# NOVEL APPLICATIONS OF ELEVATED TEMPERATURE HIGH PERFORMANCE LIQUID CHROMATOGRAPHY: ANALYSES OF TRIAZOLE FUNGICIDES AND VITAMIN E ISOMERS

SEE HONG HENG

UNIVERSITI TEKNOLOGI MALAYSIA

## NOVEL APPLICATIONS OF ELEVATED TEMPERATURE HIGH PERFORMANCE LIQUID CHROMATOGRAPHY: ANALYSES OF TRIAZOLE FUNGICIDES AND VITAMIN E ISOMERS

SEE HONG HENG

A thesis submitted in fulfilment of the requirements for the award of the degree of Master of Science (Chemistry)

> Faculty of Science Universiti Teknologi Malaysia

> > APRIL 2005

Specially dedicated to my beloved mother, sister and brother.

#### ACKNOWLEDGEMENTS

I would like to express my deepest gratitude to my supervisor, Professor Dr. Mohd Marsin Sanagi, for his constant ideas and enthusiasm. His excellent scientific guidance, infinite patience and unconditional help have enabled me to approach work positively.

I also would like to thank my co-supervisors, Assoc. Prof. Dr. Wan Aini Wan Ibrahim and Assoc. Prof. Dr. Ahmedy Abu Naim for their helpful comments and advices. Thanks to the laboratory assistants of the Department of Chemistry, U.T.M., particulary to En. A. Kadir A. Rahman for the technical assistance.

My sincerest gratitude also goes to my post-graduate friends and all the staff in chromatography team. I would like to take this opportunity to thank everyone who has contributed whether directly or indirectly to this project.

I would also like to thank the Ministry of Science, Technology and Innovation (MOSTI) for the financial support through the IRPA program and a studentship for myself.

To my family, I cannot thank you enough for your support and faith in me.

#### ABSTRACT

Control of column temperature has become increasingly accepted as a separation parameter in high performance liquid chromatography (HPLC). In this study, high-temperature reversed-phase (RP) HPLC using water-rich and superheated water eluents is evaluated as a new approach for the separation of selected triazole fungicides. Using a polybutadiene-coated zirconia column at temperatures of 100°C to 150°C, clear separations were achieved when 100% purified water was utilized as organic-free eluent. Excellent limits of detection down to pg level were obtained under optimum conditions. Nevertheless, poorer separation efficiency was observed when the triazole fungicides were separated on carbon-clad zirconia column using water-rich eluents. Novel separation of eight vitamin E isomers ( $\alpha$ -,  $\beta$ -,  $\gamma$ -,  $\delta$ tocopherol, and  $\alpha$ -,  $\beta$ -,  $\gamma$ -,  $\delta$ -tocotrienol) and  $\alpha$ -tocopherol acetate on both normalphase (NP) and reversed-phase (RP) HPLC were also examined. All the isomers were successfully separated using NP-HPLC on amino and silica columns. By simply increasing the temperature for silica column, excellent separation efficiencies and shorter analysis times were achieved. Seven vitamin E isomers were successfully separated using RP-HPLC at high temperatures. Both developed separation methods are rapid, showed excellent repeatability, and suitable to be used as a quantitative method in analyzing vitamin E isomers. Pressurized liquid extraction (PLE) along with elevated temperature NP-HPLC is evaluated as a new approach for the determination of  $\beta$ -carotene and vitamin E isomers in residue oil obtained from palm pressed fiber (PPF). The new developed method demonstrated an outstanding performance with excellent efficiency in terms of total extraction time, total solvent usage, total carotene and vitamin E isomers contents as well as the exceptional method repeatability.

#### ABSTRAK

Pengawalan suhu turus telah semakin diterima sebagai parameter pemisahan dalam kromatografi cecair prestasi tinggi (HPLC). Dalam kajian ini, HPLC fasa terbalik bersuhu tinggi dengan turus zirkonia tersalut polibutadiena menggunakan pengelusi kaya-air dan air lampau panas telah dikaji sebagai suatu pendekatan baru bagi pemisahan fungisid triazola terpilih. Dengan menggunakan turus zirkonia tersalut polibutadiena pada suhu 100°C hingga 150°C, pemisahan lengkap telah tercapai apabila menggunakan 100% air tulen sebagai pengelusi bebas organik. Had pengesanan yang rendah sehingga tahap pg telah tercapai pada keadaan optimum. Walau bagaimanapun, kecekapan pemisahan yang lemah telah dicerap apabila racun rumpai fungisid triazola dipisahkan dengan turus zirkonia tersalut karbon menggunakan pengelusi kaya-air. Pemisahan baru lapan jenis isomer vitamin E ( $\alpha$ -,  $\beta$ -,  $\gamma$ -,  $\delta$ -tokoferol, and  $\alpha$ -,  $\beta$ -,  $\gamma$ -,  $\delta$ -tokotrienol) and  $\alpha$ -tokoferol asetat dengan HPLC fasa normal (NP) dan fasa terbalik (RP) juga telah dikaji. Semua isomer telah berjaya dipisahkan menggunakan NP-HPLC dengan turus amino dan silika. Dengan hanya meningkatkan suhu bagi turus slika, kecekapan pemisahan yang baik dan masa analisis yang lebih pendek telah tercapai. Tujuh jenis isomer vitamin E telah berjaya dipisahkan menggunakan RP-HPLC pada suhu tinggi. Kedua-dua kaedah pemisahan yang dibangunkan adalah cepat, menunjukkan kebolehulangan yang tinggi, dan sesuai digunakan sebagai kaedah kuantitatif dalam menganalisis isomer vitamin E. pengekstrakan cecair bertekanan (PLE) bersama dengan NP-HPLC pada suhu tertingkat telah dikaji sebagai pendekatan baru dalam menentukan β-karotin dan isomer vitamin E dalam sisa minyak diperoleh daripada sabut kelapa sawit (PPF). Kaedah baru yang dibangunkan menunjukkan prestasi cemerlang dengan kecekapan yang baik dari segi masa pengekstrakan, jumlah penggunaan pelarut, jumlah kandungan karotin dan isomer vitamin E dan juga kebolehulangan kaedah yang tinggi.

## **TABLE OF CONTENTS**

| CHAPTER |      | TITLE                                          | PAGE |
|---------|------|------------------------------------------------|------|
|         | TITI | LE PAGE                                        | i    |
|         | DEC  | LARATION                                       | ii   |
|         | DED  | DICATION                                       | iii  |
|         | ACK  | NOWLEDGEMENTS                                  | iv   |
|         | ABS  | TRACT                                          | v    |
|         | ABS  | TRAK                                           | vi   |
|         | TAB  | LE OF CONTENTS                                 | vii  |
|         | LIST | Γ OF TABLES                                    | xiii |
|         | LIST | Γ OF FIGURES                                   | XV   |
|         | LIST | Γ OF SYMBOLS/ABBREVIATIONS/                    |      |
|         | NOT  | <b>TATION/TERMINOLOGY</b>                      | XX   |
|         | LIST | f OF APPENDICES                                | xxii |
| 1       | INT  | RODUCTION                                      | 1    |
|         | 1.1  | Preamble                                       | 1    |
|         | 1.2  | Principles of High Temperature Operation in    |      |
|         |      | Reversed-Phase High Performance Liquid         |      |
|         |      | Chromatography (RP-HPLC)                       | 1    |
|         | 1.3  | Instrumental Consideration and Performance in  |      |
|         |      | High Temperature RP-HPLC System                | 4    |
|         | 1.4  | Water-Rich and Superheated Water Eluents on    |      |
|         |      | High Temperature RP-HPLC                       | 6    |
|         | 1.5  | High Thermal Stability Stationary Phase in the |      |
|         |      | RP-HPLC                                        | 8    |
|         |      | 1.5.1 Zirconia based stationary phase          | 10   |

|      | 1.5.2 Types and classification of             |       |
|------|-----------------------------------------------|-------|
|      | zirconia based stationary phases              | 11    |
|      | 1.5.2.1 Polybutadiene-coated zirconia         |       |
|      | stationary phase                              | 13    |
|      | 1.5.2.2 Carbon-clad zirconia stationary       |       |
|      | phase                                         | 15    |
| 1.6  | Influence of Narrow-Bore Column in HPLC       |       |
|      | Separation                                    | 17    |
| 1.7  | Classification of Triazole Fungicides         | 18    |
|      | 1.7.1 Chromatographic techniques in           |       |
|      | analyzing triazole fungicides                 | 18    |
| 1.8  | Analysis of Tocopherol and Tocotrienol Isomer | rs 19 |
|      | 1.8.1 Chromatographic techniques in           |       |
|      | analyzing tocopherols and tocotrienols.       | 20    |
|      | 1.8.1.1 Normal-phase HPLC                     | 21    |
|      | 1.8.1.2 Reversed-phase HPLC                   | 22    |
| 1.9  | Tocopherols and Tocotrienols in Palm Oil and  |       |
|      | Palm Pressed-Fiber (PPF)                      | 22    |
|      | 1.9.1 Extraction of residue oil obtained from |       |
|      | PPF                                           | 23    |
|      | 19.1.1 Soxhlet extraction                     | 24    |
|      | 1.9.1.2 Pressurized liquid extraction         | 24    |
| 1.10 | Problems Encountered in HPLC Technique        | 25    |
| 1.11 | Objectives and Scope of Work                  | 26    |
| 1.12 | Division of Chapters in Thesis                | 26    |
| EXPI | ERIMENTAL                                     | 27    |
| 2.1  | Introduction                                  | 27    |
| 2.2  | Reagents                                      | 27    |
| 2.3  | Chromatographic Conditions                    | 29    |
| 2.4  | System Conditioning Procedure                 | 31    |

| 2.5 | Proce  | dures for High Temperature RP-HPLC        |    |
|-----|--------|-------------------------------------------|----|
|     | of Tri | azole Fungicides On Zirconia Based        |    |
|     | Statio | nary Phase                                | 31 |
|     | 2.5.1  | Separation of triazole fungicides by high |    |
|     |        | temperature RP-HPLC on polybutadiene-     |    |
|     |        | coated zirconia stationary phase          | 31 |
|     | 2.5.2  | Separation of triazole fungicides by high |    |
|     |        | temperature RP-HPLC on carbon-clad        |    |
|     |        | zirconia stationary phase                 | 32 |
| 2.6 | Enhar  | nced Separation of Tocopherols and        |    |
|     | Tocot  | rienols By NP and RP-HPLC at Elevated     |    |
|     | Temp   | erature                                   | 33 |
|     | 2.6.1  | Separation of tocopherols and             |    |
|     |        | tocotrienols by high-temperature          |    |
|     |        | RP-HPLC on PBD-coated zirconia            |    |
|     |        | column                                    | 33 |
|     | 2.6.2  | NP-HPLC of tocopherol and                 |    |
|     |        | tocotrienol isomers on amino and silica   |    |
|     |        | columns at ambient temperature            | 33 |
|     | 2.6.3  | NP-HPLC of tocopherol and                 |    |
|     |        | tocotrienol isomers on silica column at   |    |
|     |        | elevated temperature                      | 34 |
| 2.7 | Deter  | mination of Carotene, Tocopherols and     |    |
|     | Tocot  | rienols in Palm Pressed-Fiber             | 35 |
|     | 2.7.1  | Palm pressed fiber samples                | 35 |
|     | 2.7.2  | Extraction of residue oil from palm       |    |
|     |        | pressed fiber                             | 35 |
|     |        | 2.7.2.1 Soxhlet extraction                | 35 |
|     |        | 2.7.2.2 Pressurized liquid extraction     | 35 |
|     | 2.7.3  | Determination of tocopherols and          |    |
|     |        | tocotrienols content in residue oil       | 36 |
|     | 2.7.4  | Determination of carotene content         | 37 |

| HIGH | TEMF    | PERATURE RP-HPLC OF TRIAZOLE             |    |
|------|---------|------------------------------------------|----|
| FUNG | GICIDE  | S ON ZIRCONIA BASED                      |    |
| STAT | IONAF   | RY PHASE                                 | 38 |
| 3.1  | Introdu | uction                                   | 38 |
| 3.2  | Separa  | tion of Triazole Fungicides on a         |    |
|      | Polybu  | tadiene-Coated Zirconia Stationary Phase | 38 |
|      | 3.2.1   | Elution behavior on a PBD-coated         |    |
|      |         | zirconia column                          | 38 |
|      | 3.2.2   | Selectivity and resolution on a PBD-     |    |
|      |         | coated zirconia column                   | 42 |
|      | 3.2.3   | Influence of temperature on retention    |    |
|      |         | factor on a PBD-coated zirconia column   | 45 |
|      | 3.2.4   | Influence of temperature on column       |    |
|      |         | efficiency on a PBD-coated zirconia      |    |
|      |         | column                                   | 46 |
|      | 3.2.5   | Influence of temperature on PBD-coated   |    |
|      |         | zirconia column separation mechanism     | 48 |
|      | 3.2.6   | Limit of detection                       | 51 |
| 3.3  | Separa  | tion of Triazole Fungicides on a Carbon- |    |
|      | Clad Z  | Circonia Stationary Phase                | 53 |
|      | 3.3.1   | Elution behaviour of triazole fungicides |    |
|      |         | on a carbon-clad zirconia column         | 53 |
|      | 3.3.2   | Selectivity and resolution on carbon-    |    |
|      |         | clad zirconia column                     | 57 |
|      | 3.3.3   | Influence of temperature on retention    |    |
|      |         | factor                                   | 56 |
|      | 3.3.4   | Influence of temperature on column       |    |
|      |         | efficiency                               | 60 |
|      | 3.3.5   | Influence of temperature on separation   |    |
|      |         | mechanism                                | 61 |

3

Х

| ENHA  | NCED   | SEPARATION OF TOCOPHEROLS                |    |
|-------|--------|------------------------------------------|----|
| AND 7 | ГОСО   | FRIENOLS BY HPLC AT ELEVATED             |    |
| TEMF  | PERAT  | URE                                      | 64 |
| 4.1   | Introd | uction                                   | 64 |
| 4.2   | Separa | ation of Tocopherols and Tocotrienols by |    |
|       | High-  | Temperature RP-HPLC on PBD-Coated        |    |
|       | Zircon | iia Column                               | 64 |
|       | 4.2.1  | Influence of column temperature on       |    |
|       |        | retention factor                         | 68 |
|       | 4.2.2  | Influence of column temperature on       |    |
|       |        | separation resolution                    | 70 |
|       | 4.2.3  | Influence of column temperature on       |    |
|       |        | column efficiency                        | 71 |
|       | 4.2.4  | Influence of column temperature on       | 72 |
|       |        | separation mechanism                     |    |
| 4.3   | Separa | ation of Tocopherols and Tocotrienols    |    |
|       | by NP  | -HPLC on Amino and Silica Columns        |    |
|       | at Am  | bient Temperature                        | 75 |
|       | 4.3.1  | Elution behavior in NP-HPLC              | 76 |
|       | 4.3.2  | Optimization study of normal phase       |    |
|       |        | system                                   | 76 |
|       |        | 4.3.2.1 Amino-bonded silica stationary   |    |
|       |        | phase                                    | 76 |
|       |        | 4.3.2.2 silica based stationary phase    | 81 |
| 4.4   | Separa | ation of Tocopherols and Tocotrienols    |    |
|       | by NP  | -HPLC on Silica Columns at Elevated      |    |
|       | Tempe  | erature                                  | 82 |
|       | 4.4.1  | Separation repeatability, reproducibity  |    |
|       |        | and linearity test                       | 85 |
|       | 4.4.2  | Limits of detection                      | 86 |

4

| 5        | DETI | ERMINATION OF CAROTENE,                        |     |
|----------|------|------------------------------------------------|-----|
|          | TOC  | OPHEROLS AND TOCOTRIENOLS IN                   |     |
|          | PALN | M PRESSED-FIBER                                | 89  |
|          | 5.1  | Introduction                                   | 89  |
|          | 5.2  | Enhanced Separation of Tocopherols and         |     |
|          |      | Tocotrienols by NP-HPLC at Elevated            |     |
|          |      | Temperature                                    | 89  |
|          | 5.3  | Determination of Tocopherols and Tocotrienols  |     |
|          |      | in Residue Oil from Palm Pressed Fiber         | 91  |
|          |      | 5.3.1 Soxhlet extraction                       | 91  |
|          |      | 5.3.2 Pressurized liquid extraction            | 93  |
|          |      | 5.3.2.1 Optimization and validation of         |     |
|          |      | the PLE extraction technique                   | 93  |
|          |      | 5.3.2.2 Choice of the sample amount            | 93  |
|          |      | 5.3.2.3 Choice of the extraction               |     |
|          |      | temperature                                    | 94  |
|          |      | 5.3.2.4 Choice of the extraction pressure      | 95  |
|          | 5.4  | Quantification of Tocopherols and Tocotrienols |     |
|          |      | using Optimized PLE Method                     | 97  |
|          | 5.5  | Comparison of Soxhlet Extraction with PLE      |     |
|          |      | Extraction                                     | 97  |
| 6        | CON  | CLUSIONS AND FUTURE DIRECTIONS                 | 101 |
|          | 6.1  | Conclusions                                    | 101 |
|          | 6.2  | Future Directions                              | 103 |
| REFERENC | CES  |                                                | 105 |

Appendix A

115

## LIST OF TABLES

| TABLE NO. | TITLE                                                                                                                                                                       | PAGE |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 1.1       | General characteristics of the four reversed-phase LC test columns                                                                                                          | 9    |
| 1.2       | HPLC phases based on porous zirconia                                                                                                                                        | 13   |
| 2.1       | Properties of four triazole fungicides                                                                                                                                      | 28   |
| 2.2       | Properties of tocopherols and tocotrienols                                                                                                                                  | 29   |
| 2.3       | Separation conditions used for NP-HPLC at ambient temperature                                                                                                               | 34   |
| 3.1       | Column efficiency ( $N/m$ ) and resolution ( $R_s$ ) of four triazole fungicides as a function of temperature using 100% pure water as eluent on PBD-coated zirconia column | 43   |
| 3.2       | Retention factor of four triazole fungicides as a function<br>of temperature using different proportion of organic<br>modifier on PBD-coated zirconia column                | 46   |
| 3.3       | Enthalpy data for the tebuconazole and hexaconazole at high column temperatures on PBD-coated zirconia column.                                                              | 49   |
| 3.4       | Retention factors of four triazole fungicides on carbon-<br>clad zirconia column as a function of temperature using<br>different proportions of organic modifier            | 59   |
| 3.5       | Enthalpy data for the hexaconazole and tebuconazole at<br>high column temperatures on carbon-clad zirconia<br>column                                                        | 63   |
| 4.1       | Retention factors of tocopherols and tocotrienols as a function of temperature using different proportion of organic modifier on PBD-coated zirconia column                 | 69   |
| 4.2       | Resolution values as a function of temperature ranging<br>from 80°C to 140°C using different mobile phase<br>compositions                                                   | 71   |

| 4.3 | Enthalpy data for the $\alpha$ -tocopherol acetate at high column temperatures on PBD-coated zirconia column                                                                                                                                     | 73  |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 4.4 | Resolution ( <i>Rs</i> ) of adjacent peaks and efficiencies ( $N/m$ ) of the amino and silica columns in separating eight natural vitamin E isomers at ambient temperature                                                                       | 80  |
| 4.5 | Retention factors ( <i>k'</i> ), theoretical plates/column length ( <i>N</i> /m), and resolution ( $R_s$ ) of eight vitamin E isomers as a function of column temperature using hexane-1,4-dioxane 96.0:4.0 (v/v) as the eluent on silica column | 84  |
| 4.6 | Repeatability and reproducibity of the optimum<br>separation condition based on the retention factors and<br>the peak area respond factor on the same day and<br>different days                                                                  | 85  |
| 4.7 | Regression analysis of the plot of peak area versus concentration for each isomer                                                                                                                                                                | 86  |
| 5.1 | Determination of tocopherols and tocotrienols in residue<br>oil from PPF using Soxhlet extraction                                                                                                                                                | 93  |
| 5.2 | Comparison of results obtained on the determination<br>of residue oil contents using Soxhlet extraction and PLE<br>methods                                                                                                                       | 100 |

## LIST OF FIGURES

| FIGURE NO. | . TITLE                                                                                                                                                                                                                                                                                                                                                                                                                             | PAGE |
|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 1.1        | Control of solvent polarity (dielectric constant) by<br>changing temperature (at 50 bar) with pure water<br>compared to methanol- or acetonitrile-water mixtures<br>at 25°C and ambient pressure                                                                                                                                                                                                                                    | 7    |
| 1.2        | Strong Lewis acid sites that can undergo ligand-<br>exchange interactions with Lewis bases                                                                                                                                                                                                                                                                                                                                          | 12   |
| 1.3        | Structure of cross-linked polybutadiene-coated zirconia stationary phase                                                                                                                                                                                                                                                                                                                                                            | 14   |
| 1.4        | Structure of carbon-clad zirconia stationary phase                                                                                                                                                                                                                                                                                                                                                                                  | 16   |
| 1.5        | Chemical structures of tocopherols and tocotrienols                                                                                                                                                                                                                                                                                                                                                                                 | 20   |
| 2.1        | Experimental set-up: A, mobile phase reservoir; B,<br>HPLC pump; C, injection valve; D, column; E, oven;<br>F, cooling system (ice water); G, UV detector;<br>H, integrator; I, backpressure regulator; J, mobile<br>phase pre-heating coils                                                                                                                                                                                        | 30   |
| 2.2        | Schematic diagram of home-made pressurized liquid<br>extraction (PLE) system: A, HPLC pump; B, three-way<br>switching valve; C1 & C2, static valves; D, pressure<br>gauge; E, oven; F, preheating coil; G, extraction vessel;<br>H, pressurized nitrogen gas; I, collection vial.                                                                                                                                                   | 36   |
| 3.1        | Separation of four triazole fungicides on ZirChrom-<br>PBD column (100 × 2.1 mm I.D.). Chromatographic<br>conditions: mobile phase: acetonitrile-water 10:90 (v/v);<br>flow rate: 0.5 mL/min; temperature: 100°C-120°C;<br>detection: UV absorbance at 220 nm; injection volume:<br>1 $\mu$ L; solute concentration: 0.1 mg/mL. Peaks: 1 –<br>solvent; 2 – tebuconazole, 3 – hexaconazole, 4 –<br>propiconazole, 5 – difenoconazole | 39   |

| 3.2 | Separation of four triazole fungicides on ZirChrom-<br>PBD column (100 × 2.1 mm I.D.). Chromatographic<br>conditions: mobile phase: acetonitrile-water 5:95 (v/v);<br>flow rate: 0.5 mL/min; temperature: 120°C-140°C;<br>detection: UV absorbance at 220 nm; injection volume:<br>1 $\mu$ L; solute concentration: 0.1 mg/mL. Peaks: 1 –<br>solvent; 2 – tebuconazole, 3 – hexaconazole, 4 –<br>propiconazole, 5 – difenoconazole  | 40 |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 3.3 | Separation of four triazole fungicides on ZirChrom-<br>PBD column (100 × 2.1 mm I.D.). Chromatographic<br>conditions: mobile phase: 100% pure water; flow rate:<br>0.5 mL/min; temperature: 130°C-150°C; detection:<br>UV absorbance at 220 nm; injection volume: 1 $\mu$ L;<br>solute concentration: 0.1 mg/mL. Peaks: 1 – solvent;<br>2 – tebuconazole, 3 – hexaconazole, 4 – propiconazole,<br>5 – difenoconazole                | 41 |
| 3.4 | Relationship of separation factor ( $\alpha$ ) for propiconazole<br>(a), difenoconazole (b) as a function of mobile phase<br>composition at different column temperature on PBD-<br>coated zirconia column                                                                                                                                                                                                                          | 44 |
| 3.5 | Variation of column efficiency as a function of<br>temperature using low proportion of organic modifier<br>on PBD-coated zirconia column. (Solute: tebuconazole)                                                                                                                                                                                                                                                                    | 48 |
| 3.6 | Van't Hoff plots for tebuconazole (a) and hexaconazole<br>(b) using different proportions of acetonitrile in the<br>eluent at high column temperatures on PBD-coated<br>zirconia column                                                                                                                                                                                                                                             | 50 |
| 3.7 | Limit of detection of four triazole fungicides separation<br>on ZirChrom-PBD column ( $100 \times 2.1 \text{ mm I.D.}$ ).<br>Chromatographic condition: mobile phase: $100\%$ pure<br>water; flow rate: 0.5 mL/min; temperature: $140^{\circ}$ C;<br>detection: UV absorbance at 195 nm; injection<br>volume: 1 $\mu$ L                                                                                                             | 52 |
| 3.8 | Separation of four triazole fungicides on ZirChrom-<br>CARB column (100 × 2.1 mm I.D.). Chromatographic<br>condition: mobile phase: acetonitrile-water 10:90 (v/v);<br>flow rate: 0.5 mL/min; temperature: 100°C-120°C;<br>detection: UV absorbance at 220 nm; injection<br>volume: 1 $\mu$ L; solute concentration: 0.1 mg/mL.<br>Peaks: 1 – solvent; 2 – hexaconazole, 3 – propiconazole,<br>4 – tebuconazole, 5 – difenoconazole | 54 |

| 3.9  | Separation of four triazole fungicides on ZirChrom-<br>CARB column (100 × 2.1 mm I.D.). Chromatographic<br>condition: mobile phase: acetonitrile-water 5:95 (v/v);<br>flow rate: 0.5 mL/min; temperature: 120°C-140°C;<br>detection: UV absorbance at 220 nm; injection<br>volume: 1 $\mu$ L; solute concentration: 0.1 mg/mL.<br>Peaks: 1 – solvent; 2 – hexaconazole, 3 – propiconazole,<br>4 – tebuconazole, 5 – difenoconazole                                                               | 55 |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 3.10 | Separation of four triazole fungicides on ZirChrom-<br>CARB column (100 × 2.1 mm I.D.). Chromatographic<br>condition: mobile phase: acetonitrile-water 1:99 (v/v);<br>flow rate: 0.5 mL/min; temperature: 120°C-150°C;<br>detection: UV absorbance at 220 nm; injection<br>volume: 1 $\mu$ L; solute concentration: 0.05-0.1 mg/mL.<br>Peaks: 1 – solvent; 2 – hexaconazole, 3 – propiconazole,<br>4 – tebuconazole, 5 – difenoconazole                                                          | 56 |
| 3.11 | Relationship of separation factor as a function of<br>mobile phase composition at different column<br>temperature on carbon-clad zirconia column for<br>propiconazole                                                                                                                                                                                                                                                                                                                            | 59 |
| 3.12 | Variation of column efficiency as a function of<br>temperature using low proportion of organic modifier<br>on carbon-clad zirconia column for hexaconazole                                                                                                                                                                                                                                                                                                                                       | 60 |
| 3.13 | Van't Hoff plots for tebuconazole (a) and hexaconazole<br>(b) using different proportions of acetonitrile in the<br>eluent at high column temperature on carbon-clad<br>zirconia column                                                                                                                                                                                                                                                                                                          | 62 |
| 4.1  | RP-HPLC separations of a balanced mixture of<br>tocopherols and tocotrienols on polybutadiene-coated<br>zirconia column at different column temperature.<br>Chromatographic conditions: mobile phase: acetonitrile-<br>water (50:50 v/v); flow rate: 0.4 mL/min. Peaks:<br>$1 - $ solvent, $2 - \delta$ -tocotrienol; $3 - \gamma$ -tocotrienol,<br>$4 - \alpha$ -tocotrienol, $5 - \delta$ -tocopherol, $6 - \gamma$ -tocopherol,<br>$7 - \alpha$ -tocopherol, $8 - \alpha$ -tocopherol acetate | 65 |
| 4.2  | RP-HPLC separations of a balanced mixture of<br>tocopherols and tocotrienols on polybutadiene-coated<br>zirconia column at different column temperature.<br>Chromatographic conditions: mobile phase: acetonitrile-<br>water (45:55 v/v); flow rate: 0.4 mL/min. Peaks:<br>$1 - $ solvent, $2 - \delta$ -tocotrienol; $3 - \gamma$ -tocotrienol,<br>$4 - \alpha$ -tocotrienol, $5 - \delta$ -tocopherol, $6 - \gamma$ -tocopherol,                                                               |    |
|      | 7 - $\alpha$ -tocopherol, 8 - $\alpha$ -tocopherol acetate                                                                                                                                                                                                                                                                                                                                                                                                                                       | 66 |

| 4.3 | RP-HPLC separations of a balanced mixture of<br>tocopherols and tocotrienols on polybutadiene-coated<br>zirconia column at different column temperature.<br>Chromatographic conditions: mobile phase: acetonitrile-<br>water (40:60 v/v); flow rate: 0.4 mL/min. Peaks:<br>$1 - $ solvent, $2 - \delta$ -tocotrienol; $3 - \gamma$ -tocotrienol,<br>$4 - \alpha$ -tocotrienol, $5 - \delta$ -tocopherol, $6 - \gamma$ -tocopherol,<br>$7 - \alpha$ -tocopherol, $8 - \alpha$ -tocopherol acetate                                        | 67 |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 4.4 | Variation of column efficiency as a function of temperature using different proportions of organic modifier for $\alpha$ -tocopherol acetate                                                                                                                                                                                                                                                                                                                                                                                            | 72 |
| 4.5 | Van't Hoff plots for $\alpha$ -tocopherol acetate using<br>different proportions of acetonitrile in the eluent at<br>high column temperatures on PBD-coated zirconia<br>column. (a) Linear extrapolation on all temperature<br>studied. (b) Linear extrapolation with a temperature<br>range from 80°C to 120°C. Data points in brackets<br>() represent the point that are excluded from the<br>linearity calculations for the plots.                                                                                                  | 74 |
| 4.6 | NP-HPLC separations of a balanced mixture of tocopherols and tocotrienols on amino-bonded silica column at ambient temperature with different mobile phases. Chromatographic conditions: flow rate:<br>0.2 mL/min. Peaks: $1 - \alpha$ -tocopherol acetate,<br>$2 - \alpha$ -tocopherol, $3 - \alpha$ -tocotrienol, $4 - \beta$ -tocopherol,<br>$5 - \gamma$ -tocopherol, $6 - \beta$ -tocotrienol, $7 - \gamma$ -tocotrienol,<br>$8 - \delta$ -tocopherol, $9 - \delta$ -tocotrienol                                                   | 77 |
| 4.7 | NP-HPLC separations of a balanced mixture of tocopherols and tocotrienols on Hypersil silica column at ambient temperature with different mobile phases. Chromatographic conditions: flow rate: 1 mL/min. Peaks: $1 - \alpha$ -tocopherol acetate, $2 - \alpha$ -tocopherol, $3 - \alpha$ -tocotrienol, $4 - \beta$ -tocopherol, $5 - \gamma$ -tocopherol, $6 - \beta$ -tocotrienol, $7 - \gamma$ -tocotrienol, $8 - \delta$ -tocopherol, $9 - \delta$ -tocotrienol                                                                     | 78 |
| 4.8 | NP-HPLC separations of a balanced mixture of<br>tocopherols and tocotrienols on Hypersil silica column<br>at different column temperatures. Chromatographic<br>conditions: mobile phase: hexane-1,4-dioxane<br>(96.0:4.0 v/v); flow rate: 1 mL/min. Peaks: 1 – solvent,<br>2 – $\alpha$ -tocopherol acetate; 3 – $\alpha$ -tocopherol,<br>4 – $\alpha$ -tocotrienol, 5 – $\beta$ -tocopherol, 6 – $\gamma$ -tocopherol,<br>7 - $\beta$ -tocotrienol, 8 - $\gamma$ -tocotrienol, 9 - $\delta$ -tocopherol,<br>10 - $\delta$ -tocotrienol | 83 |

| 4.9 | Limit of detection of a balanced mixture of tocopherols<br>and tocotrienols on Hypersil silica column.<br>Chromatographic condition: mobile phase:<br>hexane-1,4-dioxane (96.0:4.0 v/v); flow rate: 1 mL/min;<br>temperature: 40°C; detection: UV absorbance at<br>295 nm.; injection volume: 5 µL                                                                                                                                                     | 87 |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 5.1 | NP-HPLC separations of crude palm oil on a<br>Hypersil silica column. Chromatographic conditions:<br>mobile phase: <i>n</i> -hexane-1,4-dioxane (96.0:4.0 v/v);<br>flow rate: 1 mL/min; temperature: 40°C. Peaks:<br>$1 - \alpha$ -tocopherol, $2 - \alpha$ -tocotrienol, $4 - \gamma$ -tocotrienol,<br>$5 - \delta$ -tocotrienol, $3 \& 6$ - unknown                                                                                                  | 90 |
| 5.2 | NP-HPLC separations of residue oil extracts<br>obtained by <i>n</i> -hexane (A) and chloroform (B) on<br>a Hypersil silica column. Chromatographic<br>conditions: mobile phase: n-hexane-1,4-dioxane<br>(96.0:4.0 v/v); flow rate: 1 mL/min; temperature: 40°C.<br>Peaks: $1 - \alpha$ -tocopherol, $2 - \alpha$ -tocotrienol,<br>$4-\beta$ -tocopherol (internal standard), $5-\gamma$ -tocotrienol,<br>$6 - \delta$ -tocotrienol, $3 \& 7 -$ unknown | 92 |
| 5.2 | Effect of (a) sample amount, (b) temperature, and (c) pressure on pressurized liquid extraction (PLE) efficiency                                                                                                                                                                                                                                                                                                                                       | 96 |
| 5.4 | NP-HPLC separations of residue oil extracts obtained<br>by pressurized liquid extraction on a Hypersil<br>silica column. Chromatographic conditions: mobile<br>phase: n-hexane-1,4-dioxane (96.0:4.0 v/v);<br>flow rate: 1 mL/min; temperature: 40°C. Peaks:<br>$1 - \alpha$ -tocopherol, $2 - \alpha$ -tocotrienol,<br>$4 - \gamma$ -tocotrienol, $5$ - $\delta$ -tocotrienol, $3 \& 6$ -unknown                                                      | 98 |
| 5.5 | Comparison of vitamin E isomers and β-carotene<br>concentration of optimized PLE and Soxhlet extraction.<br>(Error bars represents standard deviation of results, n=4)                                                                                                                                                                                                                                                                                 | 99 |

## LIST OF SYMBOLS/ABBREVIATIONS/NOTATION/TERMINOLOGY

| IUPAC      | - | International Union of Pure and Applied Chemistry       |
|------------|---|---------------------------------------------------------|
| RP-HPLC    | - | Reversed-phase High Performance Liquid Chromatography   |
| HPLC       | - | High Performance Liquid Chromatography                  |
| η          | - | Mobile phase viscosity                                  |
| Т          | - | Absolute Temperature                                    |
| $\Delta P$ | - | Pressure drop                                           |
| $\phi$     | - | Flow resistant factor                                   |
| L          | - | Column length                                           |
| u          | - | Linear flow rate                                        |
| $d_P$      | - | Particle diameter                                       |
| $D_{m,25}$ | - | Molecular diffusivity at 25°C                           |
| Н          | - | Theoretical plate height                                |
| I.D.       | - | Internal diameter                                       |
| UV         | - | Ultra violet                                            |
| PS-DVB     | - | Poly(styrene-divinylbenzene)                            |
| ODS        | - | Octadecylsilyl                                          |
| PAHs       | - | Polycyclic aromatic hydrocarbons                        |
| UV-Vis     | - | Ultra-violet visible                                    |
| LC         | - | Liquid chromatography                                   |
| MS         | - | Mass Spectrometry                                       |
| PBD        | - | Polybutadiene                                           |
| CARB       | - | Carbon                                                  |
| Zr         | - | Zirconia                                                |
| GC         | - | Gas chromatography                                      |
| CE         | - | Capillary electrophoresis                               |
| С          | - | Carbon number                                           |
| HT-HPLC    | - | High temperature high performance liquid chromatography |
| MEKC       | - | Micellar electrokinetic chromatography                  |

| TLC                | - | Thin layer chromatography                                  |
|--------------------|---|------------------------------------------------------------|
| NP-HPLC            | - | Normal phase high performance liquid chromatography        |
| PFPS               | - | Pentafluorophenylsilica                                    |
| ODPVA              | - | Octadecanoyl polyvinyl alcohol                             |
| PPF                | - | Palm pressed fiber                                         |
| СРО                | - | Crude palm oil                                             |
| PFAD               | - | Palm fatty acid distillate                                 |
| PLE                | - | Pressurized liquid extraction                              |
| MAE                | - | Microwave assisted extraction                              |
| Log P              | - | Logarithm of partition coefficient <i>n</i> -octanol/water |
| $a_s$              | - | Absorbance of the sample                                   |
| $a_b$              | - | Cuvette error                                              |
| W                  | - | Weight of sample in gram                                   |
| $R_s$              | - | Resolution                                                 |
| w                  | - | Peak width                                                 |
| W <sub>A1/2</sub>  | - | Peak width at half height                                  |
| t                  | - | Retention time                                             |
| N/m                | - | Theoretical number of separation plates per column length  |
| RSD                | - | Relative standard deviation                                |
| α                  | - | Separation factor                                          |
| k                  | - | Retention factor                                           |
| to                 | - | Column void volume values                                  |
| MeCN               | - | Acetonitrile                                               |
| R                  | - | Gas constant                                               |
| $\Delta H^{\rm o}$ | - | Standard enthalpy                                          |
| $\Delta S^{o}$     | - | Standard entropy                                           |
| $\Phi$             | - | Column phase ratio                                         |
| THF                | - | Tetrahydrofuran                                            |

### LIST OF APPENDICES

| APPENDIX | TITLE                          | PAGE |  |
|----------|--------------------------------|------|--|
|          |                                |      |  |
| А        | Presentations and Publications | 115  |  |

### **CHAPTER 1**

### **INTRODUCTION**

#### 1.1 Preamble

The originator of chromatography as it is practiced today was Michael Tswett (1872-1919) [1]. In 1906 Tswett, a Russian botanist used the term *chromatography* to describe his work on the separation of colored plant pigments into bands on a column of chalk and other materials and stated " Chromatography is a method in which the components of a mixture are separated on an adsorbent column in a flowing system" [2].

Chromatography is a separation method in which a mixture is applied initially as a narrow zone to a stationary, porous sorbent and the components are caused to undergo differential migration by the flow of the mobile phase, a liquid or a gas. According to IUPAC, chromatography can be defined as a physical method of separation in which the components to be separated are distributed between two phases, one of which is stationary while the other moves in a definite direction [2,3].

## 1.2 Principles of High Temperature Operation in Reversed-Phase High Performance Liquid Chromatography (RP-HPLC)

Control of column temperature has become increasingly accepted as a separation parameter in RP-HPLC. Besides, high temperature as an optimization parameter in the separation process of the RP-HPLC system has been widely studied.

This is due to the recent findings of the alternative stationary phase, which has high thermal stability at high temperatures. Recently, the use of higher operating temperatures in RP-HPLC has been demonstrated to be viable and useful for both polymer and pharmaceutical application [4-9].

The advantages of doing RP-HPLC at high temperatures (>100°C) are obvious. High temperature operation in RP-HPLC provides the opportunity to reduce the quantity of organic solvent used in mixed organic-water mobile phase, decreased total analysis time and column back pressure significantly. Elevated temperatures can also increase analyte mass transfer rates and thereby decrease peak width [10-14].

The use of ambient operating temperature in conventional RP-HPLC system with higher flow-rates to reduce analysis time is not recommended. The applicability of high flow rates is limited by the back pressure that different parts of the chromatographic system (pump, injector, and column) can withstand [10]. High flow rates in conventional RP-HPLC system might cause a significant loss in resolution, sacrifice the ruggedness of the separation, shorten the column lifetime and damaged the pump seal [15].

Elevated column temperature operation in RP-HPLC can be used as a tool to overcome the flow rate problem associated with high back pressure, allowing the use of higher flow rates that otherwise could not be applied. The pressure reduction is due to a decrease in eluent viscosity with increasing temperature. The relationship between viscosity,  $\eta$ , and absolute temperature, T, is given by the empirical expression [10]:

$$\ln \eta = a + \frac{b}{T} \tag{1.1}$$

Where *a* and *b* are empirically determined constants. The lower viscosity decreases the pressure drop across the column and allows higher linear velocities as the limit of pump pressure is approached [16]. The pressure drop across a packed column can be approximated by equation 1.2 [10]:

$$\Delta P = \frac{\phi L \eta u}{d_p^2} \tag{1.2}$$

where  $\Delta P$  is the pressure drop,  $\phi$  is the flow resistance factor, L is the column length,  $\eta$  is the mobile phase viscosity, u is the linear flow rate, and  $d_p$  is the particle diameter. The viscosity ( $\eta$ ) is proportional to the inverse of the temperature (T), therefore, higher temperature can significantly decrease mobile phase viscosity ( $\eta$ ) and at the same time decrease the pressure drop ( $\Delta P$ ) across a packed column where all others parameter remain constant.

The advantage of lower pressure drop across the system is that it allows higher flow rates to be applied without decreasing the efficiency of the separation. Increase in the mobile phase flow rate can assist in stabilizing the pressure across the column. Pressure stabilization across the column is extremely important in avoiding the thermal mismatch and temperature gradient that might occur.

Carr and Li [17] in their paper described the rapid analyses of polycyclic aromatic hydrocarbons and typical reversed-phase test mixtures at elevated temperatures and high flow rates. The results showed that analysis time could be decreased about 18-fold at high temperatures and flow rates without any significant loss in resolution relative to that at the conventional temperatures and normal flow rates.

An increase in temperature also increases the diffusion coefficients of the mobile phase and the analytes. According to the Stokes–Einstein relationship, the diffusion coefficient is directly proportional to the absolute temperature and inversely proportional to the viscosity [13]:

$$D_m = D_{m,25} \left( \frac{T}{298} \right) \left( \frac{\eta_{25}}{\eta} \right)$$
(1.3)

where  $D_{m,25}$  and  $\eta_{25}$  are the molecular diffusivity and the viscosity of the eluent at 25°C, respectively. High-temperature separation has been shown to improve analyte

resolution by decreasing mobile phase viscosity and by increasing the diffusion rate of the sample species, thus increasing mass transfer of the analyte to the stationary phase and thereby decreasing the peak width [13].

## 1.3 Instrumental Consideration and Performance in High Temperature RP-HPLC System

Elevated temperature as an optimization parameter in the separation process of the RP-HPLC system is less popular among the researchers. This is due to few reasons. Firstly, alternative stationary phases that have high thermal stability force at high temperature are generally inadequate. The traditional silica-based stationary phases are less stable at high temperatures. Secondly, the design of a chromatographic system could not minimize thermal mismatch broadening and balance heat transfer in the heater effectively. Thirdly, not all the analytes are thermally stable on the time scale of the chromatographic run. Therefore, analyte stability at high temperatures should be well considered [16].

To avoid the problems during the operation of the RP-HPLC system at high temperature, a few modifications should be considered. Carr and Thompson [16] suggested that one of the methods to solve the main problem was to minimize the thermal mismatch broadening in high-temperature RP-HPLC. The temperature mismatch between incoming mobile phase and the column must be minimized because such a mismatch is a very serious cause of peak broadening of hightemperature RP-HPLC.

Schrenker [18] has implemented the study on the effect of mobile phase preheating on HPLC column performance. The results showed that control of constant column temperature using conventional temperature-controlled devices such as "airbath" would lead to significantly axial and radial temperature gradients at temperature different from ambient if the mobile phase enters the column at ambient temperature. The use of conventional temperature-controller always lead to insufficient heat transfer from air to the column wall and through the column wall into the mobile phase.

Foong [19] carried out a study on the column efficiency differences of separation process by comparing the high temperature RP-HPLC system with a mobile phase pre-heating coil and one without it. The results showed that thermal mismatch problem between incoming mobile phase and the column can be overcome by simply modifying the conventional RP-HPLC system with an additional mobile phase pre-heating coils. The column efficiency of the RP-HPLC system with a mobile phase pre-heating coils showed higher values of plate number compared with the system without the modification.

Several journals have described the instrumentation structure of RP-HPLC system at high temperatures. Generally, instrumentation system for RP-HPLC at high temperatures is almost the same with a commercial RP-HPLC system in the market. The most obvious difference is that for RP-HPLC system at high temperature, both mobile phase and column will be placed inside the temperature controller or simply inside a heater.

Commercial temperature controller or column thermostat such as "waterbath" and "block heater" are less popular among the researchers. New type of column thermostat such as gas oven is well accepted by most of the researchers because of it low heat capacity which allows sufficient heat transfer from air to the column wall and through the column into the mobile phase. According to Schrenker [18], a good column thermostat can save analysis time and improve detection limits, because at higher column temperatures lower plate height (*H*) are usually observed and the optimum of the Van-Deemter curve shifts to higher mobile phase velocities which allowed the use of a higher flow rate in the separation.

The use of high operating temperature in conventional RP-HPLC system is strongly dependent on maintaining the mobile phase in the liquid state. As we know, the boiling point for mobile phases (water~100°C and acetonitrile~81.6°C) are usually lower than the instrument operating temperature [20]. Therefore, an extra piece of equipment is needed to overcome this problem. A pressure regulator is usually attached to the detector outlet to provide back pressure to eliminate the formation of bubbles in the mobile phase and thereby stabilize the baseline. Besides pressure regulator, small I.D. restriction tubing ( $\sim 0.10$  mm) also can be used to maintain a constant back pressure ( $\sim 20$  bar) at the outlet of the detector. Because the pressure regulator is attached behind the detector, it would not cause extra column broadening [2,10,19,21].

In our studies, the mobile phase is preheated to the same temperature as the column oven temperature and then passes through injection valve and reaches the column. The hot mobile phase exiting the column will be immediately cooled by ice water before it reaches the detector.

## 1.4 Water-Rich and Superheated water Eluents on High Temperature RP-HPLC

The mobile phase is one of the important parameters that need to be considered in RP-HPLC. Peak shape, specification of functional group, and other operating system parameters are strongly dependent on the nature of the mobile phases that are used [20].

Organic solvents such as acetonitrile, methanol, and tetrahydrofuran are commonly mixed with water and used as mobile phase in conventional RP-HPLC system. Acetonitrile is widely used because of its high elution strength compared with methanol and low UV transparency value. However, it is highly toxic and expensive. The control of organic material waste disposal and its implication towards chemist's health were the problems that should be overcome [22-25].

In order to reduce the usage of organic solvents in RP-HPLC system, attention was paid to new substitutes, for instance pure water. Water is always characterized as a unique solvent because of its highly hydrogen-bonded structure, and at ambient temperature it has disproportionately high boiling point for its mass, a high dielectric constant, and high polarity [26]. It is readily available, relatively cheap, non-toxic, and causes no significant problems with disposal. However, water at ambient condition is too polar to solvate most organic pollutants. The polarity of liquid water can be controlled over a wide range by changing temperature under moderate pressures to maintain water in the liquid state [24]. Increasing the water temperature to 200°C–250°C causes a similar change in solvent polarity (measured by dielectric constant), as achieved by the common HPLC method of mixing methanol or acetonitrile with the water to a liquid concentration of 100% (Figure 1.1).



**Figure 1.1**: Control of solvent polarity (dielectric constant) by changing temperature (at 50 bar) with pure water compared to methanol- or acetonitrile-water mixtures at 25°C and ambient pressure [27-28].

Yang *et al.* [24] described that besides the polarity of water, two additional mobile phase parameters which control liquid phase separation are the solvent surface tension and viscosity. Low surface tension can significantly reduces the retention for reversed-phase separation and low viscosity can results in better mass transfer, thus achieving better chromatographic efficiencies. Water, heated at high temperature has low viscosity and the relationship between the viscosity factor and temperature has been explained previously (section 1.2).

A number of researches that use pure water as mobile phase at high temperature liquid chromatography were recently reported. Mixtures of phenols, parabens, barbiturates, and other analytes have been separated on poly(styrenedivinylbenzene) (PS-DVB) and ODS-bonded silica columns at temperatures up to 210°C by Smith and Burgess [25] using superheated water as an eluent. Dasgupta and Kephart [21] described the application of superheated water eluent in a capillary scale reversed-phase liquid chromatography system.

The properties and characteristics of water at high temperatures had been studied. The capability of the system at high temperature was demonstrated with the separation of benzene derivatives on polybutadiene and elemental carbon modified zirconia packing. Carr *et al.* [16,17,29] who introduced polymer coated zirconia column performed a complete study. He succeeded in applying the superheated water as mobile phase to the separation of polycyclic aromatic hydrocarbon (PAH) compounds by developing a rapid separation at high temperature (200°C).

### 1.5 High Thermal Stability Stationary Phase in the RP-HPLC

Column plays a very important role in RP-HPLC system because all separation process will occur in a column that is packed with specific stationary phase. Reversed phase packing of alkyl silane-bonded phase is by far the most popular stationary phase in RP-HPLC. However, these alkyl-bonded phases have several shortcomings, the major one being their thermal and chemical instability [30]. The typical conventional alkyl silane-bonded silica phase proved to be unstable at temperatures  $20^{\circ}$ C- $30^{\circ}$ C higher than room temperature (> $50^{\circ}$ C) and higher temperature accelerates the dissolution of silica in aqueous solution [31]. In addition, degradation of the stationary phase occurs outside the pH range of 2.5-8. Thus, the ion suppression method cannot be employed with sample solutes having pKa value less than 2 or more than 7 [30-31].

To overcome the problem faced during the usage of alkyl silane-bonded silica phase, a few alternative stationary phases that have higher thermal stability and extreme acceptable pH range of 1-13 have been introduced (Table 1.1). Knox *et al.* [32] introduced alternative stationary phase, which is called Porous Graphitized Carbon (PGC). Meanwhile, Foong [19] have recently done a comprehensive research about PGC column, which focused on the RP-HPLC operation system at high temperature, using low organic solvent composition.

| Description               | Types of Stationary Phases           |            |               |                                   |  |
|---------------------------|--------------------------------------|------------|---------------|-----------------------------------|--|
| Description               | Graphitized Carbon-<br>Clad Zirconia | C18 Silica | Polymeric     | Polybutadiene-<br>Coated Zirconia |  |
| Particle size (µm)        | 3                                    | 3.5        | 5             | 3                                 |  |
| Pore size (Å)             | 300                                  | 300        | 100           | 300                               |  |
| Column size (mm x mm)     | 150 x 4.6                            | 150 x 4.6  | 150 x 4.6     | 150 x 4.6                         |  |
| Low pH limit              | 0.5                                  | 1.8        | 1             | 0.5                               |  |
| High pH limit             | 14                                   | 8          | 14            | 14                                |  |
| Temperature limit (°C)    | 200                                  | 80         | 150           | 200                               |  |
| Carbon loading (% carbon) | ) 1.1                                | 2.8        | Not available | 3.0                               |  |

 Table 1.1: General characteristics of the four reversed-phase LC test columns [32].

Polystyrene-divinylbenzene stationary phase can be regarded as one of the earliest stationary phase introduced which is able to withstand extended exposure to mobile phase at extreme pHs (1-14) and column temperatures as high as 200°C [30]. Separation mechanism and retention behavior on the PS-DVB stationary phase is

strongly dependent on the neutral non-polar polystyrene surface that function as the active site for reversed phase separation with aqueous eluent [33]. Meanwhile, See [34] has recently done a complete research about PS-DVB column, which focused on the RP-HPLC operation system at high temperature, using water-rich and superheated water as eluents.

#### **1.5.1** Zirconia based stationary phase

Typically, the applicability of the novel stationary phase can be evaluated by comparing to the Unger's specification of the ideal phase. First, the particles must have a narrow size distribution and high surface area. Second, the pores must have a diameter appropriate to the size of the analyte and good connectivity to allow for fast analyte mass transfer and third, the support material should resist thermal, mechanical, and chemical degradation but have a surface that is both energetically homogeneous yet chemically modifiable [35].

Zirconia based stationary phase from liquid chromatography has been introduced by Carr and co-workers [16,17,29]. Zirconia based column have received a great deal of attention recently because of their extraordinary stability under extreme thermal and chemical conditions. The outstanding stability of the zirconia can be explained in detail based on the physical properties of the zirconia structure. In the monoclinic oxide, each zirconium atom has coordinate bonds to seven neighbouring oxygen atom. In contrast, silica has only four bonds to oxygen atoms, which largely accounts for zirconia's superior resistance to chemical degradation, especially by acid and base [36].

In order to examine the stability of the zirconium, it was dissolved in the pH range from 1 to 14 and the results showed that there is no dissolution of zirconium in this wide pH range using inductively coupled plasma MS as the detection method. The ability to adjust the pH over a wide range can be quite critical in developing a good separation. Use of high and low pH is often helpful in improving band spacing