa kLa yang sama pada kedua-dua skala berjaya diperolehi dengan 

pelaksanaan protokol pengskalaan naik yang dicadangkan. 
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CHAPTER 1 

INTRODUCTION

1.1 Research Background

In the aerobic fermentations, sufficient supply of oxygen to the 

microorganisms is very crucial.  Oxygen is sparingly soluble in the water (i.e. 10 

ppm at 1 atm) and its transfer rate is always limited particularly through the gas-

liquid interfaces (Bailey and Ollis, 1986).  The limited solubility of oxygen in water 

is a physical constraint on bioreactor aerobic operation.  This problem becomes

worse especially in the larger scales since maintaining such homogeneous

environment is no longer easy due to increased mixing time.  The consequent

anaerobic conditions result in lower fermentation performance and yields. 

Systematic engineering approaches to tackle this problem have been reported by a 

number of works (Arjunwadkar et al., 1998; Badino Jr et al., 2001, Cooper et al.,

1944).  The oxygen transfer capacity in a bioreactor depends on the mechanical

design and geometry of the air distributor, bioreactor aspect ratio, impeller type, and 

the agitation rate.  All of them can be related to the oxygen transfer coefficient (kLa).

Cooper and his co-workers (1944) proposed that the kLa may be empirically

linked to the gassed power consumption per unit volume of broth (Pg/VL) and the

superficial air velocity (vg) as described by the following equation. 

c

g

b

L

g
L v

V

P
aak '       (1.1) 
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In this equation, the values of the constants 'b' and 'c' may vary considerably, 

depends on the bioreactor geometry and operating conditions.  Data in Table 1.1 

summarise the values of constant 'b' and 'c' from several works.  Constant ‘b’ 

represents the level of dependence of kLa on the agitation, while, constant ‘c’ 

represents the level of dependence of kLa on the sparging rate applied to the system. 

Table 1.1 Values of parameter 'b' and 'c' from several works that estimated from 

the empirical relationship proposed by Cooper et al. (1944) 

Author Constant
‘b’

Constant
‘c’

Type of 
impeller

Liquid
Model

Liquid
Volume

Cooper et al.
(1944)

0.95 0.67 N/A Air-water
system 

66 L 

Shukla et al.
(2001)

0.68 0.58 Disc turbine 
and pitched 

blade
turbine 

Air-water 
system 

5.125 L 

Shukla et
al.((2001)

0.725 0.892 Disc turbine 
and pitched 

blade
turbine 

Yeast
fermented 

broth

5.125 L 

Badino Jr. et
al. (2001) 0.47 0.39

Flat-blade
disc style 
turbine 

Aspergillus’s
fermented 

broth

10 L 

Martinov & 
Vlaev (2002) 

0.84 0.4 Narcissus
blade

(2% w/v) 
CMC solution 

50 L 

Martinov & 
Vlaev (2002) 

0.82 0.4 Narcissus
blade

(0.5% w/v) 
Xanthan gum 

solution

50 L 

Arjunwadkar
et al. (1998) 

0.68 0.4 Disc turbine 
and pitched 

blade
turbine 

(0.7% w/v) 
CMC solution 

5.125 L 

As supplying adequate oxygen is the centre of the issue in aerobic 

fermentation, maintaining a similar oxygen transfer coefficient or kLa has been 

frequently employed as the basis of scaling up exercises.  Scale-up criteria that 

commonly used to maintain constant kLa are i) the gassed power number per unit 

liquid volume (Pg/VL), the superficial air velocity (vg), the sparging rate (vvm) and 

bioreactor geometrical and operational constants such as ratio of liquid height to tank 

diameter (Hi/DT), impeller diameter (Di), impeller rotation number (N), impeller tip 
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speed (NDi), pump rate of impeller (Q), pump rate of impeller per unit volume (Q/V) 

and Reynolds number. 

1.2 Motivation 

The oxygen transfer coefficient, kLa plays an important role towards carrying 

out the design, scaling up and economic of the process.  Efforts have been focused in 

improving the design and scaling up studies to achieve adequate supply of oxygen at 

higher scales (Martinov & Vlaev, 2001, Juarez & Orejas, 2001, Arjunwaadkar et al.,

1998).  Their works employed the correlation proposed by Cooper et al. (1944) and 

demonstrated the effects of agitation and aeration at different combination of 

impellers in prediction of kLa values at the laboratory scales.  The most commonly 

methods in determining the kLa are the static and the dynamic gassing-out 

techniques.  As contrast to the static gassing-out technique, the live culture was used 

in the dynamic gassing-out technique.  Both of these techniques have been employed 

by Martinov & Vlaev (2001), Juarez & Orejas (2001), Arjunwaadkar et al. (1998) 

and Shukla et al. (2001). 

 Scaling up studies performed in this work used the correlation developed by 

Cooper et al. (1944).  The kLa values achieved at 16 liter scale were compared with 

the values at 150 liter scale.  Since the scaling up factor is not proportionally 

increasing, the ‘trial-and-error’ within predicted range was performed.  The 

effectiveness of this scaling up protocol was tested in the real E.coli fermentation.  

Identical growth profiles at both scales conclude that comparable oxygen transfer at 

150 liter was successfully achieved.  There has been a significant advance in the 

understanding of scale-up of stirred aerated bioreactors as reported by several 

authors.  Shukla et al. (2001) works highlight on the performance of the impeller 

used upon scaling up of yeast biotransformation medium on a basis of constant kLa.

Wong et al. (2003) employed the correlations proposed by Wang et al. (1979) in 

scaling up on a basis of constant kLa and air flow rate per unit volume, (Q/V).  The 

work by Hensirisak (1997) concerned more on the performance of microbubble 

dispersion to improved oxygen transfer upon scale-up.  The work by Wernesson & 
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Tragardh (1999) reported the influence of power input per unit mass on the 

hydrodynamics of the bioreactor. 

In spite of these observations, the engineering focus continued to be on 

maintaining the volumetric oxygen transfer constant on scale-up.  Humphrey et al.

(1972) addressed that; researchers still do not have an absolute basis for scale-up.  As 

a matter of fact, biochemical engineers still practice scale-up a black art in which 

they attempt to maintain constant and operating the aeration rate well below gas 

flooding conditions.  In this study, scale-up strategy proposed by Shukla et al. (2001) 

and Garcia-Ochoa et al. (2000) will be further improved.  The challenge and aims of 

this study is to manipulate the constant in the empirical correlation proposed by 

Cooper et al. (1944) and provide a scaling-up factor upon scale-up from 16 liter to 

150 liter scale in a basis of constant kLa.

1.3 Research Objectives and Scope 

The objectives of this research are: 

1) To investigate the significance of hydrodynamic difference between Rushton 

turbine and marine impellers on the oxygen transfer in 16 liter bioreactor. 

2) To develop a simple approach that provides a reliable protocol for scaling-up 

exercise based on constant oxygen transfer rate in stirred aerated bioreactor. 

3) To evaluate the potential of employing the scaling-up protocol developed in 

this study in the actual fermentation. 

In order to achieve these objectives, the following scope of work shall be covered: 

1) Evaluation of oxygen transfer coefficient, kLa by using static and dynamic 

gassing-out techniques. 
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2) Study the effect of fermentation system and operational parameters by: 

i) Vary impeller speeds, volumetric air flow rate and temperature in 16 

liter bioreactor. 

ii) Mimic a pseudoplastic behaviour by using carboxy methyl cellulose 

(CMC) to compare the effect of Newtonian and non-Newtonian fluids 

on kLa.

3) Investigate the dependence of oxygen transfer coefficient on superficial air 

velocity and volumetric gassed power input at 16 liter bioreactor using 

Rushton turbine and marine impeller. 

4) Investigates the effect of impeller type on the dependence of oxygen transfer 

coefficient on superficial air velocity and volumetric gassed power input in: 

i) 16 liter and 150 liter at different viscosities namely 0.25, 0.5 and 1 

%(w/v) of CMC solutions. 

ii) 16 liter and 150 liter bioreactor at different temperatures namely 30o,

40o and 50 oC.

5) Graphically determine, compare, and analyze the coefficients in the empirical 

correlation proposed by Cooper et al. (1944) at: 

i) 16 liters for Rushton turbine and marine impeller. 

ii) 16 liter and 150 liter at different viscosities namely 0.25, 0.5 and 1 

%(w/v) of CMC solutions. 

iii) 16 liter and 150 liter bioreactor at different temperatures namely 30o,

40o and 50 oC.
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6) Compare time-course profiles of growth, glucose consumption, specific 

oxygen uptake rate (OUR), and kLa at 16 liter and 150 liter bioreactor. 
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4. Similar kinetic profiles of E.coli growth, glucose consumption, oxygen 

uptake rate (OUR) and oxygen transfer rate (OTR) were most likely resulted 

from the similar oxygen transfer at both scales.  This proved that the 

proposed scale-up strategy worked in predicting fermentation kinetic at 

higher scale. 

5.2 Recommendations for Future Studies 

1. As the scale increases, gas distribution in the bioreactor region becomes 

problematic.  Therefore, investigation on the oxygen profile is crucial and 

worth pursuing in gaining further insight on measurement of kLa in the 

biorector.  This investigation may be performed on the high pseudoplastic 

fluids i.e. Xanthan gum solution, a non-coalescent liquid i.e. Na2SO4 and 

on the filamentous culture broth. 

2. The empirical correlation proposed by Cooper et al. (1944) only concerns 

on the effect of the sparging rate and the impeller rotational speed on the 

kLa.  Study may be extended to other empirical equations developed by 

other workers such as Ryu and Humphrey (1972), Yagi and Yashida 

(1975) and Zlokarnik (1978). 

3. The validity of the scale-up protocol proposed in this work may be further 

tested in scales higher than 150 liter bioreactor. 

4. The scale-up protocol proposed in this work was based on the rules of 

thumb technique.  Other scale-up approaches such as fundamentals 

method, semi-fundamentals method, dimensional analysis and time-

regime analysis may be investigated in scaling-up stirred aerated 

bioreactor on the basis of constant kLa.
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