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ABSTRACT 

 

 

 

Control of column temperature has become increasingly accepted as a 

separation parameter in high performance liquid chromatography (HPLC). In this 

study, high-temperature reversed-phase (RP) HPLC using water-rich and superheated 

water eluents is evaluated as a new approach for the separation of selected triazole 

fungicides. Using a polybutadiene-coated zirconia column at temperatures of 100°C 

to 150°C, clear separations were achieved when 100% purified water was utilized as 

organic-free eluent. Excellent limits of detection down to pg level were obtained 

under optimum conditions. Nevertheless, poorer separation efficiency was observed 

when the triazole fungicides were separated on carbon-clad zirconia column using 

water-rich eluents. Novel separation of eight vitamin E isomers (α-, β-, γ-, δ-

tocopherol, and α-, β-, γ-, δ-tocotrienol) and α-tocopherol acetate on both normal-

phase (NP) and reversed-phase (RP) HPLC were also examined. All the isomers 

were successfully separated using NP-HPLC on amino and silica columns. By 

simply increasing the temperature for silica column, excellent separation efficiencies 

and shorter analysis times were achieved. Seven vitamin E isomers were successfully 

separated using RP-HPLC at high temperatures. Both developed separation methods 

are rapid, showed excellent repeatability, and suitable to be used as a quantitative 

method in analyzing vitamin E isomers. Pressurized liquid extraction (PLE) along 

with elevated temperature NP-HPLC is evaluated as a new approach for the 

determination of β-carotene and vitamin E isomers in residue oil obtained from palm 

pressed fiber (PPF). The new developed method demonstrated an outstanding 

performance with excellent efficiency in terms of total extraction time, total solvent 

usage, total carotene and vitamin E isomers contents as well as the exceptional 

method repeatability. 
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ABSTRAK 
 

 

 

 Pengawalan suhu turus telah semakin diterima sebagai parameter pemisahan 

dalam kromatografi cecair prestasi tinggi (HPLC). Dalam kajian ini, HPLC fasa 

terbalik bersuhu tinggi dengan turus zirkonia tersalut polibutadiena menggunakan 

pengelusi kaya-air dan air lampau panas telah dikaji sebagai suatu pendekatan baru 

bagi pemisahan fungisid triazola terpilih. Dengan menggunakan turus zirkonia 

tersalut polibutadiena pada suhu 100°C hingga 150°C, pemisahan lengkap telah 

tercapai apabila menggunakan 100% air tulen sebagai pengelusi bebas organik. Had 

pengesanan yang rendah sehingga tahap pg telah tercapai pada keadaan optimum. 

Walau bagaimanapun, kecekapan pemisahan yang lemah telah dicerap apabila racun 

rumpai fungisid triazola dipisahkan dengan turus zirkonia tersalut karbon 

menggunakan pengelusi kaya-air. Pemisahan baru lapan jenis isomer vitamin E (α-, 

β-, γ-, δ-tokoferol, and α-, β-, γ-, δ-tokotrienol) and α-tokoferol asetat dengan HPLC 

fasa normal (NP) dan fasa terbalik (RP) juga telah dikaji. Semua isomer telah berjaya 

dipisahkan menggunakan NP-HPLC dengan turus amino dan silika. Dengan hanya 

meningkatkan suhu bagi turus slika, kecekapan pemisahan yang baik dan masa 

analisis yang lebih pendek telah tercapai. Tujuh jenis isomer vitamin E telah berjaya 

dipisahkan menggunakan RP-HPLC pada suhu tinggi. Kedua-dua kaedah pemisahan 

yang dibangunkan adalah cepat, menunjukkan kebolehulangan yang tinggi, dan 

sesuai digunakan sebagai kaedah kuantitatif dalam menganalisis isomer vitamin E. 

pengekstrakan cecair bertekanan (PLE) bersama dengan NP-HPLC pada suhu 

tertingkat telah dikaji sebagai pendekatan baru dalam menentukan β-karotin dan 

isomer vitamin E dalam sisa minyak diperoleh daripada sabut kelapa sawit (PPF). 

Kaedah baru yang dibangunkan menunjukkan prestasi cemerlang dengan kecekapan 

yang baik dari segi masa pengekstrakan, jumlah penggunaan pelarut, jumlah 

kandungan karotin dan isomer vitamin E dan juga kebolehulangan kaedah yang 

tinggi.          
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CHAPTER 1 

 

 

 

INTRODUCTION 

 

 
 

1.1 Preamble 

 

The originator of chromatography as it is practiced today was Michael Tswett 

(1872-1919) [1]. In 1906 Tswett, a Russian botanist used the term chromatography 

to describe his work on the separation of colored plant pigments into bands on a 

column of chalk and other materials and stated “ Chromatography is a method in 

which the components of a mixture are separated on an adsorbent column in a 

flowing system” [2].  

 

Chromatography is a separation method in which a mixture is applied initially 

as a narrow zone to a stationary, porous sorbent and the components are caused to 

undergo differential migration by the flow of the mobile phase, a liquid or a gas. 

According to IUPAC, chromatography can be defined as a physical method of 

separation in which the components to be separated are distributed between two 

phases, one of which is stationary while the other moves in a definite direction [2,3]. 

 
 
 

1.2 Principles of High Temperature Operation in Reversed-Phase High 

Performance Liquid Chromatography (RP-HPLC) 

 

 Control of column temperature has become increasingly accepted as a 

separation parameter in RP-HPLC. Besides, high temperature as an optimization 

parameter in the separation process of the RP-HPLC system has been widely studied.
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This is due to the recent findings of the alternative stationary phase, which has high 

thermal stability at high temperatures. Recently, the use of higher operating 

temperatures in RP-HPLC has been demonstrated to be viable and useful for both 

polymer and pharmaceutical application [4-9]. 

 

The advantages of doing RP-HPLC at high temperatures (>100οC) are 

obvious. High temperature operation in RP-HPLC provides the opportunity to reduce 

the quantity of organic solvent used in mixed organic-water mobile phase, decreased 

total analysis time and column back pressure significantly. Elevated temperatures can 

also increase analyte mass transfer rates and thereby decrease peak width [10-14].  

 

The use of ambient operating temperature in conventional RP-HPLC system 

with higher flow-rates to reduce analysis time is not recommended. The applicability 

of high flow rates is limited by the back pressure that different parts of the 

chromatographic system (pump, injector, and column) can withstand [10]. High flow 

rates in conventional RP-HPLC system might cause a significant loss in resolution, 

sacrifice the ruggedness of the separation, shorten the column lifetime and damaged 

the pump seal [15].    

 

Elevated column temperature operation in RP-HPLC can be used as a tool to 

overcome the flow rate problem associated with high back pressure, allowing the use 

of higher flow rates that otherwise could not be applied. The pressure reduction is 

due to a decrease in eluent viscosity with increasing temperature. The relationship 

between viscosity, η, and absolute temperature, T, is given by the empirical 

expression [10]: 

 

T
ba +=ηln                                                                                             (1.1) 

 

Where a and b are empirically determined constants. The lower viscosity decreases 

the pressure drop across the column and allows higher linear velocities as the limit of 

pump pressure is approached [16]. The pressure drop across a packed column can be 

approximated by equation 1.2 [10]:  
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  2
pd

uLP ηφ
=∆                                                                                            (1.2) 

 

where ∆P is the pressure drop, φ is the flow resistance factor, L is the column length, 

η is the mobile phase viscosity, u is the linear flow rate, and dp is the particle 

diameter. The viscosity (η) is proportional to the inverse of the temperature (T), 

therefore, higher temperature can significantly decrease mobile phase viscosity (η) 

and at the same time decrease the pressure drop (∆P) across a packed column where 

all others parameter remain constant. 

 

 The advantage of lower pressure drop across the system is that it allows 

higher flow rates to be applied without decreasing the efficiency of the separation. 

Increase in the mobile phase flow rate can assist in stabilizing the pressure across the 

column. Pressure stabilization across the column is extremely important in avoiding 

the thermal mismatch and temperature gradient that might occur.  

 

 Carr and Li [17] in their paper described the rapid analyses of polycyclic 

aromatic hydrocarbons and typical reversed-phase test mixtures at elevated 

temperatures and high flow rates. The results showed that analysis time could be 

decreased about 18-fold at high temperatures and flow rates without any significant 

loss in resolution relative to that at the conventional temperatures and normal flow 

rates.  

 

 An increase in temperature also increases the diffusion coefficients of the 

mobile phase and the analytes. According to the Stokes–Einstein relationship, the 

diffusion coefficient is directly proportional to the absolute temperature and 

inversely proportional to the viscosity [13]: 

 

 













=

η
η25

25, 298
TDD mm                                                                          (1.3) 

 

where Dm,25  and η25 are the molecular diffusivity and the viscosity of the eluent at 

25οC, respectively. High-temperature separation has been shown to improve analyte 
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resolution by decreasing mobile phase viscosity and by increasing the diffusion rate 

of the sample species, thus increasing mass transfer of the analyte to the stationary 

phase and thereby decreasing the peak width [13]. 

 

 

 

1.3 Instrumental Consideration and Performance in High Temperature RP-

HPLC System 

 

Elevated temperature as an optimization parameter in the separation process 

of the RP-HPLC system is less popular among the researchers. This is due to few 

reasons. Firstly, alternative stationary phases that have high thermal stability force at 

high temperature are generally inadequate. The traditional silica-based stationary 

phases are less stable at high temperatures. Secondly, the design of a 

chromatographic system could not minimize thermal mismatch broadening and 

balance heat transfer in the heater effectively. Thirdly, not all the analytes are 

thermally stable on the time scale of the chromatographic run. Therefore, analyte 

stability at high temperatures should be well considered [16].   

 

To avoid the problems during the operation of the RP-HPLC system at high 

temperature, a few modifications should be considered. Carr and Thompson [16] 

suggested that one of the methods to solve the main problem was to minimize the 

thermal mismatch broadening in high-temperature RP-HPLC. The temperature 

mismatch between incoming mobile phase and the column must be minimized 

because such a mismatch is a very serious cause of peak broadening of high-

temperature RP-HPLC.  

 

Schrenker [18] has implemented the study on the effect of mobile phase pre-

heating on HPLC column performance. The results showed that control of constant 

column temperature using conventional temperature-controlled devices such as “air-

bath” would lead to significantly axial and radial temperature gradients at 

temperature different from ambient if the mobile phase enters the column at ambient 

temperature. The use of conventional temperature-controller always lead to 
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insufficient heat transfer from air to the column wall and through the column wall 

into the mobile phase.  

 

Foong [19] carried out a study on the column efficiency differences of 

separation process by comparing the high temperature RP-HPLC system with a 

mobile phase pre-heating coil and one without it. The results showed that thermal 

mismatch problem between incoming mobile phase and the column can be overcome 

by simply modifying the conventional RP-HPLC system with an additional mobile 

phase pre-heating coils. The column efficiency of the RP-HPLC system with a 

mobile phase pre-heating coils showed higher values of plate number compared with 

the system without the modification.  

      

Several journals have described the instrumentation structure of RP-HPLC 

system at high temperatures. Generally, instrumentation system for RP-HPLC at high 

temperatures is almost the same with a commercial RP-HPLC system in the market. 

The most obvious difference is that for RP-HPLC system at high temperature, both 

mobile phase and column will be placed inside the temperature controller or simply 

inside a heater.  

 

Commercial temperature controller or column thermostat such as “water-

bath” and “block heater” are less popular among the researchers. New type of 

column thermostat such as gas oven is well accepted by most of the researchers 

because of it low heat capacity which allows sufficient heat transfer from air to the 

column wall and through the column into the mobile phase. According to Schrenker 

[18], a good column thermostat can save analysis time and improve detection limits, 

because at higher column temperatures lower plate height (H) are usually observed 

and the optimum of the Van-Deemter curve shifts to higher mobile phase velocities 

which allowed the use of a higher flow rate in the separation.  

 

The use of high operating temperature in conventional RP-HPLC system is 

strongly dependent on maintaining the mobile phase in the liquid state. As we know, 

the boiling point for mobile phases (water~100οC and acetonitrile~81.6οC) are 

usually lower than the instrument operating temperature [20]. Therefore, an extra 

piece of equipment is needed to overcome this problem. A pressure regulator is 
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usually attached to the detector outlet to provide back pressure to eliminate the 

formation of bubbles in the mobile phase and thereby stabilize the baseline. Besides 

pressure regulator, small I.D. restriction tubing (~ 0.10 mm) also can be used to 

maintain a constant back pressure (~20 bar) at the outlet of the detector. Because the 

pressure regulator is attached behind the detector, it would not cause extra column 

broadening [2,10,19,21].   

 

In our studies, the mobile phase is preheated to the same temperature as the 

column oven temperature and then passes through injection valve and reaches the 

column. The hot mobile phase exiting the column will be immediately cooled by ice 

water before it reaches the detector. 

 

 

 

1.4 Water-Rich and Superheated water Eluents on High Temperature RP-

HPLC  

 

 The mobile phase is one of the important parameters that need to be 

considered in RP-HPLC. Peak shape, specification of functional group, and other 

operating system parameters are strongly dependent on the nature of the mobile 

phases that are used [20]. 

    

Organic solvents such as acetonitrile, methanol, and tetrahydrofuran are 

commonly mixed with water and used as mobile phase in conventional RP-HPLC 

system. Acetonitrile is widely used because of its high elution strength compared 

with methanol and low UV transparency value. However, it is highly toxic and 

expensive. The control of organic material waste disposal and its implication towards 

chemist’s health were the problems that should be overcome [22-25]. 

 

In order to reduce the usage of organic solvents in RP-HPLC system, 

attention was paid to new substitutes, for instance pure water. Water is always 

characterized as a unique solvent because of its highly hydrogen-bonded structure, 

and at ambient temperature it has disproportionately high boiling point for its mass, a 

high dielectric constant, and high polarity [26]. It is readily available, relatively 
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cheap, non-toxic, and causes no significant problems with disposal. However, water 

at ambient condition is too polar to solvate most organic pollutants. The polarity of 

liquid water can be controlled over a wide range by changing temperature under 

moderate pressures to maintain water in the liquid state [24]. Increasing the water 

temperature to 200οC–250οC causes a similar change in solvent polarity (measured 

by dielectric constant), as achieved by the common HPLC method of mixing 

methanol or acetonitrile with the water to a liquid concentration of 100% (Figure 

1.1).  
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Figure 1.1: Control of solvent polarity (dielectric constant) by changing temperature 
(at 50 bar) with pure water compared to methanol- or acetonitrile-water mixtures 
 at 25οC and ambient pressure [27-28]. 
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Yang et al. [24] described that besides the polarity of water, two additional 

mobile phase parameters which control liquid phase separation are the solvent 

surface tension and viscosity. Low surface tension can significantly reduces the 

retention for reversed-phase separation and low viscosity can results in better mass 

transfer, thus achieving better chromatographic efficiencies. Water, heated at high 

temperature has low viscosity and the relationship between the viscosity factor and 

temperature has been explained previously (section 1.2).  

 

A number of researches that use pure water as mobile phase at high 

temperature liquid chromatography were recently reported. Mixtures of phenols, 

parabens, barbiturates, and other analytes have been separated on poly(styrene-

divinylbenzene) (PS-DVB) and ODS-bonded silica columns at temperatures up to 

210οC by  Smith and Burgess [25] using superheated water as an eluent. Dasgupta 

and Kephart [21] described the application of superheated water eluent in a capillary 

scale reversed-phase liquid chromatography system.  

 

The properties and characteristics of water at high temperatures had been 

studied. The capability of the system at high temperature was demonstrated with the 

separation of benzene derivatives on polybutadiene and elemental carbon modified 

zirconia packing. Carr et al. [16,17,29] who introduced polymer coated zirconia 

column performed a complete study. He succeeded in applying the superheated water 

as mobile phase to the separation of polycyclic aromatic hydrocarbon (PAH) 

compounds by developing a rapid separation at high temperature (200οC). 

 

 

 

1.5 High Thermal Stability Stationary Phase in the RP-HPLC 

 

Column plays a very important role in RP-HPLC system because all 

separation process will occur in a column that is packed with specific stationary 

phase. Reversed phase packing of alkyl silane-bonded phase is by far the most 

popular stationary phase in RP-HPLC. However, these alkyl-bonded phases have 

several shortcomings, the major one being their thermal and chemical instability 

[30].  
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The typical conventional alkyl silane-bonded silica phase proved to be 

unstable at temperatures 20οC-30οC higher than room temperature (>50οC) and 

higher temperature accelerates the dissolution of silica in aqueous solution [31]. In 

addition, degradation of the stationary phase occurs outside the pH range of 2.5-8. 

Thus, the ion suppression method cannot be employed with sample solutes having 

pKa value less than 2 or more than 7 [30-31].    

 

 To overcome the problem faced during the usage of alkyl silane-bonded silica 

phase, a few alternative stationary phases that have higher thermal stability and 

extreme acceptable pH range of 1-13 have been introduced (Table 1.1). Knox et al. 

[32] introduced alternative stationary phase, which is called Porous Graphitized 

Carbon (PGC). Meanwhile, Foong [19] have recently done a comprehensive research 

about PGC column, which focused on the RP-HPLC operation system at high 

temperature, using low organic solvent composition.  

 

 

Table 1.1: General characteristics of the four reversed-phase LC test columns [32]. 
 

Types of Stationary Phases 
Description 

 
Graphitized Carbon- 

Clad Zirconia C18 Silica Polymeric 
Polybutadiene- 
Coated Zirconia 

Particle size (µm) 3 3.5 5 3 

Pore size (Å) 300 300 100 300 

Column size (mm x mm)  150 x 4.6 150 x 4.6 150 x 4.6 150 x 4.6 

Low pH limit 0.5 1.8 1 0.5 

High pH limit 14 8 14 14 

Temperature limit (oC) 200 80 150 200 

Carbon loading (% carbon) 1.1 2.8 Not available 3.0 

 

 

 Polystyrene-divinylbenzene stationary phase can be regarded as one of the 

earliest stationary phase introduced which is able to withstand extended exposure to 

mobile phase at extreme pHs (1-14) and column temperatures as high as 200οC [30]. 

Separation mechanism and retention behavior on the PS-DVB stationary phase is 
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strongly dependent on the neutral non-polar polystyrene surface that function as the 

active site for reversed phase separation with aqueous eluent [33]. Meanwhile, See 

[34] has recently done a complete research about PS-DVB column, which focused on 

the RP-HPLC operation system at high temperature, using water-rich and 

superheated water as eluents.   

 

 

 

1.5.1 Zirconia based stationary phase 

 

 Typically, the applicability of the novel stationary phase can be evaluated by 

comparing to the Unger’s specification of the ideal phase. First, the particles must 

have a narrow size distribution and high surface area. Second, the pores must have a 

diameter appropriate to the size of the analyte and good connectivity to allow for fast 

analyte mass transfer and third, the support material should resist thermal, 

mechanical, and chemical degradation but have a surface that is both energetically 

homogeneous yet chemically modifiable [35].  

 

 Zirconia based stationary phase from liquid chromatography has been 

introduced by Carr and co-workers [16,17,29]. Zirconia based column have received 

a great deal of attention recently because of their extraordinary stability under 

extreme thermal and chemical conditions. The outstanding stability of the zirconia 

can be explained in detail based on the physical properties of the zirconia structure. 

In the monoclinic oxide, each zirconium atom has coordinate bonds to seven 

neighbouring oxygen atom. In contrast, silica has only four bonds to oxygen atoms, 

which largely accounts for zirconia’s superior resistance to chemical degradation, 

especially by acid and base [36].  

 

 In order to examine the stability of the zirconium, it was dissolved in the pH 

range from 1 to 14 and the results showed that there is no dissolution of zirconium in 

this wide pH range using inductively coupled plasma MS as the detection method. 

The ability to adjust the pH over a wide range can be quite critical in developing a 

good separation. Use of high and low pH is often helpful in improving band spacing 

 




