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ABSTRACT 
 
 
 
 

Over the past decade many attempts have been made to predict stock market 

data using statistical and data mining models. However, most methods suffer from 

serious drawback due to requiring long training times, results are often hard to 

understand, and producing inaccurate predictions. In addition, the trader’s 

expectations to predict stock markets are seriously affected by some uncertain factors 

including political situation, oil price, overall world situation, local stock markets etc. 

Therefore, predicting stock price movements is quite difficult. Data mining 

techniques are able to uncover hidden patterns and predict future trends and 

behaviors in financial markets. In this research, another modification of Fuzzy 

Decision Tree (FDT) classification techniques called predictive FDT is presented 

that aims to combine symbolic decision trees in data classification with approximate 

reasoning offered by fuzzy representation. The intent is to exploit complementary 

advantages of both: ability to learn from examples, high knowledge 

comprehensibility of decision trees, and the ability to deal with uncertain information 

of fuzzy representation. In particular, predictive FDT algorithm is based on the 

concept of degree of importance of attribute contributing to the classification. After 

constructing predictive FDT, Weighted Fuzzy Production Rules (WFPRs) are 

extracted from predictive FDT, and then more significant WFPR’s are mined by 

using similarity-based fuzzy reasoning method. In fuzzy reasoning method the 

weights are assigned to each proposition in the antecedent part and the Certainty 

Factor (CF) is computed for the consequent part of each Fuzzy Production Rule 

(FPR). Finally, these rules are used to predict time series stock market in different 

periods to time. The predictive FDT’s are tested using three data sets including Kuala 

Lumpur Stock Exchange (KLSE), New York Stock Exchange (NYSE) and London 

Stock Exchange (LSE). The experimental results show that the predictive FDT 

algorithm and fuzzy reasoning method provides the reasonable performance for 

comprehensibility (no of rules), complexity (no of nodes) and predictive accuracy of 

WFPRs for stock market time series data.  



    vi
 
 

ABSTRAK 
 
 
 
 

Setelah berdekad lamanya, banyak percubaan telah dilakukan untuk 

meramalkan data pasaran saham masa menggunakan model statistik dan 

perlombongan data. Walaubagaimanapun, kebanyakan kaedah memerlukan masa 

latihan yang lama, biasanya keputusan yang diperolehi sukar untuk difahami, dan 

menghasilkan ramalan yang tidak tepat. Tambahan pula, jangkaan pedagang terhadap 

pasaran saham adalah dipengaruhi oleh faktor-faktor seperti situasi politik, harga 

minyak, situsasi dunia keseluruhan, pasaran saham tempatan dan lain-lain. Oleh itu, 

peramalan aliran harga saham adalah amat sukar. Perlombongan data berkebolehan 

untuk mencari pola tersembunyi dan meramalkan arah aliran masa hadapan dan trend 

dalam pasaran kewangan. Di dalam penyelidikan ini, teknik klasifikasi lain bagi 

pepohon keputusan kabur (FDT) yang telah diubah suai, dipanggil predictive FDT 

digunakan untuk menggabungkan pepohon keputusan simbolik di dalam pengelasan 

data dengan anggaran hujah yang sesuai menggunakan perwakilan kabur. Tujuannya 

adalah untuk saling melengkapi kebaikan kedua-duanya : keupayaan untuk belajar 

daripada contoh, kefahaman pengetahuan yang tinggi dalam pepohon keputusan dan 

keupayaan untuk berhubung dengan maklumat tertentu berkenaan perwakilan kabur. 

Paling utama, peramalan bagi pepohon keputusan kabur adalah berdasarkan konsep 

tahap kepentingan yang menyumbang atribut kepada pengelasan. Selepas membina 

predictive FDT, peraturan pengeluaran pemberat (WFPRs) diesktrakkan daripada 

predictive FDT, dan seterusnya WFPRs yang lebih baik boleh diperolehi dengan 

menggunakan kaedah pemikiran kabur berasaskan persamaan. Dalam kaedah yang 

dicadangkan parameter pemberat boleh dinyatakan kepada setiap penyataan dalam 

peraturan pengeluaran kabur (FPR) dan faktor kemungkinan (CF) bagi setiap 

peraturan. Faktor kemungkinan dikira menggunakan beberapa pembolehubah yang 

penting dari pasaran saham. Kaedah pemikiran peramalan telah diuji dengan 

menggunakan tiga set data termasuklah KLSE, NYSE dan LSE. Hasil eksperimen 

menunjukkan bahawa peramalan bagi algoritma FDT dan kaedah pemikiran kabur 

menyediakan pencapaian yang agak baik untuk mudah difahami (bilangan 

peraturan), kekompleksan (bilangan nod) dan mempunyai ketepatan ramalan bagi 

peraturan WFPR untuk pasaran saham bersirikan data. 
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CHAPTER 1 

 

 

 

INTRODUCTION 

 

 

 

1.1 Overview   

 

With the increase of economic globalization and evolution of information 

technology, financial time series data are being generated and accumulated at an 

unprecedented pace. As a result, there has been a critical need for automated approaches 

to effective and efficient utilization of massive amount of financial data to support 

companies and individuals in strategic planning and investment for decision-making. In 

this chapter, some problems are discussed that investors are facing during crucial part of 

their decision process for the selection of real time stock market to invest in. These 

problems are highlighted by analyzing the existing data mining and statistical techniques 

for stock market predictions. Among the variety of existing techniques for stock market 

prediction, Support Vector Machine (SVM), Linear and Non-linear models, Neural 

Networks, Association Rules, and Classification have found to be good techniques for 

stock market predictions. However, instead of incredible results for time series stock 

market prediction, these techniques still have some serious drawbacks to handle time 

series stock market data. These problems are highlighted in the following section.  
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1.2 Problem Background  

 

The stock market is a rather complicated system, and good predictions for its 

developments are the key to successful trading. Traders must predict stock price 

movements in order to sell at top range and to buy at bottom range. As stock trading is a 

very risky business (Torben and Lund, 1997), it is necessary to evaluate the risks and 

benefits before entering into any trading. The key to realize high profits in stock trading 

is to determine the suitable trading time when the risk of trading should be minimum. 

Many attempts have been made for meaningful prediction of stock market by using data 

mining and statistical techniques like Time Series (Agrawak R. et al., 1995a; Breidt, 

2002), Support Vector Machine (Alan Fan et al., 2001; Haiqin, 2002), Neural Networks 

(Xiaohua et al., 2003; Raymond, 2004), Linear and Non-linear models (Weiss, E. 2000; 

Chinn et al., 2001), Association Rules (Ke and Yu 2000; Sarjon and Noor, 2002a) and 

Classification (Agrawal R. et al., 2000; Han, J and Pei, 2000). However, these 

techniques to predict stock market real time data are yet to be achieved good classifiers 

(model). The following subsections present some general problem background regarding 

these techniques to predict stock market. 

 

 

 

1.2.1 Time Series  

 

Investors are facing with an enormous amount of stocks in the market. The 

meaningful prediction of time series data is one of the fast growing research areas in 

field of financial engineering. Investors in the market want to maximize their stock 

return by buying or selling their investments at an appropriate time. Since stock market 

data are highly time-variant and are normally in a nonlinear pattern, predicting the future 

trend (i.e., rise, decrease, or remain steady) of a stock is a challenging problem. 

Agrawak R. et al., (1995a; 1995b) introduces different similarity queries on time series 

data to find the behaviors of selling or buying patterns of different stocks. In queries of 

this type, approximate rather than exact matching is required. Recently some researchers 
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use data mining techniques for attempting to index, cluster, classify and mine 

association rules from increasing massive sources of time series data (Iztok et al., 2002; 

Yimin and Dit-Yan, 2004).  

 

For example Keogh and Pazzani (1998) introduce a new scalable time series 

classification algorithm. Das et al., (1998) attempt to show, how association rules can be 

learned from time series. Han et al. (1999) investigate time series databases for periodic 

segments and partial periodic patterns using data mining methods. All these algorithms 

that operate on time series data need to compute the similarity between patterns by using 

Euclidean distance and Euclidean distance sensitive to the absolute offsets of time 

sequences. 

 

Iztok et al., (2002) present an algorithm for matching sequences with the set of time 

series. The matching algorithm proposed by them is not enough to be effectively used 

for other domains including stock market data, sensor data in engineering environments, 

and medical measurements. In another attempt, the model-based clustering method 

(Yimin and Dit-Yan, 2004) can incorporate prior knowledge more naturally in finding 

the correct number of clusters. However, the clustering performances of model-based 

clustering method degrade significantly when the underlying clusters are very close to 

each other. Another problem is that it is not designed for modeling the differences in 

trend of the time series.  

 

 

 

1.2.2 Support Vector Machine 

 

Alan Fan et al., (2001) use Support Vector Machine (SVM) to predict stock 

market. The SVM is a training algorithm for learning classification and regression rules 

from data (Osuna, 2001). However the predictive accuracy of SVM achieved by Alan 

Fan et al., (2001) in stock market is relatively lower than other classification applications 

(Jingtao, 1997; Haiqin, 2002). Also the existing relationship between the future stock 
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returns and its accounting information, one would expect it to be a weak relationship. 

Support Vector Regression (SVR) is the extended form of SVM that can be applied for 

the prediction of financial time series data (Jingtao, 1997; Haiqin, 2002). In financial 

data, due to the embedded noise, one must set a suitable margin in order to obtain a good 

prediction (Haiqin, 2002). Haiqin et al., (2002) has extended the standard SVR with 

adaptive margin and classified into four cases. The model proposed by them requires the 

adaptation of the margin width and the degree of asymmetry and no exact algorithm for 

such margin setting has been introduced. Some researchers (Mukherjee, 1997; Chih-

chung and Chih-jen, 2001) try to set this margin with 0 or a very small value, but SVR is 

still insensitive and non-adaptive to the input data. This may result in less than optimal 

performance in the testing data while it obtains a good result on the training data.  

 

 

 

1.2.3 Linear and Non-linear Statistical Models 

  

The Autoregressive Conditional Heteroskedasticity (ARCH) class of models 

(Chinn et al., 2001; Pierre and Sébastien, 2004) has become a core part of empirical 

finance. ARCH is a nonlinear stochastic process, where the variance is time-varying, and 

a function of the past variance. ARCH processes have frequency distributions which 

have high peaks at the mean and fat-tails, much like fractal distributions. The issue of 

forecasting with ARCH models has been discussed by (Koenker and Zhao, 1996). 

However, the procedures developed are restricted to a limited class of ARCH models, 

often do not take account of parameter uncertainty, and often have questionable finite 

sample properties. Another statistical model is Auto Regressive Integrated Moving 

Average (ARIMA) models have been already applied to forecast commodity prices 

(Weiss, E., 2000; Chinn et al., 2001). However, since the ARIMA models are linear and 

most real world applications involve non-linear problems, this introduces a limitation in 

the accuracy of the predictions generated (Ferreira et al., 2004). 
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1.2.4 Neural Networks 

 

Artificial Neural Networks (ANN) techniques that have been widely used for 

load forecasting are now used for price prediction (Nicolaisen, 2000; Hippert, 2001). 

Using neural networks to model and predict stock market returns has been the subjects 

of recent empirical and theoretical investigations by academics and practitioners alike 

(Xiaohua et al., 2003; Raymond, 2004). Xiaohua et al., (2003) investigate whether 

trading volume can significantly improve the forecasting performance of neural 

networks, or whether neural networks can adequately model such nonlinearity. Such 

types of neural networks cannot handle the nonlinearity between stock return and trading 

volume. Raymond, (2004) introduce a feasible and efficient solution (iJADE Stock 

Advisor) for automatic intelligent agent-based stock prediction. However, the model 

appeared highly sensitive to the training parameters and also these method have various 

numbers of hidden neurons are tested in the experiments and no significant 

improvements appear, it may be due to not finding the optimal architecture and available 

training methods. 

 

 

 

1.2.5 Association Rules 

 

Association rule mining uncovers interesting correlation patterns among a large 

set of data items by showing attribute-value conditions that occur together frequently. It 

has been applied successfully in a wide range of business predicting problems (Ke et al., 

2000; Sarjon and Noor, 2002).  Pasquier and Bastide (1997) proposed an algorithm, 

called a close, for finding frequent closed itemsets and their support in a stock market 

database. However, a close method is costly when mining long patterns or with low 

minimum support threshold in large database like stock market and also cannot generate 

association rules at higher levels. In another attempt, typical algorithms for discovering 

frequent itemsets in stock market by using association rules operate in a bottom-up, 

breadth-first search direction (Dao-I and Kedem, 2002). The computation starts from 
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frequent 1-itemsets (the minimum length frequent itemsets) and continuous until all 

maximal (length) frequent itemsets are found. During the execution, every frequent 

itemset is explicitly considered. Such algorithms perform well when all maximal 

frequent itemsets are short. However, performance drastically depreciates when some of 

the maximal frequent itemsets are long.     

 

 

 

1.2.6 Classification 

 

Among discovering different kinds of knowledge from large databases, 

classification has been recognized as an important problem in data mining (Agrawal R. 

et al., 2000; Hung-Ju and Chun 2002). Classification is one kind of data mining 

technique to identify essential features of different classes based on a set of training data 

and then classify unseen instances into the appropriate classes. Many popular 

classification techniques, Apriori-like approach (Agrawal R. et al., 2000; Xi Ma., 2004), 

FP-growth (Han, J. and Pei, 2000; Yabo et al., 2002), Naive Bayes Classifier (Hung-Ju 

and Chun, 2002), Decision Theoretic Model (Elovici and Braha, 2003) Information 

Network (Last and Maimon, 2004) have been used as data mining problems. These 

approaches are still not suitable where the real databases contains all records, huge space 

is required to serve the mining, and large applications need more scalability.  

 

Most trading practice adopted by financial analysts relies on accurate classification 

prediction of the price levels of financial instruments. However, some recent studies 

have suggested that trading strategies guided by forecasts on the direction of the change 

in price level are more effective and may generate higher profits. Wu and Zhang (1997) 

investigate the predictability of the direction of change in the future spot exchange rate. 

In another study Aggarwal R. and Demaskey (1997) find that the classification 

performance of cross hedging improves significantly rates can be predicted. O’Connor et 

al., (1997) conduct a laboratory-based experiment and conclude that individuals show 

different tendencies and behaviors for upward and downward series. The findings in 
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these studies are reasonable because accurate point estimation, as judged by its deviation 

from the actual observation may not be a good predictor of the direction of change in the 

instruments price level.  

 

 

 

1.3   Problem Statement  

 

In recent years, there have been a growing number of studies looking at the 

direction or trend of movements of various kinds of statistical and data mining 

techniques (such as Mark et al., 2000; Elovici and Braha, 2003; Zhang and Zhou, 2004). 

However, as discussed in problem background these techniques have some limitations to 

handle time series and huge stock market data. Also none of these studies provide a 

comparative evaluation of different classification techniques regarding their ability to 

predict the sign of the index return. Among the variety of data mining techniques, 

classification has found scale well, run fast, and produce highly interpretable results.  

 

In this research, our main focus on the development of classification data mining model 

to identifying a better decision making classifiers for stock market prediction. In 

classification, decision tree with fuzzy sets have been used to building classification 

models for predicting classes for unseen records. The predictive FDT algorithm and 

similarity-based fuzzy reasoning method are used to answer the following research 

questions 

 

 How classification data mining techniques are able to uncover hidden 

patterns and predict future trends and behaviors in financial markets? 

 How the trader’s expectations can be fulfilled to handle uncertain factors, 

including political situation, oil price, overall world situation, local stock 

markets etc? 
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 How the optimal predictive FDT can be constructed that has better 

comprehensibility (no of rules), less complexity (no of nodes) and better 

learning accuracy?  

 How similarity-based fuzzy reasoning method can improve the learning 

accuracy of generated weighted fuzzy production rules for the prediction 

of stock market data? 

 

 

 

1.4 Objectives of Research  

 

The main objectives of this research is to build accurate model by using 

classification and fuzzy sets in order to make the methods accessible, “user-friendly”, 

and prepared for the broader population of economists, analysts, and financial 

professionals. To deal with these tasks first predictive FDT are constructed and then 

WFPR,s are extracted from predictive FDT for predicting stock market. The main 

objectives of this research are as follows: 

 

 To develop and enhance data mining algorithms for extracting the pattern 

of knowledge from stock market database. 

 To construct predictive FDT for the classification of stock market index 

that has better performance of comprehensibility (no of rules), lower 

complexity (no of nodes) and improves the learning accuracy.  

 To mine the more significant WFPR’s among the extracted rules from 

predictive FDT by using similarity-based fuzzy reasoning method.  

 To evaluate and compare the performance of predictive FDT and 

similarity-based fuzzy reasoning method with the existing standard 

methods in order to find the strength and weaknesses of proposed 

algorithm.   
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1.5 Research Scope  

 

This research focuses on the enhancement of data mining algorithms in financial 

application. In data mining algorithms, classification model has been developed to 

extract the weighted fuzzy production rules for time series stock market prediction. The 

scope of this research covers the following points:  

 

 Reviews and comparisons of the existing data mining methods to predict 

future trends and behaviors in financial markets. 

 Analyze and evaluate the performance of the predictive FDT algorithm 

by using three stock exchanges, i.e. KLSE, LSE, and NYSE. 

 Test and analyze the predictive FDT algorithms on the chaotic and 

complex nature of intraday stock market data from 100 different associate 

stocks. 

 Analyze and evaluate the results of predictive FDT and similarity-based 

fuzzy reasoning method for maximum three months prediction of real 

time stock market. 

 

 

 

1.6 Research Contributions  

 

In this research, the data mining and artificial intelligence technique are used to 

build classification model for stock market prediction. First, the predictive FDT 

classifier is constructed and then WFPR’s are extracted from predictive FDT for stock 

market prediction. Some points of major contributions of this research are described as 

follows: 

  

 The enhancement of classification based data mining algorithms to 

predict trends and behaviors in financial market. 
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 The construction of predictive fuzzy decision tree classification, that 

provides the reasonable performance of the parameters comprehensibility 

(no of rules), complexity (no of nodes) and predictive accuracy.  

 Careful assignment of some uncertain factors including oil price, local 

stock market, natural disasters etc, for the classification of stock market 

index. 

 In predictive reasoning method, the conventional fuzzy production rules 

are enhanced to assign a weighting factor to each proposition in the 

antecedent parts to have various degree of relative importance with 

respect to the same consequent.  

 

 

 

1.7 Thesis Organization  

 

The general research background is given in this chapter. Next chapter presents the brief 

overview of financial application with description of previous works used on data 

mining and statistical techniques. Chapter 3 discuss, when we have together defined the 

problem to solve, in the remaining steps we must collect the relevant data if it does not 

already exist, clean the data, engineer the data to be maximally useful with the problem 

at hand, engineer a mining algorithm, run the mining algorithm and explain the results to 

the expert. In chapter 4 predictive fuzzy decision trees is constructed. In this chapter, 

first 3 steps are important to implement before applying the predictive FDT algorithm. 

In first step, K-means clustering method is used to find the center for every fuzzy set and 

calculate the degree of membership by applying triangular membership function. Finally 

construct predictive FDT by using fuzzy decision tree algorithm. In chapter 5, similarity-

based fuzzy reasoning method is used for mining weighted fuzzy production rules. In 

this chapter, decision has been made about the more suitable WFPR’s for prediction of 

stock market. In Chapter 6, the experiments and results are presented that are produced 

from predictive FDT and similarity-based fuzzy reasoning method. The accuracy of 

extracted WFPR’s are also compared with the standard method of stock market 
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prediction. Finally in chapter 7, the conclusions of predictive fuzzy decision tree and 

extracted weighted fuzzy production rules have been presented. Some challenges and 

emerging trends are identified for future research also suggested in this chapter. 
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